JPH08259961A - Method of hydrocracking petroleum distillate - Google Patents

Method of hydrocracking petroleum distillate

Info

Publication number
JPH08259961A
JPH08259961A JP7086357A JP8635795A JPH08259961A JP H08259961 A JPH08259961 A JP H08259961A JP 7086357 A JP7086357 A JP 7086357A JP 8635795 A JP8635795 A JP 8635795A JP H08259961 A JPH08259961 A JP H08259961A
Authority
JP
Japan
Prior art keywords
catalyst
hydrocracking
silica
petroleum distillate
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7086357A
Other languages
Japanese (ja)
Other versions
JP3462292B2 (en
Inventor
Toshiyuki Enomoto
敏行 榎本
Tomoaki Adachi
倫明 足立
Masaru Ushio
賢 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Nippon Oil Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP08635795A priority Critical patent/JP3462292B2/en
Publication of JPH08259961A publication Critical patent/JPH08259961A/en
Application granted granted Critical
Publication of JP3462292B2 publication Critical patent/JP3462292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain high-quality kerosene or gas oil in good yields by hydrotreating a heavy petroleum distillate and hydrocracking the treated distillate in the presence of a specified hydrocracking catalyst. CONSTITUTION: A catalyst support obtained by molding, drying and firing a composite gel obtained by mixing or depositing an aluminum oxide hydrate with or on a silica-zirconia hydrogel obtained by depositing zirconium hydroxide on a silica hydrogel is impregnated with metals of groups VI and VII in the periodic table to obtain a hydrocracking catalyst having a mean pore diameter of 5-10nm. A heavy petroleum distillate having a boiling point of 250-600 deg.C is hydrotreated in the presence of a hydrotreatment catalyst to obtain a petroleum distillate having a nitrogen content of 1000mass ppm or below. This distillate is hydrocracked in the presence of the hydrocracking catalyst under conditions including a temperature of 300-500 deg.C, a reaction pressure of 5-20MPa, an LHSV of 0.05-2h<-1> and a hydrogen/oil ratio of 200-1500Nm<3> /m<3> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、減圧軽油などの重質な
石油留出油の水素化分解方法に関し、詳しくは減圧軽油
などの重質な石油留出油を水素化分解して高品質の灯
油、軽油を得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrocracking heavy petroleum distillate oil such as vacuum gas oil, and more particularly to high quality by hydrocracking heavy petroleum distillate oil such as vacuum gas oil. Method for obtaining kerosene and light oil.

【0002】[0002]

【従来の技術】近年、日本においては軽質な石油製品に
対する需要が増えているの対し、原油自体は重質化する
傾向にあるため、重質な石油留出油を軽質留分に分解す
る技術の重要性が益々増大している。ところで、ディー
ゼル軽油中の硫黄は、ディーゼルエンジン排気ガス中に
硫黄酸化物として排出されて環境を汚染するだけでな
く、ディーゼル軽油中の硫黄含有量と、環境汚染物質の
一つであるディーゼルエンジン排ガス中のパティキュレ
ート量との間には、正の相関関係があるため、現在、軽
油の低硫黄化が進められている。重質な石油留出油を水
素化分解して得られる水素化分解軽油は、その硫黄含有
量が0.01質量%以下であって、この硫黄含有量は直
留軽油を脱硫して得られる直留脱硫油のそれより1〜2
桁低いレベルにある。灯油に関しても同様であって、重
質な石油留出油を水素化分解することにより、硫黄含有
量が1質量ppm 以下と極めて低く、しかも、煙点が高い
高品質な灯油を得ることができる。従って、環境保護の
観点からも、硫黄含有量が極少量の灯油ないしは軽油を
取得する手段として、重質な石油留出油の水素化分解法
に対する社会的ニーズは強い。
2. Description of the Related Art In recent years, demand for light petroleum products has increased in Japan, whereas crude oil itself tends to become heavier. Therefore, a technology for decomposing heavy petroleum distillate into light distillates. Is becoming more and more important. By the way, sulfur in diesel light oil is not only discharged as sulfur oxides in the exhaust gas of diesel engine to pollute the environment, but also the sulfur content in diesel light oil and diesel engine exhaust gas which is one of the environmental pollutants. Since there is a positive correlation with the amount of particulates in the oil, low sulfur of diesel oil is currently being promoted. The hydrocracked gas oil obtained by hydrocracking heavy petroleum distillate oil has a sulfur content of 0.01 mass% or less, and this sulfur content is obtained by desulfurizing straight-run gas oil. 1-2 from that of straight-run desulfurized oil
It is on the order of magnitude lower. The same applies to kerosene. By hydrocracking heavy petroleum distillate oil, it is possible to obtain high-quality kerosene with a very low sulfur content of 1 mass ppm or less and a high smoke point. . Therefore, also from the viewpoint of environmental protection, there is a strong social need for a hydrocracking method for heavy petroleum distillate as a means for obtaining kerosene or light oil having a very small sulfur content.

