JPH08260061A - Production of dead soft steel - Google Patents

Production of dead soft steel

Info

Publication number
JPH08260061A
JPH08260061A JP8766395A JP8766395A JPH08260061A JP H08260061 A JPH08260061 A JP H08260061A JP 8766395 A JP8766395 A JP 8766395A JP 8766395 A JP8766395 A JP 8766395A JP H08260061 A JPH08260061 A JP H08260061A
Authority
JP
Japan
Prior art keywords
steel
heating
carbon steel
producing
low carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8766395A
Other languages
Japanese (ja)
Other versions
JP3388937B2 (en
Inventor
Akifumi Seze
昌文 瀬々
Ryoji Tsujino
良二 辻野
Arata Tanaka
新 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08766395A priority Critical patent/JP3388937B2/en
Publication of JPH08260061A publication Critical patent/JPH08260061A/en
Application granted granted Critical
Publication of JP3388937B2 publication Critical patent/JP3388937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE: To provide a method for producing a titanium-added dead soft steel sheet industrially stable and excellent in surface properties. CONSTITUTION: This is a method for producing a dead soft steel in which, at the time of producing a dead soft steel in which the content of carbon in the steel is regulated to 0.01 wt.% and added with titanium in the range of 0.005 to 0.150 wt.% slab heating before rolling is executed under the conditions in accordance with the following inequality: a.PO2 0.80 [exp (-Q/RT) t]0.5<50; where (a), coefficient, Q: activation energy of the diffusion of oxygen, R: gas constant, PO2 : oxygen partial pressure in the atmosphere, (t): heating time and T: heating temp. Thus, the dead soft steel small in surface flaws caused by oxidized scales can stably be produced, and the stock for an inexpensive workability steel sheet of good quality can be provided at an improved yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面性状の優れた極低
炭素鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra low carbon steel sheet having excellent surface properties.

【0002】[0002]

【従来の技術】従来から主に自動車向け良加工性鋼板用
素材として、例えば特公昭44−18066号公報「プ
レス成形性に優れた冷延鋼板の製造法」に開示されてい
るように、鋼中の炭素(C)と窒素(N)の含有量をで
きるだけ少なくした上で、C,Nと化合物をつくるチタ
ン(Ti)を当量以上添加したTi添加極低炭素鋼が広
く使われてきた。
2. Description of the Related Art Conventionally, as a material for steel sheets having good workability mainly for automobiles, as disclosed in, for example, Japanese Patent Publication No. 44-18066, "Method for producing cold rolled steel sheet having excellent press formability", A Ti-added ultra-low carbon steel has been widely used in which the contents of carbon (C) and nitrogen (N) therein are reduced as much as possible, and titanium (Ti) forming a compound with C and N is added in an equivalent amount or more.

【0003】ここでのTi添加の目的は、深絞り強加工
時にストレッチャーストレインと呼ばれているしわ状の
欠陥が生じるのを防止するために、マトリックスから固
溶しているCおよびNをTiと結合させて完全に取り除
き無害化するためである。
The purpose of the addition of Ti here is to prevent the formation of wrinkle-like defects called stretcher strain during deep-drawing and strong working, by adding C and N, which are in solid solution from the matrix, to Ti. This is because it is combined with and completely removed to make it harmless.