【0003】従来、重質な石油留出油の水素化分解に使
用する触媒については、その組成及び製造法が種々提案
されているが、基本的には、担体に担持された金属成分
の水素化活性と、担体の固体酸としての性質に由来する
分解活性を利用したいわゆる二元機能触媒が使用されて
いる。そして、金属成分としては、周期律表第VIII族金
属であるニッケルまたはコバルトと、周期律表第VI族金
属であるモリブデンまたはタングステンとを組み合わせ
て使用する触媒が最も一般的であり、固体酸性を有する
触媒担体に関して言えば、シリカルアルミナを代表例と
する二元系複合酸化物が最もよく使用されている。ま
た、特開昭58-210847 公報には、上記のような二元機能
触媒において、アルミナ−チタニアに、シリカまたはマ
グネシアを第2成分として添加したものを触媒担体に使
用した触媒が、重質留出油の脱メタルに有効であると記
載されており、特開昭58-210993 公報にはアルミナ、チ
タニア、ジルコニアからなる三元系複合酸化物を担体に
使用して触媒が、重質留出油の脱メタルに優れた活性を
有することが開示されている。さらに、特開昭58-21929
3 公報には、アルミナまたはチタニアを主成分とし、シ
リカ、チタニア、ジルコニア、ボリア、ホスフィアから
選ばれる少なくとも1種類の無機酸化物を含有する担体
に、水素化活性金属成分を担持させた触媒が、重質留出
油の水素化分解に有効である旨が記されている。しかし
ながら、上に例示した触媒を含めて従来の触媒は、水素
化分解活性の面で捉えると必ずしも充分満足できるレベ
ルに達していない。
Conventionally, various compositions and manufacturing methods of catalysts used for hydrocracking heavy petroleum distillate have been proposed, but basically, hydrogen of a metal component supported on a carrier is proposed. So-called bifunctional catalysts have been used which utilize the oxidization activity and the decomposition activity derived from the property of the carrier as a solid acid. And, as the metal component, a catalyst using nickel or cobalt which is a Group VIII metal of the periodic table and molybdenum or tungsten which is a Group VI metal of the periodic table is the most common, and solid acid In terms of the catalyst carrier that it has, a binary complex oxide represented by silical alumina is most often used. Further, in JP-A-58-210847, a catalyst using a dual-functional catalyst as described above, in which silica or magnesia is added as a second component to alumina-titania as a catalyst carrier, is used. It is described that it is effective for demetalization of oil output, and in JP-A-58-210993, a catalyst is produced by using a ternary complex oxide composed of alumina, titania, and zirconia as a carrier, and a heavy distillate. It is disclosed that it has excellent activity for oil demetallization. Furthermore, JP-A-58-21929
3 gazette discloses a catalyst in which a hydrogenation active metal component is supported on a carrier containing alumina or titania as a main component and containing at least one inorganic oxide selected from silica, titania, zirconia, boria and phosphia, It is described that it is effective for hydrocracking of heavy distillate. However, conventional catalysts including the above-exemplified catalysts do not always reach a sufficiently satisfactory level in terms of hydrocracking activity.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、高活
性な水素化分解触媒を用いて、減圧軽油などの重質な石
油留出油から高品質な灯油、軽油を増産することにあ
る。
An object of the present invention is to increase the production of high-quality kerosene and gas oil from heavy petroleum distillate oil such as vacuum gas oil using a highly active hydrocracking catalyst. .

【0005】[0005]

【課題を解決するための手段】本発明者らは従来の技術
に認められる前記の問題を解決するため鋭意研究を重ね
た結果、特定の製造方法で得られる三元系複合酸化物を
担体とした水素化分解触媒が、特定の反応条件で重質な
石油留出油の水素化分解に高い活性を持つことを見い出
し、本発明を完成した。すなわち、本発明の水素化分解
法は、沸点範囲が250〜600℃の重質な石油留出油
を、まず水素化処理触媒(a)の存在下に水素化処理し
て石油留出油の窒素含有量を1000質量ppm以下に
減少させ、次いで下記の水素化分解触媒(b)の存在
下、反応温度300〜500℃、反応圧力5〜20Mp
a、LHSV0.05〜2h-1、水素/油比200〜1
500Nm3/m3の条件で水素化分解を行うことを特徴
とする。水素化分解触媒(b) シリカヒドロゲルにジルコニウ
ム水酸化物を沈着させて得られるシリカ−ジルコニアヒ
ドロゲルに、酸化アルミニウム水和物を混合又は沈着さ
せて得た複合ゲルから得られる触媒担体に、周期律表第
VI族金属の少なくとも1種と、第VIII族金属の少なくと
も1種の金属を担持させた平均細孔径が5〜10nmで
ある触媒。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to solve the above-mentioned problems found in the prior art. As a result, the ternary complex oxide obtained by a specific production method is used as a carrier. It was found that the above hydrocracking catalyst has high activity for hydrocracking heavy petroleum distillate under specific reaction conditions, and the present invention was completed. That is, in the hydrocracking method of the present invention, a heavy petroleum distillate having a boiling range of 250 to 600 ° C. is first hydrotreated in the presence of the hydrotreating catalyst (a) to obtain a petroleum distillate. The nitrogen content is reduced to 1000 mass ppm or less, and then, in the presence of the following hydrocracking catalyst (b), the reaction temperature is 300 to 500 ° C., the reaction pressure is 5 to 20 Mp.
a, LHSV 0.05 to 2 h -1 , hydrogen / oil ratio 200 to 1
It is characterized in that the hydrocracking is carried out under the condition of 500 Nm 3 / m 3 . Hydrocracking catalyst (b) A silica-zirconia hydrogel obtained by depositing zirconium hydroxide on silica hydrogel, a catalyst carrier obtained from a composite gel obtained by mixing or depositing aluminum oxide hydrate, and a periodic Front
A catalyst having an average pore diameter of 5 to 10 nm, on which at least one Group VI metal and at least one Group VIII metal are supported.