【0004】このようなTi添加極低炭素鋼の製造方法
としては、大量生産による製造コストの低減,鋳片品質
の高位安定化等の観点から、周囲を水冷銅板で構成され
た中空鋳型内に溶鋼を連続的に供給かつ凝固させること
で、スラブ鋳片を連続的に製造するいわゆる連続鋳造方
法によりスラブが鋳造され、引き続きこのスラブを加熱
炉内で加熱高温保持したのち熱間圧延する方法が一般に
採用されてきた。
As a method for producing such a Ti-added ultra-low carbon steel, from the viewpoints of reduction of production cost by mass production, stabilization of high quality of cast slabs, etc., a hollow mold composed of a water-cooled copper plate around the periphery is used. By continuously supplying and solidifying the molten steel, a slab is cast by a so-called continuous casting method of continuously producing slab slabs, and subsequently a method of hot rolling after holding this slab at a high temperature in a heating furnace is used. It has been generally adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前記した
従来の技術を用いて、Ti添加極低炭素鋼を鋳造し圧延
した場合、圧延前のスラブ鋳片加熱時に生成した表層の
酸化スケールに起因した表面疵が多発し、製品での歩留
まりが低下するといった問題が残されていた。
However, when the Ti-added ultra-low carbon steel is cast and rolled by using the above-mentioned conventional technique, the surface caused by the oxide scale of the surface layer generated at the time of heating the slab slab before rolling. Problems such as frequent defects and a decrease in product yield remained.

【0006】本発明は上記課題を解決し、表面疵が少な
く工業的に安定かつ安価に製造可能な極低炭素鋼の製造
方法を提供する。
The present invention solves the above problems and provides a method for producing an extremely low carbon steel which has few surface defects and is industrially stable and can be produced at a low cost.

【0007】[0007]

【課題を解決するための手段】そこで本発明者らは、T
i添加極低炭素鋼板の表面性状の改善方法について実験
的研究を積み重ね、以下の手段を適用することで前記課
題を解決し、表面性状の優れた極低炭素鋼板が得られる
ことを知見した。
Therefore, the present inventors have found that T
It has been found that the above problems can be solved by applying the following means by implementing experimental research on a method of improving the surface properties of the i-added ultra-low carbon steel plate, and an ultra-low carbon steel plate having excellent surface properties can be obtained.

【0008】本発明は、鋼中の炭素含有量が0.01重
量%以下で、かつチタンを0.005〜0.150重量
%の範囲で添加した極低炭素鋼を製造するにあたり、圧
延前のスラブ加熱条件を下記数1に従って行うことを特
徴とする極低炭素鋼の製造方法である。
According to the present invention, the ultra low carbon steel having a carbon content in the steel of 0.01% by weight or less and titanium added in the range of 0.005 to 0.150% by weight is used before rolling. The slab heating condition is performed according to the following mathematical formula 1.

【0009】[0009]

【数2】 a・PO2 0.80・〔exp(−Q/RT)t〕0.5<50……(1)[Formula 2] a · PO 2 0.80 · [exp (−Q / RT) t] 0.5 <50 (1)

【0010】ここで、a :係数(=30907), Q :酸素の拡散の活性化エネルギー, (=40300kcal/mol・K), R : ガス定数(=1.987kcal/mo
l), PO2 :雰囲気中の酸素分圧(atm), t :加熱時間(min), T :加熱温度(K)
Here, a: coefficient (= 30907), Q: activation energy of oxygen diffusion, (= 40300 kcal / mol · K), R: gas constant (= 1.987 kcal / mo)
l), PO 2: oxygen partial pressure in the atmosphere (atm), t: heating time (min), T: heating temperature (K)

【0011】[0011]

【作用】以下、本発明の作用を詳細に説明する。本発明
者らは、従来の技術における前記問題点を解決すべく、
先ずスラブ鋳片を加熱した際に生じる酸化スケール生成
挙動を詳細に調査した。
The function of the present invention will be described in detail below. In order to solve the above problems in the prior art, the present inventors have
First, the oxide scale formation behavior occurring when the slab slab was heated was investigated in detail.

【0012】図1(a)は、Ti添加極低炭素鋼(C=
0.0015重量%,Ti=0.05重量%)と、これ
と比較すると表層の酸化スケールに起因した表面疵が少
ない図(b)のアルミキルド低炭素鋼(C=0.05重
量%)を、1200℃で120min加熱した後の表層
酸化スケールの状況を模式的に示したものである。
FIG. 1 (a) is a Ti-added ultra-low carbon steel (C =
0.0015% by weight, Ti = 0.05% by weight), and the aluminum-killed low carbon steel (C = 0.05% by weight) shown in FIG. 6 (B), which has less surface defects due to the oxide scale of the surface layer compared to this. 1 schematically shows the state of a surface oxide scale after heating at 1200 ° C. for 120 minutes.