【0006】本発明の水素化分解方法に用いられる原料
油は、沸点が250〜600℃、好ましくは280〜5
50℃の範囲にある重質な石油留出油であり、好ましく
は減圧軽油である。本発明で用いる水素化処理触媒
(a)には、石油留出油の水素化脱硫・脱窒素処理に用
いられる通常の触媒を用いることができるが、安定な金
属酸化物の担体にモリブデン、タングステン、ニッケ
ル、コバルトの内から少なくとも1種の金属成分を担持
させた触媒を使用することが好ましい。さらに具体的に
言えば、アルミナ担体またはシリカアルミナ担体に、ニ
ッケル、コバルトの内から少なくとも1種の金属と、モ
リブデン、タングステンの内から少なくとも1種の金属
を担持させた触媒が好ましく、アルミナ担体にニッケル
とモリブデンを担持させた触媒およびアルミナ担体にコ
バルトとモリブデンを担持させた触媒が特に好ましい。
金属成分の担持量は、各金属の合計で、かつ金属酸化物
換算で、通常3〜30質量%、好ましくは5〜25質量
%の範囲にある。そして、第VI族金属と第VIII族金属を
組み合せる場合は、第VI族金属の合計量が好ましくは1
〜10質量%、さらに好ましくは3〜7質量%であり、
第VIII族金属の合計量が好ましくは2〜25質量%、さ
らに好ましくは5〜20質量%である。
The feed oil used in the hydrocracking method of the present invention has a boiling point of 250 to 600 ° C, preferably 280 to 5 ° C.
It is a heavy petroleum distillate oil in the range of 50 ° C., and preferably vacuum gas oil. As the hydrotreating catalyst (a) used in the present invention, an ordinary catalyst used for hydrodesulfurization and denitrification of petroleum distillate oil can be used, but molybdenum and tungsten are used as stable metal oxide carriers. It is preferable to use a catalyst supporting at least one metal component selected from nickel, cobalt and cobalt. More specifically, a catalyst in which at least one metal selected from nickel and cobalt and at least one metal selected from molybdenum and tungsten is supported on an alumina carrier or a silica alumina carrier is preferable. A catalyst supporting nickel and molybdenum and a catalyst supporting cobalt and molybdenum on an alumina carrier are particularly preferable.
The amount of the metal component supported is in the range of usually 3 to 30% by mass, preferably 5 to 25% by mass, calculated as the total of each metal and calculated as the metal oxide. And when combining Group VI metals and Group VIII metals, the total amount of Group VI metals is preferably 1
10 to 10% by mass, more preferably 3 to 7% by mass,
The total amount of Group VIII metals is preferably 2 to 25% by mass, more preferably 5 to 20% by mass.