【0013】なお、加熱炉内の雰囲気中の酸素濃度は3
%とした。図(b)のアルミキルド低炭素鋼の場合、表
面スケールの他に、地鉄側表層のC濃度が低下した脱炭
層が形成されるのが特徴である。
The oxygen concentration in the atmosphere in the heating furnace is 3
%. In the case of the aluminum-killed low-carbon steel shown in FIG. 2 (b), in addition to the surface scale, a decarburized layer in which the C concentration in the surface layer on the base steel side is lowered is formed.

【0014】一方図(a)Ti添加極低炭素鋼の場合、
地鉄側表層の脱炭層の形成は顕著ではなく、これに代わ
って表層の粒界や一部粒内が局部的に酸化されているの
が特徴である。この局部的に酸化されている部分の成分
分析を行った結果、これらは主に鋼中のTiが酸化され
たものであることが判明した。
On the other hand, in the case of Ti-added ultra low carbon steel shown in FIG.
The formation of the decarburized layer on the surface layer on the ground iron side is not remarkable, and instead of this, the grain boundary of the surface layer and a part of the grain are locally oxidized. As a result of the component analysis of this locally oxidized portion, it was found that these were mainly those in which Ti in the steel was oxidized.

【0015】図2は、地鉄側表層のビッカース硬度を測
定した結果である。前記(b)アルミキルド低炭素鋼の
場合、内部と比較して表層の硬度が低下する傾向にあ
る。これは、前記した表層の脱炭層の形成によるものと
推定される。
FIG. 2 shows the results of measuring the Vickers hardness of the surface layer on the base metal side. In the case of (b) the aluminum killed low carbon steel, the hardness of the surface layer tends to be lower than that of the inside. It is presumed that this is due to the formation of the decarburized surface layer.

【0016】一方(a)Ti添加極低炭素鋼の場合、逆
に内部よりも表層の硬度が上昇する傾向にある。これは
前記した表層のTiの粒界あるいは一部粒内での局部酸
化によるものと推定される。
On the other hand, in the case of (a) Ti-added ultra-low carbon steel, on the contrary, the hardness of the surface layer tends to be higher than that of the inside. It is presumed that this is due to the local oxidation at the grain boundary of Ti on the surface layer or in some grains.

【0017】以上のことから、圧延前のスラブ加熱時に
生成した酸化スケール起因の表面疵が発生しやすい
(a)Ti添加極低炭素鋼と同酸化スケール起因の表面
疵が少ない(b)アルミキルド低炭素鋼では、スラブ加
熱時の酸化スケールとくに地鉄側表層のいわゆるサブス
ケールの生成挙動に大きな差異があることが判る。
From the above, surface flaws due to oxide scales generated during slab heating before rolling tend to occur (a) Ti-added ultra-low carbon steel and few surface flaws due to the same oxide scales (b) low aluminum kill It can be seen that carbon steel has a large difference in the formation behavior of oxide scale during slab heating, especially so-called subscale on the surface layer on the base metal side.

【0018】またこれらのことから、(a)Ti添加極
低炭素鋼では表層近傍の粒界あるいは一部粒内でのTi
酸化物の残留、およびこれらの生成による表層の硬度の
増大すなわち加工性の低下により、圧延時に酸化スケー
ル起因の表面疵が発生しやすいものと推定される。
Further, from the above, (a) in the Ti-added ultra-low carbon steel, Ti in the grain boundaries near the surface layer or in some grains is
It is presumed that surface defects due to oxide scale are likely to occur during rolling due to the residual oxide and the increase in the hardness of the surface layer due to the formation of these oxides, that is, the deterioration of workability.

【0019】このような鋼中元素Mの酸化反応は、一般
的に下記(2)式のように表される。
Such an oxidation reaction of the element M in steel is generally expressed by the following equation (2).

【0020】[0020]

【数3】 (Equation 3)

【0021】ここでm,nは、化学量論的な係数であ
る。
Here, m and n are stoichiometric coefficients.

【0022】また、このときの酸素1モル当たりの生成
自由エネルギー変化ΔGは、次(3)式のように表され
る。
The change in free energy of formation ΔG per mol of oxygen at this time is expressed by the following equation (3).

【0023】[0023]

【数4】 [Equation 4]

【0024】ここでΔG0 は、標準生成自由エネルギー
変化,Rはガス定数,Tは温度,aXはX成分の活量,
PO2 は酸素ポテンシアルである。またΔGが負の大き
な値をとるほど酸化物の生成傾向は強くなる。
Here, ΔG 0 is the standard free energy of formation change, R is the gas constant, T is the temperature, aX is the activity of the X component,
PO 2 is oxygen potential. Further, the larger the negative value of ΔG, the stronger the tendency of oxide formation.

【0025】(3)式より、酸化物の生成自由エネルギ
ー変化ΔGは、鋼中の成分の活量と酸素ポテンシアル,
換言すると、鋼中の成分濃度と雰囲気中の酸素分圧に依
存することが判る。
From equation (3), the change in free energy of formation of oxide ΔG is determined by the activity of the components in the steel and the oxygen potential,
In other words, it turns out that it depends on the component concentrations in the steel and the oxygen partial pressure in the atmosphere.

【0026】表1は、雰囲気中の酸素分圧をスラブ加熱
炉中とほぼ同等な0.04atm(酸素濃度4%)と仮
定して、前記(a)Ti添加極低炭素鋼と(b)アルミ
キルド低炭素綱における酸化物の生成自由エネルギー変
化を試算した結果である。表1より、(b)アルミキル
ド低炭素綱では、地鉄の酸化よりも鋼中のCの酸化傾向
の方が強く、表層の脱炭反応が起こりやすいことが推察
される。
Table 1 assumes that the oxygen partial pressure in the atmosphere is 0.04 atm (oxygen concentration 4%), which is almost the same as that in the slab heating furnace, and the (a) Ti-added ultra-low carbon steel and (b) This is the result of trial calculation of change in free energy of formation of oxide in aluminum-killed low carbon steel. From Table 1, it is inferred that in (b) aluminum-killed low carbon steel, the oxidation tendency of C in steel is stronger than that of base iron, and the decarburization reaction of the surface layer is likely to occur.

【0027】一方(a)Ti添加極低炭素鋼の場合、地
鉄の酸化よりも鋼中のCの酸化傾向の方が弱く、表層の
脱炭反応が起こりにくいこと、および地鉄の酸化よりも
Tiの酸化傾向の方が強く、Tiが優先酸化されやすい
ことが判る。
On the other hand, in the case of (a) Ti-added ultra-low carbon steel, the oxidation tendency of C in the steel is weaker than the oxidation of the base iron, the decarburization reaction of the surface layer is less likely to occur, and the oxidation of the base iron is Also, it is understood that the tendency of Ti to be oxidized is stronger and that Ti is more likely to be preferentially oxidized.

【0028】同様の計算より、Tiが地鉄よりも優先酸
化されうる限界濃度は0.0002重量%程度と見積も
られ、工業的には極低炭素鋼に添加される0.005〜
0.150重量%の範囲では、前記Tiの優先酸化が起
こり得る。
From the same calculation, the limit concentration at which Ti can be preferentially oxidized over the base iron is estimated to be about 0.0002% by weight, and 0.005 to 0.005 which is industrially added to the ultra low carbon steel is estimated.
In the range of 0.150% by weight, the preferential oxidation of Ti may occur.