【0007】本発明に用いる水素化分解触媒(b)は、
特定の方法で調製された三元系複合酸化物からなる担体
に、周期律表第VI族金属の少なくとも1種と、第VIII族
金属の少なくとも1種の金属を担持させて製造される
が、担体に使用される三元系複合酸化物は、次のように
して調製される。担体調製の第1工程は、アルカリ金属
珪酸塩水溶液にアンモニア水を加え、シリカヒドロゲル
を得る工程である。このゲル化の際のpHは2〜6、好
ましくは3.5〜5に調整される。次の第2工程は、上
記のシリカヒドロゲルスラリーに、ジルコニウム塩水溶
液を加え、酸性となったスラリーに塩基を加えてpHを
6〜8に、好ましくは7付近に調整し、シリカ−ジルコ
ニアヒドロゲルスラリーを得る工程である。ジルコニウ
ム塩としては硝酸塩、硫酸塩、オキシ塩化物など水溶性
のジルコニウム化合物であれば、いずれも使用可能であ
る。この工程では、生成されるシリカ−ジルコニアヒド
ロゲル中のジルコニア含有率は、乾燥酸化物基準で0.
1〜70質量%、好ましくは1〜30質量%%の範囲が
選ばれる。こうして得られるシリカ−ジルコニアヒドロ
ゲルスラリーを洗浄、成型、乾燥、焼成して得られる二
元系複合酸化物は、固体酸としての性質を具備している
ものの、細孔構造、表面積などの点で、触媒担体として
必要な物性を通常備えていない。そこで本発明では担体
調製の第3工程として、シリカ−ジルコニアヒドロゲル
にアルミナ成分を添加する工程を採用する。アルミナ成
分を添加する方法としては、(1)別途調製された酸化
アルミニウム水和物(アルミナヒドロゲル)を、上記の
シリカ−ジルコニアヒドロゲルスラリーに混合する方
法、または(2)上記のシリカ−ジルコニアヒドロゲル
スラリーに、アルミニウム塩水溶液を混合した後、塩基
で中和し、シリカ−ジルコニアヒドロゲルにアルミナヒ
ドロゲルに沈着させる方法が採用可能である。アルミナ
ヒドロゲルを沈着させるに際して用いる塩基には、アル
ミン酸ナトリウム、アンモニアなどが使用される。上記
した(1)および(2)のいずれの方法を採用しても、
得られる三元系複合酸化物の性状は異ならないことを確
認した。第3工程で得られるシリカ−ジルコニア−アル
ミナヒドロゲル中のアルミナ含有率は、乾燥酸化物基準
で5〜70質量%の範囲で選ばれるが、好ましくは10
〜40質量%、さらに好ましくは20〜35質量%の範
囲にある。念のため付言すれば、上に説明ではアルカリ
金属珪酸塩水溶液を、担体のシリカ源として使用する例
を示したが、アルカリ金属珪酸塩水溶液をイオン交換法
などで脱アルカリして得られる珪酸液を、シリカ源に使
用することもできる。こうして得られたシリカ−ジルコ
ニア−アルミナヒドロゲルスラリーは、次いで濾過、洗
浄されて硫酸イオン、ナトリウム、ハロゲンイオンなど
の不純物が除去される。そして、洗浄後のケーキを十分
混練し、成型、乾燥、焼成の各工程を経て担体が調製さ
れる。乾燥は100〜250℃の条件下で0.5〜24
時間の範囲で実施する。焼成は300〜700℃の範囲
の温度で0.5〜10時間実施する。本発明で用いる水
素化分解触媒(b)は、上記の担体に周期律表第VI族金
属から選ばれた少なくとも1種の金属成分と、周期律表
第VIII族金属から選ばれた少なくとも1種の金属成分を
担持させたものである。これら金属成分の担持方法とし
ては、含浸法、浸漬法、混練法など周知の方法を利用す
ることができる。好ましい周期律表第VI族金属として
は、モリブデンとタングステンが、好ましい周期律表第
VIII族金属としては、ニッケルとコバルトが例示でき
る。個々の金属成分の担持量は、それぞれ金属酸化物換
算で3〜30質量%の範囲が好ましく、5〜25質量%
の範囲がさらに好ましい。本発明で使用される水素化分
解触媒(b)の平均細孔径は、5〜10nm、好ましく
は6〜9nmである。
The hydrocracking catalyst (b) used in the present invention is
A carrier composed of a ternary complex oxide prepared by a specific method is prepared by supporting at least one metal of Group VI metal and at least one metal of Group VIII metal of the Periodic Table. The ternary complex oxide used for the carrier is prepared as follows. The first step of carrier preparation is a step of adding aqueous ammonia to an aqueous solution of an alkali metal silicate to obtain a silica hydrogel. The pH at the time of gelation is adjusted to 2 to 6, preferably 3.5 to 5. In the next second step, a zirconium salt aqueous solution is added to the silica hydrogel slurry, and a base is added to the acidified slurry to adjust the pH to 6 to 8, preferably around 7, and the silica-zirconia hydrogel slurry is added. Is a step of obtaining. As the zirconium salt, any water-soluble zirconium compound such as nitrate, sulfate and oxychloride can be used. In this step, the zirconia content in the silica-zirconia hydrogel produced is 0.
A range of 1 to 70% by mass, preferably 1 to 30% by mass is selected. The silica-zirconia hydrogel slurry thus obtained is washed, molded, dried and calcined to obtain a binary complex oxide, which has properties as a solid acid, but in terms of pore structure, surface area, etc. It does not usually have the physical properties required as a catalyst carrier. Therefore, in the present invention, a step of adding an alumina component to silica-zirconia hydrogel is adopted as the third step of preparing the carrier. As a method of adding the alumina component, (1) a method of mixing a separately prepared aluminum oxide hydrate (alumina hydrogel) with the above silica-zirconia hydrogel slurry, or (2) the above silica-zirconia hydrogel slurry Alternatively, a method of mixing an aqueous solution of an aluminum salt, neutralizing with a base, and depositing an alumina hydrogel on the silica-zirconia hydrogel can be adopted. As the base used for depositing the alumina hydrogel, sodium aluminate, ammonia, etc. are used. Even if either of the above methods (1) and (2) is adopted,
It was confirmed that the properties of the obtained ternary complex oxide did not differ. The alumina content in the silica-zirconia-alumina hydrogel obtained in the third step is selected in the range of 5 to 70% by mass on the basis of dry oxide, but preferably 10
To 40% by mass, more preferably 20 to 35% by mass. In addition, as a reminder, in the above description, an example of using an alkali metal silicate aqueous solution as the silica source of the carrier was shown, but a silicic acid solution obtained by dealkalizing the alkali metal silicate aqueous solution by an ion exchange method or the like. Can also be used as the silica source. The silica-zirconia-alumina hydrogel slurry thus obtained is then filtered and washed to remove impurities such as sulfate ions, sodium ions and halogen ions. Then, the cake after washing is sufficiently kneaded, and the carrier is prepared through the steps of molding, drying and firing. Drying is performed under the condition of 100 to 250 ° C. for 0.5 to 24
Conduct within a time range. The firing is carried out at a temperature in the range of 300 to 700 ° C. for 0.5 to 10 hours. The hydrocracking catalyst (b) used in the present invention comprises at least one metal component selected from Group VI metals of the Periodic Table and at least one selected from Group VIII metals of the Periodic Table on the above carrier. The metal component of is supported. As a method for supporting these metal components, known methods such as an impregnation method, an immersion method, and a kneading method can be used. Preferred Group VI metals are molybdenum and tungsten, and
Examples of Group VIII metals include nickel and cobalt. The supported amount of each metal component is preferably in the range of 3 to 30 mass% in terms of metal oxide, and 5 to 25 mass%.
Is more preferable. The average pore diameter of the hydrocracking catalyst (b) used in the present invention is 5 to 10 nm, preferably 6 to 9 nm.

【0008】本発明方法を実施するに際しては、水素化
処理触媒と水素化分解触媒を同一の反応器内に充填して
も良く、別々の反応器に充填しても良い。前者の場合
は、反応器内の前段に水素化処理触媒(a)を充填し、
後段に水素化分解触媒(b)を充填する。後者の場合
は、上流側の反応器に水素化処理触媒(a)を充填し、
下流側の反応器に水素化分解触媒(b)を充填する。い
ずれも場合とも、水素化処理触媒(a)と水素化分解触
媒(b)との比率は、体積基準で1:10〜3:1が好
ましく、1:5〜1:1がさらに好ましい。そして、反
応形式は固定床流通系方式が好ましい。本発明で用いる
水素化処理触媒(a)および水素化分解触媒(b)は、
好ましくは反応前に硫化処理される。この硫化処理は公
知の方法で行うことができ、そこで使用する硫化剤のと
しては、例えば、硫化水素、二硫化炭素、ジメチルジス
ルフィドなどが挙げられる。
In carrying out the method of the present invention, the hydrotreating catalyst and the hydrocracking catalyst may be charged in the same reactor or may be charged in different reactors. In the former case, the hydrotreating catalyst (a) is charged in the preceding stage in the reactor,
The hydrocracking catalyst (b) is filled in the latter stage. In the latter case, the upstream reactor is charged with the hydrotreating catalyst (a),
The reactor on the downstream side is charged with the hydrocracking catalyst (b). In any case, the ratio of the hydrotreating catalyst (a) to the hydrocracking catalyst (b) is preferably 1:10 to 3: 1 on a volume basis, and more preferably 1: 5 to 1: 1. The reaction system is preferably a fixed bed flow system. The hydrotreating catalyst (a) and hydrocracking catalyst (b) used in the present invention are
Preferably, it is sulfurized before the reaction. This sulfurization treatment can be carried out by a known method, and examples of the sulfurizing agent used therein include hydrogen sulfide, carbon disulfide, dimethyl disulfide and the like.

【0009】本発明の方法によれば、原料油である沸点
範囲250〜600℃の重質石油留分は、まず水素化処
理され、次いで水素化分解処理される。これは原料油中
の硫黄化合物、窒素化合物を水素化して除去しておいた
方が、後段の水素化分解触媒(b)の高い触媒活性を十
二分に引き出せるからである。従って、前段の水素化処
理では、原料油中の窒素含有量が1000質量ppm以
下、好ましくは400質量ppm以下、さらに好ましく
は200質量ppm以下に減少せしめられる。水素化処
理工程の反応条件は、例えば反応温度300〜500
℃、反応圧力5〜20MPa、LHSV(液空間速度)
0.05〜2h-1、水素/油比200〜1500Nm3
/m3の範囲が好ましい。また、水素化分解工程の反応
条件について言えば、反応温度は300〜500℃、好
ましくは340〜450℃、さらに好ましくは350〜
430℃に保持される。反応圧力は5〜20MPa、好
ましくは7〜15MPa、さらに好ましくは8〜13M
Paの範囲にある。LHSVは0.05〜2h-1、好ま
しくは0.1〜1h-1、さらに好ましくは0.2〜0.
5h-1の範囲にある。そして、水素/油比は200〜1
500Nm3/m3、好ましくは300〜1200Nm3
/m3、さらに好ましくは400〜800Nm3/m3
範囲にある。なお、水素化分解工程の反応条件で言う反
応温度は反応器内の平均温度を、同じく反応圧力は反応
器内の全圧を、同じくLHSVは水素化処理触媒と水素
化分解触媒の合計量に対する値を意味している。
According to the method of the present invention, a heavy petroleum fraction having a boiling point range of 250 to 600 ° C., which is a feed oil, is first hydrotreated and then hydrocracked. This is because if the sulfur compounds and nitrogen compounds in the feed oil are hydrogenated and removed, the high catalytic activity of the hydrocracking catalyst (b) at the latter stage can be sufficiently extracted. Therefore, in the first-stage hydrotreatment, the nitrogen content in the feedstock oil is reduced to 1000 mass ppm or less, preferably 400 mass ppm or less, and more preferably 200 mass ppm or less. The reaction conditions of the hydrotreating step are, for example, a reaction temperature of 300 to 500.
C, reaction pressure 5 to 20 MPa, LHSV (liquid space velocity)
0.05 to 2 h -1 , hydrogen / oil ratio 200 to 1500 Nm 3
The range of / m 3 is preferable. Regarding the reaction conditions of the hydrocracking step, the reaction temperature is 300 to 500 ° C, preferably 340 to 450 ° C, more preferably 350 to 500 ° C.
Hold at 430 ° C. The reaction pressure is 5 to 20 MPa, preferably 7 to 15 MPa, more preferably 8 to 13 M.
It is in the range of Pa. LHSV is 0.05 to 2 h -1 , preferably 0.1 to 1 h -1 , more preferably 0.2 to 0.
It is in the range of 5 h -1 . The hydrogen / oil ratio is 200 to 1
500 Nm 3 / m 3 , preferably 300 to 1200 Nm 3
/ M 3 , more preferably in the range of 400 to 800 Nm 3 / m 3 . The reaction temperature in the reaction conditions of the hydrocracking step is the average temperature in the reactor, the reaction pressure is the total pressure in the reactor, and the LHSV is the total amount of the hydrotreating catalyst and the hydrocracking catalyst. Means a value.

【0010】[0010]