【0029】[0029]

【表1】 [Table 1]

【0030】また図3は、鋼中のC濃度とCOの生成自
由エネルギー変化の関係を試算した結果である。ここで
は、酸素分圧は0.04atm,CO分圧は0.01a
tmと仮定して計算した。これより、C濃度が約0.0
1重量%より高い場合では、地鉄の酸化よりもCの酸化
傾向の方が強く、脱炭反応が起こりやすいが、C濃度が
約0.01重量%以下では、地鉄の酸化よりもCの酸化
傾向の方が弱く、脱炭反応が起こりにくくなることが推
察される。これはC濃度の異なる種々のスラブ鋳片を加
熱した場合の、表層の脱炭層の生成傾向とほぼ一致す
る。
FIG. 3 shows the result of trial calculation of the relationship between the C concentration in steel and the change in free energy of CO formation. Here, the oxygen partial pressure is 0.04 atm and the CO partial pressure is 0.01 a.
It was calculated assuming tm. From this, the C concentration is about 0.0
When it is higher than 1% by weight, the oxidation tendency of C is stronger than that of the base iron, and the decarburization reaction is more likely to occur, but when the C concentration is about 0.01% by weight or less, the C content is higher than that of the base iron. It is presumed that the deoxidization tendency is weaker and the decarburization reaction is less likely to occur. This is almost in agreement with the formation tendency of the decarburized layer on the surface when various slab cast pieces having different C concentrations are heated.

【0031】このように、スラブ加熱時の酸化スケー
ル,特にサブスケール生成挙動が鋼種によって異なるこ
とが、熱力学的な検討結果からも半定量的に説明するこ
とができる。
As described above, it can be explained semi-quantitatively from the results of thermodynamic examination that the oxide scale, especially the subscale formation behavior during slab heating differs depending on the steel type.

【0032】次に本発明者らは、前記スラブ加熱後のT
iの粒界酸化深さdと、圧延後のスケール系表面疵の発
生状況との関係について検討を重ねた。その結果は図4
に示すように、Tiの粒界酸化深さdが50μm以上に
なると圧延後のスケール系表面疵の発生が顕著になり、
これ以下では表面疵への影響としては工業的にはほとん
ど無害であることを知見した。
Next, the inventors of the present invention conducted the T after heating the slab.
The relationship between the grain boundary oxidation depth d of i and the occurrence state of scale-based surface flaws after rolling was repeatedly examined. The result is shown in Figure 4.
As shown in FIG. 5, when the grain boundary oxidation depth d of Ti is 50 μm or more, the occurrence of scale-based surface flaws after rolling becomes remarkable,
Below this, it was found that the effect on the surface flaw was almost harmless industrially.

【0033】なお図4の表面疵発生率は、冷延コイルよ
り1m長さのサンプルを抜き取り採取したときの、全抜
き取り枚数に対するスラブ加熱時の酸化スケール起因表
面欠陥が検出された枚数の割合(%)である。
The surface flaw generation rate in FIG. 4 is the ratio of the number of detected surface defects due to oxide scale during slab heating to the total number of samples taken when a 1 m long sample was taken from the cold rolled coil ( %).

【0034】これは、圧延後の鋼板の表面粗度が通常数
10μm程度あるために、深さがこれと同程度かもしく
はこれ以下の粒界酸化は欠陥として顕在化しないためと
推定される。
It is presumed that this is because the surface roughness of the rolled steel sheet is usually about several tens of μm, and grain boundary oxidation with a depth equal to or less than this depth does not manifest as a defect.

【0035】そこで本発明者らは、前記スラブ加熱後の
Tiの粒界酸化深さdに及ぼすスラブ加熱条件の影響と
して、 加熱炉内雰囲気中の酸素分圧PO2 (at
m), 加熱保持温度T(K), 加熱保持時間t
(min)に着目し、これらの条件の影響を詳細に検討
した。その結果、Tiの粒界酸化は表面からの酸素の拡
散に律速され、酸素の拡散係数Doを用いると次(4)
式のように表されることを知見した。
Therefore, the present inventors have examined the oxygen partial pressure PO 2 (at) in the atmosphere of the heating furnace as the influence of the slab heating condition on the grain boundary oxidation depth d of Ti after the slab heating.
m), heating holding temperature T (K), heating holding time t
Focusing on (min), the effects of these conditions were examined in detail. As a result, the grain boundary oxidation of Ti is controlled by the diffusion of oxygen from the surface, and if the oxygen diffusion coefficient Do is used, the following (4)
It was found that it is expressed as a formula.