【実施例】以下実施例および比較例について述べる。 触媒調製例1 珪酸ナトリウム水溶液をpH4でゲル化させ、pH7で
2時間熟成させたシリカヒドロゲルスラリーに、硫酸ジ
ルコニウム水溶液を加え、そのスラリーのpHを7に調
整してシリカ−ジルコニアヒドロゲルスラリーを得た。
これを30分熟成した後、硫酸アルミニウム水溶液を添
加し、そのスラリーにアンモニア水を加えて系のpHを
7に調節し、シリカ−ジルコニア−アルミナヒドロゲル
スラリーを得た。得られたスラリーを濾過、洗浄した
後、径が1/16インチになるように押し出し成型し
た。この成型物をさらに乾燥、焼成して触媒担体とし
た。担体の組成は酸化物換算でシリカ56質量%、ジル
コニア14質量%、アルミナ30質量%であった。得ら
れた担体に酸化物換算でニッケルを10質量%、タング
ステンを20質量%担持させて、平均細孔径8.0nm
の触媒Aを得た。 触媒調製例2 珪酸ナトリウム水溶液を60℃、pH4でゲル化させた
後、pHを7に上昇させて60℃で2時間熟成させて得
たシリカヒドロゲルスラリーに、硫酸ジルコニウム水溶
液を添加して、そのスラリーのpHを7に調整すること
よりシリカ−ジルコニアヒドロゲルスラリーを調製し
た。一方、アルミン酸ナトリウム溶液と硫酸アルミニウ
ム水溶液を60℃、pH7の条件で混合し、アルミナヒ
ドロゲルスラリーを調製した。次に、上記のシリカ−ジ
ルコニアヒドロゲルスラリーとアルミナヒドロゲルスラ
リーを混合し、液のpHを7に保ちながら20分熟成し
た後、そのスラリーを濾過、洗浄し、径が1/16イン
チになるように押し出し成型した。成型物をさらに乾
燥、焼成してシリカ−ジルコニア−アルミナ担体を得
た。担体の組成は酸化物換算でシリカ56質量%、ジル
コニア14質量%、アルミナ30質量%であった。得ら
れた担体に酸化物換算でニッケルを10質量%、タング
ステンを20質量%担持させて、平均細孔径7.5nm
の触媒Bを得た。 触媒調製例3 珪酸ナトリウム水溶液をゲル化させ、pH7で2時間熟
成して得たシリカヒドロスラリーに硫酸アルミニウム水
溶液を添加し、さらにアルミン酸ナトリウム水溶液を加
えてシリカアルミナヒドロゲルスラリーを得た。そのス
ラリーを濾過、洗浄した後、径が1/16インチになる
よう押し出し成型した。成型物をさらに乾燥、焼成して
シリカアルミナ担体を得た。この担体の組成は酸化物換
算でシリカ70質量%、アルミナ30質量%であった。
得られた担体に酸化物換算でニッケルを10質量%、タ
ングステンを20質量%担持させ、平均細孔径7.2n
mの触媒Cを得た。
EXAMPLES Examples and comparative examples will be described below. Catalyst Preparation Example 1 A silica-zirconia hydrogel slurry was obtained by adding a zirconium sulfate aqueous solution to a silica hydrogel slurry that had been gelled at pH 4 and aged at pH 7 for 2 hours, and adjusting the pH of the slurry to 7. .
After aging this for 30 minutes, an aqueous solution of aluminum sulfate was added, and ammonia water was added to the slurry to adjust the pH of the system to 7 to obtain a silica-zirconia-alumina hydrogel slurry. The obtained slurry was filtered and washed, and then extrusion-molded to have a diameter of 1/16 inch. The molded product was further dried and calcined to obtain a catalyst carrier. The composition of the carrier was silica 56% by mass, zirconia 14% by mass, and alumina 30% by mass in terms of oxide. The obtained carrier was loaded with 10% by mass of nickel and 20% by mass of tungsten in terms of oxide, and the average pore diameter was 8.0 nm.
Catalyst A was obtained. Catalyst Preparation Example 2 An aqueous zirconium sulfate solution was added to a silica hydrogel slurry obtained by gelling an aqueous sodium silicate solution at 60 ° C. and pH 4 and then raising the pH to 7 and aging at 60 ° C. for 2 hours. A silica-zirconia hydrogel slurry was prepared by adjusting the pH of the slurry to 7. On the other hand, a sodium aluminate solution and an aluminum sulfate aqueous solution were mixed at 60 ° C. and pH 7 to prepare an alumina hydrogel slurry. Next, the silica-zirconia hydrogel slurry and the alumina hydrogel slurry were mixed and aged for 20 minutes while keeping the pH of the solution at 7 and then the slurry was filtered and washed to have a diameter of 1/16 inch. Extruded and molded. The molded product was further dried and fired to obtain a silica-zirconia-alumina carrier. The composition of the carrier was silica 56% by mass, zirconia 14% by mass, and alumina 30% by mass in terms of oxide. The obtained carrier was loaded with 10% by mass of nickel and 20% by mass of tungsten in terms of oxide, and the average pore diameter was 7.5 nm.
Catalyst B was obtained. Catalyst Preparation Example 3 An aqueous solution of aluminum sulfate was added to a silica hydroslurry obtained by gelling an aqueous solution of sodium silicate and aging at pH 7 for 2 hours, and further an aqueous solution of sodium aluminate was added to obtain a silica-alumina hydrogel slurry. The slurry was filtered and washed, and then extrusion-molded to have a diameter of 1/16 inch. The molded product was further dried and fired to obtain a silica-alumina carrier. The composition of this carrier was 70% by mass of silica and 30% by mass of alumina in terms of oxide.
The obtained carrier was loaded with 10% by mass of nickel and 20% by mass of tungsten in terms of oxide, and the average pore diameter was 7.2 n.
m catalyst C was obtained.

【0011】実施例1 直列に連結された2つの反応器を備えた固定床流通系反
応装置の前段の反応器に、水素化処理触媒(アルミナ担
体に酸化物換算でニッケルを5質量%、モリブデンを2
0質量%担持させたもの)を充填し、後段の反応器に
は、触媒調製例1で得た触媒Aを充填して、触媒Aの水
素化分解活性を評価した。水素化処理触媒と水素化分解
触媒とは、1:2の体積比で使用した。また、反応に先
立ち、二硫化炭素をパラフィンに溶かした溶液で触媒の
硫化処理を行った。原料油に使用した減圧軽油の性状を
表1に、反応条件を表2に示す。なお、前段の反応器を
出て後段の反応器に供給される減圧軽油の窒素含有量
は、180質量ppmであった。
Example 1 A hydrotreating catalyst (5% by mass of nickel in terms of oxide on an alumina carrier, molybdenum, molybdenum) was added to a reactor at the front stage of a fixed bed flow reactor equipped with two reactors connected in series. 2
0% by mass) was loaded into the reactor, and the catalyst A obtained in Catalyst Preparation Example 1 was loaded into the subsequent reactor, and the hydrocracking activity of the catalyst A was evaluated. The hydrotreating catalyst and the hydrocracking catalyst were used in a volume ratio of 1: 2. Further, prior to the reaction, the catalyst was subjected to sulfurating treatment with a solution of carbon disulfide in paraffin. Table 1 shows the properties of the vacuum gas oil used as the feedstock, and Table 2 shows the reaction conditions. In addition, the nitrogen content of the reduced pressure gas oil supplied from the former reactor to the latter reactor was 180 mass ppm.

【表1】原料油性状 密度(15℃) g/cm2 0.93 硫黄含有量 質量% 2.0 窒素含有量 質量ppm 1200 アニリン点 ℃ 85沸点 ℃ 273〜584 [Table 1] Raw material oil density (15 ° C.) g / cm 2 0.93 Sulfur content Mass% 2.0 Nitrogen content Mass ppm 1200 Aniline point ℃ 85 Boiling point ℃ 273 to 584

【表2】反応条件 反応温度 ℃ 400 反応圧力 MPa 12 LHSV h-1 0.4水素/油比 Nm3/m 590 注)LHSVは水素化処理触媒と水素化分解触媒の合計
量に対する値。 触媒Aについての水素化分解活性評価結果を表3に示
す。 実施例2 触媒Aの代わりに触媒調製例2で得た触媒Bを用いた以
外は実施例1と同様にして触媒Bの水素化分解活性を評
価した。結果を表3に示す。 比較例1 触媒Aの代わりに触媒調製例3で得た触媒Cを用いた以
外は実施例1と同様にして触媒Cの水素化分解活性を評
価した。結果を表3に示す。
[Table 2] Reaction conditions Reaction temperature ℃ 400 Reaction pressure MPa 12 LHSV h -1 0.4 Hydrogen / oil ratio Nm 3 / m 590 Note) LHSV is a value relative to the total amount of the hydrotreating catalyst and the hydrocracking catalyst. Table 3 shows the results of evaluating the hydrocracking activity of catalyst A. Example 2 The hydrocracking activity of catalyst B was evaluated in the same manner as in example 1 except that catalyst B obtained in catalyst preparation example 2 was used instead of catalyst A. The results are shown in Table 3. Comparative Example 1 The hydrocracking activity of the catalyst C was evaluated in the same manner as in Example 1 except that the catalyst C obtained in Catalyst Preparation Example 3 was used instead of the catalyst A. The results are shown in Table 3.

【表3】 各触媒の活性と灯油および軽油の収率(相対値) 触媒 相対活性1) 灯油収率2) 軽油収率3) 実施例1 A 120 121 124 実施例2 B 125 126 122 比較例1 C 100 100 100 注1)触媒Cの速度定数を100とした時の各触媒の相対速度定数。 2)触媒Cの灯油収率を100とした時の灯油収率の相対値。 3)触媒Cの軽油収率を100とした時の軽油収率の相対値。 比較例2 水素化処理触媒が充填された前段の反応器を使用せず
に、後段の反応器(触媒Aの充填量は実施例1と同量)
だけを使用して、表1に示す減圧軽油を表2に示す条件
で水素化分解し、触媒Aの活性を評価した。結果を表4
に示す。 比較例3 触媒Aの代わりに触媒Bを用いた以外は比較例2と同様
にして減圧軽油の水素化分解を行い、触媒Bの活性を評
価した。結果を表4に示す。 比較例4 触媒Aの代わりに触媒Cを用いた以外は比較例2と同様
ににして減圧軽油の水素化分解を行い、触媒Cの活性を
評価した。結果を表4に示す。
[Table 3] Activity of each catalyst and yield of kerosene and light oil (relative value) Catalyst Relative activity 1) Kerosene yield 2) Light oil yield 3) Example 1 A 120 121 124 Example 2 B 125 126 122 122 Comparative example 1 C 100 100 100 Note 1) Relative rate constant of each catalyst when the rate constant of catalyst C is 100. 2) Relative value of kerosene yield when the kerosene yield of catalyst C is 100. 3) Relative value of light oil yield when the light oil yield of catalyst C is 100. Comparative Example 2 Without using the reactor of the first stage filled with the hydrotreating catalyst, the reactor of the latter stage (the filling amount of the catalyst A is the same as that of Example 1)
Was used to hydrocrack the vacuum gas oil shown in Table 1 under the conditions shown in Table 2, and the activity of catalyst A was evaluated. Table 4 shows the results
Shown in Comparative Example 3 The reduced pressure gas oil was hydrocracked in the same manner as in Comparative Example 2 except that the catalyst B was used in place of the catalyst A, and the activity of the catalyst B was evaluated. The results are shown in Table 4. Comparative Example 4 The reduced pressure gas oil was hydrocracked in the same manner as in Comparative Example 2 except that the catalyst C was used in place of the catalyst A, and the activity of the catalyst C was evaluated. The results are shown in Table 4.

【表4】 各触媒の活性と灯油および軽油の収率(相対値) 触媒 相対活性1) 灯油収率2) 軽油収率3) 比較例2 A 97 96 97 比較例3 B 99 98 96 比較例4 C 100 100 100 注1)触媒Cの速度定数を100とした時の各触媒の相対速度定数。 2)触媒Cの灯油収率を100とした時の灯油収率の相対値。 3)触媒Cの軽油収率を100とした時の軽油収率の相対値。 [Table 4] Activity of each catalyst and yield of kerosene and light oil (relative value) Catalyst relative activity 1) Kerosene yield 2) Light oil yield 3) Comparative example 2 A 97 96 97 97 Comparative example 3 B 99 98 96 96 Comparative example 4 C 100 100 100 Note 1) Relative rate constant of each catalyst when the rate constant of catalyst C is 100. 2) Relative value of kerosene yield when the kerosene yield of catalyst C is 100. 3) Relative value of light oil yield when the light oil yield of catalyst C is 100.

【0012】[0012]

【発明の効果】原料油を脱硫・脱窒素する水素化処理
と、特定の三元系複合酸化物と活性金属成分からなる触
媒を組み合せた本発明の方法によれば、減圧軽油などの
重質な石油留出油から、高品質な灯油、軽油を高収率で
生産することができる。
According to the method of the present invention in which a hydrotreating process for desulfurizing and denitrifying a feedstock and a catalyst comprising a specific ternary complex oxide and an active metal component are combined, a heavy oil such as vacuum gas oil can be obtained. High quality kerosene and gas oil can be produced in high yield from various petroleum distillates.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牛尾 賢 神奈川県横浜市中区千鳥町8番地 日本石 油株式会社中央技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Ushio 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Nippon Petroleum Co., Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 沸点範囲が250〜600℃である重質
な石油留出油を、まず水素化処理触媒(a)の存在下に
水素化処理して石油留出油の窒素含有量を1000質量
ppm以下に減少させ、次いで下記の水素化分解触媒
(b)の存在下、反応温度300〜500℃、反応圧力
5〜20Mpa、LHSV0.05〜2h-1、水素/油
比200〜1500Nm3/m3の条件で水素化分解を行
うことを特徴とする石油留出油の水素化分解方法。水素化分解触媒(b) シリカヒドロゲルにジルコニウ
ム水酸化物を沈着させて得られるシリカ−ジルコニアヒ
ドロゲルに、酸化アルミニウム水和物を混合又は沈着さ
せて得た複合ゲルを、成型、乾燥、焼成して製造される
触媒担体に、周期律表第VI族金属の少なくとも1種と、
第VIII族金属の少なくとも1種の金属を担持させて製造
される平均細孔径が5〜10nmである触媒。
1. A heavy petroleum distillate having a boiling range of 250 to 600 ° C. is first hydrotreated in the presence of a hydrotreating catalyst (a) so that the petroleum distillate has a nitrogen content of 1000. Mass ppm or less, and then in the presence of the following hydrocracking catalyst (b), reaction temperature 300 to 500 ° C., reaction pressure 5 to 20 MPa, LHSV 0.05 to 2 h −1 , hydrogen / oil ratio 200 to 1500 Nm 3 A method for hydrocracking petroleum distillate oil, characterized in that hydrocracking is carried out under the condition of / m 3 . Hydrolysis catalyst (b) Silica-zirconia hydrogel obtained by depositing zirconium hydroxide on silica hydrogel is mixed with or deposited on aluminum oxide hydrate to obtain a composite gel, which is then molded, dried and fired. The catalyst carrier produced contains at least one metal of Group VI of the periodic table,
A catalyst having an average pore diameter of 5 to 10 nm, produced by supporting at least one metal of Group VIII metal.
JP08635795A 1995-03-17 1995-03-17 Hydrocracking method of petroleum distillate Expired - Lifetime JP3462292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08635795A JP3462292B2 (en) 1995-03-17 1995-03-17 Hydrocracking method of petroleum distillate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08635795A JP3462292B2 (en) 1995-03-17 1995-03-17 Hydrocracking method of petroleum distillate

Publications (2)

Publication Number Publication Date
JPH08259961A true JPH08259961A (en) 1996-10-08
JP3462292B2 JP3462292B2 (en) 2003-11-05

Family

ID=13884649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08635795A Expired - Lifetime JP3462292B2 (en) 1995-03-17 1995-03-17 Hydrocracking method of petroleum distillate

Country Status (1)

Country Link
JP (1) JP3462292B2 (en)

Also Published As

Publication number Publication date
JP3462292B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP4839311B2 (en) Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
JP4405148B2 (en) Alumina having novel pore structure, method for producing the same, and catalyst prepared from alumina
JP2631712B2 (en) Catalyst composition for hydrotreating heavy hydrocarbon oil and hydrotreating method using the same
WO1993021283A1 (en) Demetallation catalyst
JP4303820B2 (en) Hydrotreating catalyst and hydrotreating method
US4613425A (en) Process for hydrotreating heavy hydrocarbon oils
JPH10230163A (en) Hydrogenation processing catalyst of heavy hydrocarbon oil and hydrogenation treatment method using the same
JPH0263553A (en) Residue hydrotreating catalyst, production thereof and catalytic hydrotreatment of hydrocarbon containing oil using said catalyst
JP3692207B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
JP3302150B2 (en) Catalyst for hydrotreating hydrocarbon oils
JP4230257B2 (en) Hydrocarbon oil hydrotreating process using silica-alumina hydrotreating catalyst
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JPH0631164A (en) Alumina-containing carrier and catalyst for hydrogen treating of hydrocarbon oil
JP3802939B2 (en) Catalyst for hydrotreating
JPH0295443A (en) Catalyst for hydrogenation treatment of residual oil
JP3462292B2 (en) Hydrocracking method of petroleum distillate
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
JP4319812B2 (en) Hydroprocessing catalyst and hydrocarbon oil hydroprocessing method
JP4165961B2 (en) Hydrotreating catalyst for middle fraction of coal liquefied oil
JP2567291B2 (en) Hydroprocessing method for hydrocarbon oil
JP3782893B2 (en) Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst
JP3782887B2 (en) Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst
JPH07228875A (en) Method for hydrogenation treatment of heavy hydrocarbon oil
JP2986838B2 (en) Hydrotreatment of residual oil
JP2001104789A (en) Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term