【0036】[0036]

【数5】 d=a・√(Do・t) …………(4)[Equation 5] d = a · √ (Do · t) ………… (4)

【0037】ここで、aは係数で、√(Do・t)は酸
素の拡散距離を表す。またDoは、温度Tの関数として
次式、数3のように表される。
Here, a is a coefficient and √ (Do · t) represents the diffusion distance of oxygen. Further, Do is expressed as a function of the temperature T as shown in the following equation (3).

【0038】[0038]

【数6】 Do=Do・exp(−Q/RT) …………(5)[Equation 6] Do = Do · exp (−Q / RT) ………… (5)

【0039】ここで、Doは係数,Qは拡散の活性化エ
ネルギーで40300kcal/mol・K,Rはガス
定数1.987kcal/molである。
Here, Do is a coefficient, Q is an activation energy of diffusion, 40300 kcal / mol · K, and R is a gas constant of 1.987 kcal / mol.

【0040】本発明者らの研究によると、dは加熱炉内
雰囲気中の酸素濃度(分圧)PO2の0.80乗に比例
し、(4)式の最終的な形として、次の(6)式が実験
的に導かれた。
According to the research conducted by the present inventors, d is proportional to the oxygen concentration (partial pressure) PO 2 in the atmosphere in the heating furnace to the 0.80th power, and as the final form of the equation (4), Equation (6) was experimentally derived.

【0041】[0041]

【数7】 d=a・PO2 0.80・〔exp(−Q/RT)t〕0.5……(6)## EQU00007 ## d = a.PO 2 0.80. [Exp (-Q / RT) t] 0.5 ... (6)

【0042】ここでaは実験的に求めた係数で、309
07のとき、dの値を最も精度よく推定できた。従って
(6)式で求めたdと図4で示した結果を比較してスラ
ブの加熱条件を調整し(6)式のdの値が50μ以下と
なれば、工業的には殆ど無害である良好な表面の極低炭
素鋼板が得られることになる。
Where a is an experimentally determined coefficient, which is 309
At 07, the value of d could be estimated most accurately. Therefore, if the heating condition of the slab is adjusted by comparing the d obtained by the equation (6) and the result shown in FIG. 4, the value of d in the equation (6) is 50 μm or less, it is almost harmless industrially. An ultra low carbon steel sheet having a good surface can be obtained.

【0043】[0043]

【実施例】連続鋳造法で製造した極低炭素鋼スラブを、
加熱雰囲気中の酸素分圧PO2 =0.04,0.07a
tm,加熱保持温度T=1323,1373,142
3,1473,1523K,加熱保持時間t=60,9
0,120,150,180minの条件で、適宜本発
明例とそれ以外の条件に組み合わせて加熱し、熱間圧延
を行った。
[Example] An ultra-low carbon steel slab manufactured by a continuous casting method,
Oxygen partial pressure in heating atmosphere PO 2 = 0.04,0.07a
tm, heating holding temperature T = 1323, 1373, 142
3,1473,1523K, heating holding time t = 60,9
Under the conditions of 0, 120, 150, and 180 min, the present invention example was appropriately combined with the other conditions, and heating was performed, and hot rolling was performed.

【0044】表2は本実施例で使用した極低炭素鋼スラ
ブの代表的な化学成分を示したものである。
Table 2 shows the typical chemical composition of the ultra-low carbon steel slab used in this example.

【0045】[0045]

【表2】 [Table 2]

【0046】表3は熱間圧延後のコイルを冷間圧延し、
スケール起因の表面疵の発生状況を調査した結果をまと
めたものである。この表から前記(6)式に従って計算
したdの値が50μm以下の本発明例の場合、コイル抜
き取り検査の結果、スケール起因の表面疵の発生が軽微
で工業的な目標レベルである欠陥発生率1%以下を満足
し、全量合格した。
Table 3 shows that the coil after hot rolling was cold rolled,
This is a summary of the results of an investigation of the occurrence of surface defects due to scale. In the case of the example of the present invention in which the value of d calculated according to the formula (6) from the table is 50 μm or less, the result of the coil extraction inspection is that the occurrence of surface defects due to scale is slight and the defect occurrence rate is an industrial target level. It satisfied 1% or less, and passed the whole amount.

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【発明の効果】以上述べたように本発明によれば、炭素
含有量0.01%以下,チタンを0.005〜0.15
0%の範囲で添加した極低炭素鋼を製造するにあたり、
圧延前のスラブ加熱条件を一定の条件式に従って行うこ
とにより、スラブ加熱時の酸化スケール起因の表面疵の
少ないチタン添加極低炭素鋼を、工業的に安定かつ安価
に製造することが可能となり、製品としての歩留りも向
上して良質かつ安価な加工性鋼板用素材を提供できる。
As described above, according to the present invention, the carbon content is 0.01% or less, and titanium is 0.005 to 0.15.
In producing ultra low carbon steel added in the range of 0%,
By performing the slab heating conditions before rolling according to a certain conditional expression, titanium-added ultra-low carbon steel with less surface defects due to oxide scale during slab heating, can be manufactured industrially stably and at low cost. The yield as a product can be improved, and a high-quality, inexpensive workable steel sheet material can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】図(a)Ti添加極低炭素鋼と図(b)アルミ
キルド低炭素鋼のスラブ加熱時の表層酸化スケールの生
成状況を模式的に示した図面である。
FIG. 1 is a drawing schematically showing the state of generation of surface oxide scale during slab heating in a (a) Ti-added ultra-low carbon steel and (b) Aluminum-killed low-carbon steel.

【図2】地鉄側表層のビッカース硬度を測定した結果を
示す図面である。
FIG. 2 is a drawing showing the results of measuring the Vickers hardness of the surface layer on the base steel side.

【図3】鋼中のC濃度とCOの生成自由エネルギー変化
の関係を試算した結果を示す図面である。
FIG. 3 is a drawing showing the results of trial calculation of the relationship between the C concentration in steel and the change in free energy of formation of CO.

【図4】粒界酸化深さと圧延後のスケール系表面疵(欠
陥)の発生状況の関係を示す図面である。
FIG. 4 is a drawing showing the relationship between the grain boundary oxidation depth and the state of occurrence of scale-based surface defects (defects) after rolling.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼中の炭素含有量が0.01重量%以下
で、かつチタンを0.005〜0.150重量%の範囲
で添加した極低炭素鋼を製造するにあたり、圧延前のス
ラブ加熱条件を下記数1に従って行うことを特徴とする
極低炭素鋼の製造方法。 【数1】 a・PO2 0.80・〔exp(−Q/RT)t〕0.5<50 ここで、a :係数(=30907) Q :酸素の拡散の活性化エネルギー (=40300kcal/mol・K) R : ガス定数(=1.987kcal/mol) PO2 :雰囲気中の酸素分圧(atm) t :加熱時間(min) T :加熱温度(K)
1. A slab before rolling in producing an ultra-low carbon steel having a carbon content of 0.01% by weight or less and titanium added in an amount of 0.005 to 0.150% by weight. A method for producing an ultra-low carbon steel, characterized in that the heating condition is carried out according to the following formula 1. [Number 1] a · PO 2 0.80 · [exp (-Q / RT) t] 0.5 <50 where, a: coefficient (= 30907) Q: activation energy of oxygen diffusion (= 40300kcal / mol · K) R: Gas constant (= 1.987 kcal / mol) PO 2 : Oxygen partial pressure in atmosphere (atm) t: Heating time (min) T: Heating temperature (K)
JP08766395A 1995-03-22 1995-03-22 Manufacturing method of ultra-low carbon steel Expired - Fee Related JP3388937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08766395A JP3388937B2 (en) 1995-03-22 1995-03-22 Manufacturing method of ultra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08766395A JP3388937B2 (en) 1995-03-22 1995-03-22 Manufacturing method of ultra-low carbon steel

Publications (2)

Publication Number Publication Date
JPH08260061A true JPH08260061A (en) 1996-10-08
JP3388937B2 JP3388937B2 (en) 2003-03-24

Family

ID=13921197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08766395A Expired - Fee Related JP3388937B2 (en) 1995-03-22 1995-03-22 Manufacturing method of ultra-low carbon steel

Country Status (1)

Country Link
JP (1) JP3388937B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045027A (en) * 1998-07-29 2000-02-15 Nkk Corp Manufacture of steel plate excellent in surface characteristic
JP2004149836A (en) * 2002-10-29 2004-05-27 Nippon Steel Corp Ultralow carbon steel and continuous casting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045027A (en) * 1998-07-29 2000-02-15 Nkk Corp Manufacture of steel plate excellent in surface characteristic
JP2004149836A (en) * 2002-10-29 2004-05-27 Nippon Steel Corp Ultralow carbon steel and continuous casting method
JP4612271B2 (en) * 2002-10-29 2011-01-12 新日本製鐵株式会社 Continuous casting method of ultra-low carbon steel

Also Published As

Publication number Publication date
JP3388937B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
RU2560890C2 (en) Steel plate of hot-stamped product and method of its manufacturing
RU2719968C1 (en) SHEET FROM Ti-CONTAINING FERRITIC STAINLESS STEEL, PRODUCTION METHOD AND FLANGE
JP4582916B2 (en) Method for twin-roll continuous casting of ferritic stainless steel without microcracks
CA3030503C (en) Aluminum-containing steel product with excellent oxidation resistance and weldability for use in contact with steel material
JPH08260061A (en) Production of dead soft steel
JPH08269564A (en) Production of nonmagnetic thick stainless steel plate
EP0148957B1 (en) Steel plated with molten aluminum excellent in high-temperature oxidation resistance and high-temperature strength and process fo r its production
JP2000045027A (en) Manufacture of steel plate excellent in surface characteristic
JP3925697B2 (en) Ti-containing Fe-Cr-Ni steel excellent in surface properties and casting method thereof
JP4586648B2 (en) Steel plate excellent in workability and method for producing the same
JP5443050B2 (en) Method for producing Cr-containing strip steel
JP2000024763A (en) Method for casting metal
JP3388933B2 (en) Continuous casting method of titanium-added ultra low carbon steel
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JPH0617143A (en) Production of ferritic stainless steel sheet excellent in surface characteristic and deep drawability
JPS5852444B2 (en) Method for suppressing steel billet surface cracking during hot rolling
JPH05302112A (en) Method for smelting sheet steel by magnesium
JPH08238545A (en) Method for continuously casting titanium-adding extra-low carbon steel
EP4249621A1 (en) Steel material and method for producing same, and tank and method for producing same
JP2009274093A (en) Method for manufacturing silicon containing hot-rolled steel sheet excellent in surface property
JPH08269549A (en) Hot rolled austenitic stainless steel plate excellent in surface characteristic after cold rolling and its production
JPH10324923A (en) Wire rod for steel wire
JP5071027B2 (en) Ultra-low carbon steel sheet, method for refining ultra-low carbon steel, and method for producing ultra-low carbon steel sheet
JPH0629456B2 (en) Method for preventing deterioration of heat treatment furnace rolls
JPH0774374B2 (en) Method for producing steel with excellent hydrogen-induced cracking resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees