JPH08259713A - Prepreg and fiber-reinforced composite material - Google Patents

Prepreg and fiber-reinforced composite material

Info

Publication number
JPH08259713A
JPH08259713A JP6287295A JP6287295A JPH08259713A JP H08259713 A JPH08259713 A JP H08259713A JP 6287295 A JP6287295 A JP 6287295A JP 6287295 A JP6287295 A JP 6287295A JP H08259713 A JPH08259713 A JP H08259713A
Authority
JP
Japan
Prior art keywords
prepreg
compressive strength
resin
thermoplastic resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6287295A
Other languages
Japanese (ja)
Other versions
JP3440615B2 (en
Inventor
Hiroki Ooseto
浩樹 大背戸
Takeshi Terashita
武 寺下
Nobuyuki Odagiri
信之 小田切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6287295A priority Critical patent/JP3440615B2/en
Publication of JPH08259713A publication Critical patent/JPH08259713A/en
Application granted granted Critical
Publication of JP3440615B2 publication Critical patent/JP3440615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a prepreg giving a fiber-reinforced composite material which has excellent compression mechanical properties, in particular excellent strength in wet heat compression with a perforated plate, has excellent compression strength after impact, and is suitable for use as a structural material. CONSTITUTION: The prepreg comprises reinforcing fibers, an epoxy resin composition which gives a cured resin having a modulus of elasticity flexure of 380kgf/ mm<2> or higher, and a particulate, fibrous, or filmy thermoplastic resin distributed around the surface of one or both sides of the prepreg. This prepreg is cured to obtain the objective composite material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維強化複合材料製造
用のプリプレグに関する。さらに詳しくは、圧縮系の機
械特性に優れ、構造材料として好適な繊維強化複合材料
を与えるプリプレグに関する。
TECHNICAL FIELD The present invention relates to a prepreg for producing a fiber-reinforced composite material. More specifically, it relates to a prepreg that is excellent in the mechanical properties of a compression system and gives a fiber-reinforced composite material suitable as a structural material.

【0002】[0002]

【従来の技術】強化繊維とマトリックス樹脂からなるポ
リマー基複合材料は、軽量で優れた機械特性を有するた
めに、スポーツ用品用途、航空宇宙用途、一般産業用途
に広く用いられている。繊維強化複合材料の製造には、
各種の方式が用いられるが、強化繊維にマトリックス樹
脂を含浸されたシート状中間基材であるプリプレグを用
いる方法が広く用いられている。この方法ではプリプレ
グを複数枚積層した後、加熱することによって複合材料
の成形物が得られる。
2. Description of the Related Art Polymer-based composite materials composed of reinforcing fibers and matrix resins are widely used in sports equipment, aerospace applications, and general industrial applications because of their light weight and excellent mechanical properties. In the manufacture of fiber reinforced composite materials,
Although various methods are used, a method using a prepreg which is a sheet-shaped intermediate base material in which reinforcing fibers are impregnated with a matrix resin is widely used. In this method, a molded article of a composite material is obtained by stacking a plurality of prepregs and then heating them.

【0003】プリプレグに用いられるマトリックス樹脂
としては、熱硬化性樹脂、熱可塑性樹脂ともに使用され
るが、ほとんどの場合、取扱い性の優れる硬化性樹脂が
用いられ、そのなかでもエポキシ樹脂が最も多く使用さ
れている。また、マレイミド樹脂、シアネート樹脂およ
びこれらを組合わせたものもよく使用されている。
As the matrix resin used in the prepreg, both thermosetting resins and thermoplastic resins are used, but in most cases, curable resins having excellent handleability are used, and among them, epoxy resins are the most used. Has been done. Further, a maleimide resin, a cyanate resin and a combination thereof are also often used.

【0004】複合材料を構造材料として用いる場合に重
要な物性の一つに圧縮強度がある。構造部材として用い
る場合ボルト穴を設けることが多いため、特に有孔板の
圧縮強度が重要になる。
Compressive strength is one of the important physical properties when a composite material is used as a structural material. Since bolt holes are often provided when used as a structural member, the compressive strength of a perforated plate is particularly important.

【0005】一般にポリマー系の材料は、高温あるいは
高湿条件下で強度や弾性率が低下する。したがって、ポ
リマーをマトリックスとする繊維強化複合材料の強度な
どの物性も高温あるいは高湿条件下で低下しやすい。し
かし、複合材料を、航空機、車両、船舶などの構造材料
として適用する場合は、高温あるいは高湿条件下でも物
性を十分保持することが要求される。
In general, a polymer material has low strength and elastic modulus under high temperature or high humidity conditions. Therefore, the physical properties such as strength of the fiber-reinforced composite material using the polymer as a matrix are likely to be deteriorated under high temperature or high humidity conditions. However, when the composite material is applied as a structural material for aircraft, vehicles, ships, etc., it is required to sufficiently maintain the physical properties even under high temperature or high humidity conditions.

【0006】複合材料を構造材料として用いる場合、圧
縮強度は、特に重要な物性である。圧縮強度の測定に
は、無孔板、有孔板、円筒などの試験片を用いて行われ
るが、実際の使用においては、ボルト穴を設けた板材の
形にすることが多いため、特に有孔板の圧縮強度、なか
んずく高温高湿条件での強度が重要になる。
Compressive strength is a particularly important physical property when composite materials are used as structural materials. The compressive strength is measured using a test piece such as a non-perforated plate, a perforated plate, or a cylinder.In actual use, it is often a plate material with bolt holes, The compressive strength of the perforated plate, especially the strength under high temperature and high humidity conditions, becomes important.

【0007】複合材料を構造材料として用いる場合、耐
衝撃性も重要になる。耐衝撃性に関して特に重要な物性
に衝撃後圧縮強度がある。これは、工具落下、小石など
の衝突による部材への衝撃で、複合材料の層間に剥離が
生じ圧縮強度が低下する現象があり、これが著しいと構
造材料として用いることができなくなる。
Impact resistance is also important when using composite materials as structural materials. A particularly important physical property for impact resistance is post-impact compressive strength. This is because there is a phenomenon in which the composite material is delaminated between layers of the composite material due to the impact on the member due to the drop of the tool or the collision of small stones, and the compressive strength is lowered.

【0008】複合材料の圧縮強度を向上させるために
は、一般にマトリックス樹脂の弾性率を上げることが有
効である。エポキシ樹脂硬化物の弾性率を高くすること
は、配合する原料を選ぶことにより、可能である。しか
し、一般に弾性率の高いエポキシ樹脂硬化物は靱性が低
い、すなわち脆いため、耐衝撃性、特に衝撃後圧縮強
度、さらには疲労などの特性が不良になり、実用上、弾
性率の大きいものを使用することができなかった。
In order to improve the compressive strength of the composite material, it is generally effective to increase the elastic modulus of the matrix resin. It is possible to increase the elastic modulus of the epoxy resin cured product by selecting raw materials to be mixed. However, in general, epoxy resin cured products having a high elastic modulus have low toughness, that is, they are brittle, so that impact resistance, especially compressive strength after impact, and further properties such as fatigue become poor. Could not be used.

【0009】また逆に、衝撃後圧縮強度が高くなるよう
な、高靱性のエポキシ樹脂硬化物をマトリックス樹脂を
用いると、一般にこれらのものは、弾性率をあまり高く
できないため、圧縮強度の高い繊維強化複合材料を得る
ことはできなかった。
On the other hand, when a matrix resin is used as a cured product of a high toughness epoxy resin which has a high compressive strength after impact, in general, these resins cannot have a very high elastic modulus, so that a fiber having a high compressive strength is obtained. It was not possible to obtain a reinforced composite material.

【0010】以上のように、現状では、高い圧縮強度、
特に有孔板圧縮強度と高い耐衝撃性、特に衝撃後圧縮強
度を両立させうる材料が得られていない。
As described above, at present, high compressive strength,
In particular, a material capable of satisfying both the compressive strength of a perforated plate and high impact resistance, especially the compressive strength after impact, has not been obtained.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、圧縮
系の機械特性、特に湿熱時の有孔板圧縮強度および衝撃
後圧縮強度に極めて優れ、構造材料として好適な繊維強
化複合材料を与えるプリプレグを提供することである。
The object of the present invention is to provide a fiber-reinforced composite material which is very excellent in the mechanical properties of the compression system, in particular, the perforated plate compressive strength during wet heat and the compressive strength after impact, and which is suitable as a structural material. It is to provide prepreg.

【0012】[0012]

【課題を解決するための手段】本発明のプリプレグは、
前記課題を達成するため、次の構成を有する。すなわ
ち、次の構成要素(A)、(B)、(C)からなり、構
成要素(C)が片面または両面の表層近傍に分布したプ
リプレグである。
The prepreg of the present invention comprises:
In order to achieve the said subject, it has the following structures. That is, the prepreg is composed of the following constituent elements (A), (B), and (C), and the constituent element (C) is distributed near the surface layer on one side or both sides.

【0013】(A)強化繊維 (B)硬化物の曲げ弾性率が380 kgf/mm2 以上であるエ
ポキシ樹脂組成物 (C)熱可塑性樹脂の粒子、または繊維、またはフィル
ム また、本発明の繊維強化複合材料は、前記課題を達成す
るため、次の構成を有する。すなわち、上記プリプレグ
を硬化して得られる繊維強化複合材料である。
(A) Reinforcing fiber (B) Epoxy resin composition having a cured product having a flexural modulus of 380 kgf / mm 2 or more (C) Thermoplastic resin particles, fiber, or film The reinforced composite material has the following constitution in order to achieve the above object. That is, it is a fiber-reinforced composite material obtained by curing the prepreg.

【0014】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0015】本発明のプリプレグは、硬化物が高弾性率
の、具体的には硬化物の曲げ弾性率が380 kgf/mm2 以上
であるエポキシ樹脂組成物をマトリックス樹脂として用
いることにより、有孔板圧縮強度を高め、熱可塑性樹脂
による層間強化により衝撃後圧縮強度を高めることによ
り、従来不可能であった、高い有孔板圧縮強度と衝撃後
圧縮強度の両立を可能にしたものである。
In the prepreg of the present invention, the cured product has a high elastic modulus, specifically, an epoxy resin composition having a flexural elastic modulus of the cured product of 380 kgf / mm 2 or more is used as a matrix resin, whereby the prepreg has pores. By increasing the plate compressive strength and increasing the post-impact compressive strength by strengthening the interlayer with a thermoplastic resin, it is possible to achieve both high perforated plate compressive strength and post-impact compressive strength, which were not possible conventionally.

【0016】本発明に用いる強化繊維(A)としては、
ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、ア
ルミナ繊維、炭化ケイ素繊維などが用いられる。これら
のうちでは、特に炭素繊維が好ましい。強化繊維の形態
としては、一方向に引き揃えた長繊維、トウ、織物、マ
ット、編物、組み紐などが用いられる。
As the reinforcing fiber (A) used in the present invention,
Glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like are used. Of these, carbon fiber is particularly preferable. As the form of the reinforcing fibers, long fibers aligned in one direction, tows, woven fabrics, mats, knits, braids and the like are used.

【0017】マトリックスとして用いるエポキシ樹脂組
成物(B)は、その硬化物が高弾性率、具体的には、室
温の曲げ弾性率が 380kgf/mm2 以上であるものが用いら
れる。
As the epoxy resin composition (B) used as a matrix, a cured product thereof having a high elastic modulus, specifically, a bending elastic modulus at room temperature of 380 kgf / mm 2 or more is used.

【0018】エポキシ樹脂組成物(B)の硬化物の室温
曲げ弾性率の測定は、プリプレグの硬化条件と同じ硬化
温度、硬化時間を用いて、エポキシ樹脂組成物を硬化し
てカットし、厚み2mm 、幅10mm、長さ60mmの試験片を作
製し、スパン間32mmの3点曲げで、25℃で測定する。
The room temperature flexural modulus of the cured product of the epoxy resin composition (B) was measured by curing and cutting the epoxy resin composition using the same curing temperature and curing time as the prepreg curing conditions. A test piece with a width of 10 mm and a length of 60 mm is prepared, and is measured at 25 ° C. with a 3-point bend with a span of 32 mm.

【0019】繊維強化複合材料を構造材料として用いる
場合は、高温高湿時の物性低下が小さいことが必要であ
る。マトリックス樹脂の弾性率の高温高湿時の低下が小
さいことは、この点で重要になる。マトリックス樹脂
(硬化物)の高温高湿時の曲げ弾性率の測定は以下のよ
うにして行う。樹脂組成物(B)の硬化物を室温弾性率
測定と同じ寸法の試験片とし、沸騰水中で20時間浸漬
した後、82℃でのスパン間32mmの3点曲げ測定を行う。
高温高湿時の曲げ弾性率は、280 kgf/mm2 以上であるこ
とが好ましく、320 kgf/mm2 以上であればさらに好まし
い。
When the fiber reinforced composite material is used as a structural material, it is necessary that the deterioration of physical properties at high temperature and high humidity is small. It is important in this respect that the decrease in the elastic modulus of the matrix resin at high temperature and high humidity is small. The flexural modulus of the matrix resin (cured product) at high temperature and high humidity is measured as follows. A cured product of the resin composition (B) is used as a test piece having the same dimensions as in room temperature elastic modulus measurement, immersed in boiling water for 20 hours, and then subjected to three-point bending measurement at 82 ° C. with a span interval of 32 mm.
The flexural modulus at high temperature and high humidity is preferably 280 kgf / mm 2 or more, and more preferably 320 kgf / mm 2 or more.

【0020】エポキシ樹脂組成物(B)は、主として、
エポキシ樹脂と硬化剤よりなる。
The epoxy resin composition (B) is mainly composed of
It consists of epoxy resin and curing agent.

【0021】エポキシ樹脂としては、ビスフェノールA
型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビ
スフェノールS型エポキシ樹脂、ビスフェノールB型エ
ポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型
エポキシ樹脂、フルオレン骨格を有するエポキシ樹脂、
フェノール化合物とジシクロペンタジエンの共重合体を
原料とするエポキシ樹脂、ジグリシジルレゾルシノー
ル、テトラキス(グリシジルオキシフェニル)エタン、
トリス(グリシジルオキシフェニル)メタンのようなグ
リシジルエーテル型エポキシ樹脂、テトラグリシジルジ
アミノジフェニルメタン、トリグリシジルアミノフェノ
ール、トリグリシジルアミノクレゾール、テトラグリシ
ジルキシレンジアミンのようなグリシジルアミン型エポ
キシ樹脂およびこれらの混合物が用いられるがこれに限
定されるものではない。
The epoxy resin is bisphenol A.
Type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol B type epoxy resin, naphthalene type epoxy resin, novolac type epoxy resin, epoxy resin having fluorene skeleton,
Epoxy resin made from a copolymer of phenol compound and dicyclopentadiene, diglycidyl resorcinol, tetrakis (glycidyloxyphenyl) ethane,
Glycidyl ether type epoxy resins such as tris (glycidyloxyphenyl) methane, tetraglycidyl diaminodiphenylmethane, triglycidyl aminophenol, triglycidyl aminocresol, glycidyl amine type epoxy resins such as tetraglycidyl xylene diamine and mixtures thereof are used. However, it is not limited to this.

【0022】樹脂硬化物の高弾性率を実現するには、エ
ポキシ樹脂成分中の70%以上が3官能以上のエポキシ
樹脂であることが好ましい。3官能以上のエポキシ樹脂
としては、テトラキス(グリシジルオキシフェニル)エ
タン、トリス(グリシジルオキシフェニル)メタンのよ
うなグリシジルエーテル型エポキシ樹脂、テトラグリシ
ジルジアミノジフェニルメタン、トリグリシジルアミノ
フェノール、トリグリシジルアミノクレゾール、テトラ
グリシジルキシレンジアミンのようなグリシジルアミン
型エポキシ樹脂やナフタレン型エポキシ樹脂、ノボラッ
ク型エポキシ樹脂がある。これらのうち1種或いは2種
以上を配合して用いることができる。特に4官能のグリ
シジルアミン型エポキシ樹脂であるテトラグリシジルジ
アミノジフェニルメタンを主成分として配合すること
が、高温高湿条件での弾性率低下が少なく好ましい。
In order to realize a high elastic modulus of the resin cured product, it is preferable that 70% or more of the epoxy resin component is a trifunctional or more functional epoxy resin. Trifunctional or higher functional epoxy resins include glycidyl ether type epoxy resins such as tetrakis (glycidyloxyphenyl) ethane and tris (glycidyloxyphenyl) methane, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylaminocresol, tetraglycidyl. There are glycidyl amine type epoxy resins such as xylene diamine, naphthalene type epoxy resins, and novolac type epoxy resins. Of these, one kind or two or more kinds may be blended and used. In particular, it is preferable to add tetraglycidyldiaminodiphenylmethane, which is a tetrafunctional glycidylamine type epoxy resin, as a main component because the elastic modulus is not lowered under high temperature and high humidity conditions.

【0023】また、剛直な骨格を有する2官能性のエポ
キシ樹脂、たとえば、ナフタレン骨格や、フルオレン骨
格、ビフェニル骨格、ジシクロペンタジエン骨格を分子
内に有するエポキシ樹脂を分子内に有するエポキシ樹脂
の配合もまた高弾性率および高温高湿条件での小さい弾
性率低下の実現の効果を持ち好ましい。
Further, a bifunctional epoxy resin having a rigid skeleton, for example, an epoxy resin having a naphthalene skeleton, an epoxy resin having a fluorene skeleton, a biphenyl skeleton, or a dicyclopentadiene skeleton in the molecule, can be blended. It is also preferable because it has the effects of realizing a high elastic modulus and a small decrease in elastic modulus under high temperature and high humidity conditions.

【0024】硬化剤としては、ジアミノジフェニルメタ
ン、ジアミノジフェニルスルホンのような芳香族アミ
ン、脂肪族アミン、イミダゾール誘導体、ジシアンジア
ミド、テトラメチルグアニジン、チオ尿素付加アミン、
メチルヘキサヒドロフタル酸無水物のようなカルボン酸
無水物、カルボン酸ヒドラジド、カルボン酸アミド、ポ
リフェノール化合物、ノボラック樹脂、ポリメルカプタ
ン、三フッ化ホウ素エチルアミン錯体のようなルイス酸
錯体などがあげられるがこれに限定されるものではな
い。
As the curing agent, aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea-added amine,
Examples thereof include carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, carboxylic acid hydrazides, carboxylic acid amides, polyphenol compounds, novolac resins, polymercaptans, and Lewis acid complexes such as boron trifluoride ethylamine complex. It is not limited to.

【0025】これらの硬化剤には、硬化活性を高めるた
めに適当な硬化助剤を組合わせることができる。好まし
い例としては、ジシアンジアミドに、3−(3,4−ジ
クロロフェニル)−1,1−ジメチル尿素(DCMU)
を硬化助剤として組合わせる例、カルボン酸無水物やノ
ボラック樹脂に第三アミンを硬化助剤として組合わせる
例などがあげられる。
These hardening agents may be combined with a suitable hardening aid to enhance the hardening activity. As a preferable example, dicyandiamide is added to 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU).
And the like, and examples of combining a carboxylic acid anhydride or a novolac resin with a tertiary amine as a curing aid.

【0026】高弾性率であり、高温高湿条件での弾性率
低下が少ない硬化物を得るためには、硬化剤としてジア
ミノジフェニルスルホンを用いることが好ましく、特に
その異性体のなかでも、3,3'- ジアミノジフェニルスル
ホンを用いることが特に好ましい。
In order to obtain a cured product having a high elastic modulus and a small elastic modulus decrease under high temperature and high humidity conditions, it is preferable to use diaminodiphenyl sulfone as a curing agent, and particularly, among its isomers, It is particularly preferred to use 3'-diaminodiphenyl sulfone.

【0027】エポキシ樹脂組成物(B)には、さらにエ
ポキシ樹脂に可溶な熱可塑性樹脂を添加してもよい。熱
可塑性樹脂としては、弾性率およびガラス転移温度の高
いものが好ましく、具体的には、ポリスルホン、ポリエ
ーテルスルホン、ポリイミド、ポリエーテルイミドが挙
げられる。
The epoxy resin composition (B) may further contain a thermoplastic resin soluble in the epoxy resin. As the thermoplastic resin, those having a high elastic modulus and a high glass transition temperature are preferable, and specific examples thereof include polysulfone, polyether sulfone, polyimide, and polyether imide.

【0028】衝撃後圧縮強度を高めるためには、プリプ
レグの片面または両面の表面近傍に高靱性材料を存在さ
せ、積層、硬化して得られた複合材料の層間に高靱性材
料を分布させる層間強化の手法が有効であることが知ら
れている。高靱性材料としては、例えば特開昭63-16273
2 号公報に示されるような熱可塑性樹脂、例えば特開平
4-268361号公報に示されるようなエラストマー、例えば
米国特許3,472,730 号公報に示されるようなエラストマ
ー変性熱硬化性樹脂を用いる方法が知られている。
In order to increase the compressive strength after impact, a high toughness material is present in the vicinity of one or both surfaces of the prepreg, and the high toughness material is distributed between the layers of the composite material obtained by laminating and curing. It is known that the above method is effective. As the high toughness material, for example, JP-A-63-16273
Thermoplastic resins such as those disclosed in Japanese Patent Publication No.
There is known a method using an elastomer as disclosed in 4-268361, for example, an elastomer-modified thermosetting resin as disclosed in US Pat. No. 3,472,730.

【0029】本発明にも、上記の層間強化技術が適用さ
れるが、本発明に層間強化技術を適用する場合、層間強
化に用いる材料としては、エラストマーあるいはエラス
トマー変性熱硬化性樹脂を用いると高温時の物性が低下
するため、熱可塑性樹脂を用いる。本発明でいう層間強
化とは熱可塑性樹脂成分を層間部分に局在化させ、積層
層間を強化する技術を指す。従って、層間強化に用いる
材料と、エポキシ樹脂組成物(B)中に添加し全体に渡
って均一に分布するエポキシ可溶の熱可塑性樹脂とは厳
密に区別される。
The above-mentioned interlaminar strengthening technique is also applied to the present invention. When the interlaminar strengthening technique is applied to the present invention, when an elastomer or an elastomer-modified thermosetting resin is used as a material for interlaminar strengthening, A thermoplastic resin is used because the physical properties at the time deteriorate. The interlayer strengthening referred to in the present invention refers to a technique of localizing a thermoplastic resin component in the interlayer portion and strengthening the laminated layers. Therefore, the material used for the interlayer reinforcement is strictly distinguished from the epoxy-soluble thermoplastic resin which is added to the epoxy resin composition (B) and uniformly distributed throughout the whole.

【0030】プリプレグの片面または両面の表面近傍に
存在させる熱可塑性樹脂としては、あらゆる公知の熱可
塑性樹脂が使用可能であるが、繊維強化複合材料の衝撃
後圧縮強度を優れたものするためには、エポキシ樹脂と
の接着性の良好なものが好ましい。エポキシ樹脂との接
着性の良好な熱可塑性樹脂としては、アミド結合、イミ
ド結合、スルホニル基をもつ樹脂が好ましい。具体的に
はポリアミド、ポリイミド、ポリエーテルイミド、ポリ
アミドイミド、ポリスルホン、ポリエーテルスルホンな
どが好ましい。
Any known thermoplastic resin can be used as the thermoplastic resin to be present in the vicinity of the surface of one or both surfaces of the prepreg, but in order to make the fiber-reinforced composite material excellent in compressive strength after impact, Those having good adhesiveness with the epoxy resin are preferable. As the thermoplastic resin having good adhesiveness to the epoxy resin, a resin having an amide bond, an imide bond or a sulfonyl group is preferable. Specifically, polyamide, polyimide, polyetherimide, polyamideimide, polysulfone, polyethersulfone and the like are preferable.

【0031】ここで用いる熱可塑性樹脂は、結晶性のも
のも、非晶質のものも使用可能であるが、プリプレグの
耐熱性を低下させないためには、いずれの場合も耐熱性
に優れたものが好ましい。結晶性のものでは、その融点
が120 ℃以上のものが好ましく、150 ℃以上のものがさ
らに好ましい。また、非晶質のものでは、そのガラス転
移点が120 ℃以上のものが好ましく、150 ℃以上のもの
がさらに好ましい。
The thermoplastic resin used here may be a crystalline one or an amorphous one, but in any case, it is excellent in heat resistance so as not to lower the heat resistance of the prepreg. Is preferred. The crystalline one preferably has a melting point of 120 ° C. or higher, more preferably 150 ° C. or higher. In addition, the amorphous one has a glass transition point of preferably 120 ° C. or higher, more preferably 150 ° C. or higher.

【0032】ここで用いる熱可塑性樹脂は、特開平1-10
4624号公報に示されるようにエポキシ樹脂で変性したも
のを用いることも可能である。このように変性したもの
は耐溶剤性、あるいは耐熱性の向上に有効である。ま
た、コロナ、プラズマ、電子線などで処理した熱可塑性
樹脂を用いることも可能である。これらの処理は、耐溶
剤性あるいはエポキシ樹脂との接着性などの向上に効果
を示す。
The thermoplastic resin used here is disclosed in JP-A-1-10
It is also possible to use those modified with an epoxy resin as shown in Japanese Patent No. 4624. Those modified in this way are effective in improving solvent resistance or heat resistance. It is also possible to use a thermoplastic resin treated with corona, plasma, electron beam or the like. These treatments are effective in improving solvent resistance or adhesiveness with epoxy resin.

【0033】熱可塑性樹脂の形態としては、フィルム、
粒子、繊維をとることができる。
The form of the thermoplastic resin is a film,
Particles and fibers can be taken.

【0034】フィルム形態の場合、米国特許4,604,319
号公報のごとく完全にプリプレグ表面を覆うと、表面タ
ックを失うことになるが、特開昭63-97635号公報に示さ
れるように通孔を設ける、特開平5-138785号公報に示さ
れるように多孔質にする、特開平5-287091号公報に示さ
れるようにテープ状フィルムを配列するなどの方法をと
ると、表面タックを保持することができる。
In film form, US Pat. No. 4,604,319
If the surface of the prepreg is completely covered as in Japanese Patent Publication No. 63-97635, the surface tack is lost, but as shown in Japanese Patent Laid-Open No. 63-97635, a through hole is provided, as shown in Japanese Patent Laid-Open No. 5-138785. The surface tack can be retained by adopting a method such as making it porous or arranging a tape-shaped film as shown in JP-A-5-287091.

【0035】粒子形態の場合、粒子の形状は、特開平1-
110537号公報に示されるような球状粒子でも、特開平1-
110536号公報に示されるような非球状粒子でも、特開平
5-1159号公報に示されるような多孔質粒子でもよい。
In the case of the particle form, the shape of the particles is
Even spherical particles as shown in JP 110537, JP-A 1-
Even non-spherical particles such as those disclosed in Japanese Patent No.
It may be a porous particle as disclosed in JP-A-5-1159.

【0036】繊維形態としては、短繊維あるいは長繊維
ともに用いることができる。短繊維の場合特開平2-6956
6 号公報に示されるように短繊維を粒子同様に用いる方
法、あるいはマットに加工して用いる方法が可能であ
る。長繊維の場合、特開平4-292634号公報に示されるよ
うに長繊維をプリプレグ表面に平行に配列する方法、国
際公開番号94016003号公報に示されるようにランダムに
配列する方法が可能である。さらに特開平2-32843 号公
報に示されるような織物、国際公開番号94016003号公報
に示されるような不織布、あるいは編物などのシート状
の基材に加工して用いることもできる。また、短繊維を
紡績糸とし、平行あるいはランダムに配列する、織物、
編物に加工して使用する方法も用いることができる。
As the fiber form, both short fibers and long fibers can be used. In the case of short fibers JP-A-2-6956
It is possible to use a method in which short fibers are used in the same manner as particles as shown in JP-B-6, or a method in which a short fiber is processed and used. In the case of long fibers, a method of arranging the long fibers in parallel with the surface of the prepreg as shown in JP-A-4-292634 and a method of randomly arranging as shown in International Publication No. 94016003 are possible. Further, it can be used after being processed into a woven fabric as shown in JP-A-2-32843, a nonwoven fabric as shown in International Publication No. 94016003, or a sheet-like base material such as a knitted fabric. In addition, short fibers are spun yarns and are arranged in parallel or randomly, woven fabric,
A method in which the knitted material is processed and used can also be used.

【0037】層間強化に用いる熱可塑性樹脂の好ましい
量は、その存在する面について、面あたり4 〜15 g/m2
である。
The preferable amount of the thermoplastic resin used for the interlaminar reinforcement is 4 to 15 g / m 2 per surface with respect to the surface on which it is present.
Is.

【0038】本発明のプリプレグは、いくつかの方法で
製造することができる。
The prepreg of the present invention can be manufactured by several methods.

【0039】第一の方法は、エポキシ樹脂組成物(B)
を離型紙などの上にコーティングしたフィルムを用い
て、シート状にした強化繊維の両側あるいは片側から樹
脂を含浸させて一次プリプレグを作製し、構成要素
(C)をその両側、または片面に散布または貼着する方
法である。ここで、構成要素(C)が、多孔質フィル
ム、織物、マット、不織布、編物などの樹脂含浸可能な
シート状物である場合は、あらかじめエポキシ樹脂組成
物(B)を含浸させて貼着することも可能である。
The first method is the epoxy resin composition (B).
Using a film coated on a release paper or the like, a resin is impregnated from both sides or one side of a sheet-shaped reinforcing fiber to prepare a primary prepreg, and the component (C) is sprayed on both sides or one side. It is a method of sticking. Here, when the component (C) is a resin-impregnable sheet-like material such as a porous film, a woven fabric, a mat, a non-woven fabric, or a knitted fabric, it is impregnated with the epoxy resin composition (B) in advance and attached. It is also possible.

【0040】第二の方法は、エポキシ樹脂組成物(B)
を離型紙などの上にコーティングしたフィルムを用い
て、シート状にした強化繊維の両側あるいは片側から樹
脂を含浸させて一次プリプレグを作製し、エポキシ樹脂
組成物(B)を離型紙などの上にコーティングした別の
フィルムの表面に構成要素(C)を散布または貼り付け
したものを一次プリプレグの両面または片面に貼着する
方法である。
The second method is the epoxy resin composition (B).
Is coated on a release paper or the like to form a primary prepreg by impregnating the sheet-shaped reinforcing fibers with resin from both sides or one side, and the epoxy resin composition (B) is placed on the release paper or the like. This is a method in which the component (C) is sprinkled or attached to the surface of another coated film and attached to both sides or one side of the primary prepreg.

【0041】第三の方法は、エポキシ樹脂組成物(B)
を離型紙などの上にコーティングしたフィルムを用い
て、シート状にした強化繊維の両側あるいは片側から樹
脂を含浸させて一次プリプレグを作製し、構成要素
(C)の粒子または短繊維を混練したエポキシ樹脂組成
物(B)を離型紙などの上にコーティングしたフィルム
を一次プリプレグの両面または片面に貼着する方法であ
る。
The third method is the epoxy resin composition (B).
An epoxy prepared by kneading the particles or short fibers of the constituent element (C) with a resin coated on a release paper or the like to impregnate the sheet-like reinforcing fibers with resin from both sides or one side to prepare a primary prepreg. In this method, a film obtained by coating a release paper or the like with the resin composition (B) is attached to both sides or one side of a primary prepreg.

【0042】第四の方法は、構成要素(A)、(B)、
(C)を同時に貼りあわせる方法で、構成要素(C)が
シート状(フィルム、織物、マット、編物、不織布な
ど)あるいは、糸条状(長繊維、紡績糸、テープ状フィ
ルム)の場合に適用できる方法である。
The fourth method is to construct the components (A), (B),
(C) is applied at the same time and is applied when the component (C) is in the form of a sheet (film, woven fabric, mat, knitted fabric, non-woven fabric, etc.) or yarn (long fiber, spun yarn, tape-shaped film). It is a possible method.

【0043】かかるプリプレグは、通常積層し、硬化せ
しめることにより繊維強化複合材料となされる。得られ
る複合材料は、圧縮系の機械特性、特に湿熱時の有孔板
圧縮強度に優れるとともに衝撃後圧縮強度に優れ、構造
材料として好適なものである。
Such a prepreg is usually laminated and cured to form a fiber-reinforced composite material. The resulting composite material is suitable as a structural material because it is excellent in the mechanical properties of the compression system, particularly the compressive strength of the perforated plate when wet and hot, and the compressive strength after impact.

【0044】[0044]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples.

【0045】(実施例1) (a)粒子の調製 非晶質ポリエーテルイミド“ウルテム(登録商標)10
00”(ジェネラル・エラクトリック社製、ガラス転移
温度213 ℃)180gを塩化メチレン1kg に溶解した溶液
に、5 %ポリビニルアルコール水溶液1400g を撹拌しな
がら滴下し、エマルジョンを得た。このエマルジョンを
60℃のオイルバスで加熱して脱溶媒し、えられたスラリ
ーを濾過、水洗してウルテム粒子155 gを得た。走査型
電子顕微鏡観察を行うと、粒径は約20ミクロンであっ
た。
(Example 1) (a) Preparation of particles Amorphous polyetherimide "Ultem (registered trademark) 10"
An emulsion was obtained by adding 1400 g of a 5% aqueous polyvinyl alcohol solution to a solution prepared by dissolving 180 g of "00" (manufactured by General Electric Co., glass transition temperature: 213 ° C) in 1 kg of methylene chloride while stirring.
The mixture was heated in an oil bath at 60 ° C to remove the solvent, and the obtained slurry was filtered and washed with water to obtain 155 g of Ultem particles. The particle size was about 20 microns when observed by a scanning electron microscope.

【0046】(b)樹脂組成物調製 下記原料を混練し、エポキシ樹脂組成物を得た。(B) Preparation of resin composition The following raw materials were kneaded to obtain an epoxy resin composition.

【0047】 (1)テトラグリシジルジアミノジフェニルメタン (ELM434、住友化学工業(株)製) 90.0部 (2)ビスフェノールA型エポキシ樹脂 (エピコート825、油化シェルエポキシ(株)製) 10.0部 (3)ポリエーテルスルホン (PES5003P、住友化学工業(株)製) 12.3部 (4)3,3'- ジアミノジフェニルスルホン (和歌山精化(株)製) 36.0部 (c)樹脂硬化物の物性測定 (b)で調製した樹脂を180 ℃、2時間硬化して樹脂硬
化物の厚さ2mm の板を作製した。曲げ弾性率測定は、2m
m 厚の板を10mm幅に切り、スパン32mmにて行った。
(1) Tetraglycidyldiaminodiphenylmethane (ELM434, manufactured by Sumitomo Chemical Co., Ltd.) 90.0 parts (2) Bisphenol A type epoxy resin (Epicoat 825, manufactured by Yuka Shell Epoxy Co., Ltd.) 10.0 parts (3) Polyether sulfone (PES5003P, manufactured by Sumitomo Chemical Co., Ltd.) 12.3 parts (4) 3,3'-diaminodiphenyl sulfone (manufactured by Wakayama Seika Co., Ltd.) 36.0 parts (c) Resin curing Physical property measurement of the product The resin prepared in (b) was cured at 180 ° C. for 2 hours to prepare a plate having a thickness of 2 mm of the cured resin product. Flexural modulus measurement is 2m
A m-thick plate was cut into a width of 10 mm and a span of 32 mm was used.

【0048】硬化物の室温曲げ弾性率は、420 kgf/mm2
であり、沸水20時間吸水後82℃で測定した曲げ弾性率
は、330J/m2 であった。
The room temperature flexural modulus of the cured product is 420 kgf / mm 2
The flexural modulus measured at 82 ° C. after absorption of boiling water for 20 hours was 330 J / m 2 .

【0049】(d)プリプレグの作製 (b)で調製した一次樹脂をリバースロールコーターを
用いて離型紙上に塗布量が45.7 g/m2 になるよう塗布し
て樹脂フィルムを作製した。
(D) Preparation of prepreg The primary resin prepared in (b) was coated on release paper using a reverse roll coater so that the coating amount was 45.7 g / m 2 , to prepare a resin film.

【0050】一方向に引き揃えた炭素繊維(T800H 、東
レ(株)製)を両側から、前記の一次樹脂フィルムでは
さみ、加熱加圧して樹脂を含浸させた。さらにその両側
に(a)で調製したポリエーテルイミド“ウルテム”1
000の粒子を散布した。散布量は片面あたり6g/m2
した。このようにして炭素繊維目付190g/m2 、炭素繊維
含有率64.8%のプリプレグを得た。
Carbon fibers (T800H, manufactured by Toray Industries, Inc.) aligned in one direction were sandwiched from both sides with the primary resin film and heated and pressed to impregnate the resin. Further, on both sides thereof, the polyetherimide "Ultem" 1 prepared in (a)
000 particles were applied. The amount of spray was 6 g / m 2 per side. In this way, a prepreg having a carbon fiber areal weight of 190 g / m 2 and a carbon fiber content of 64.8% was obtained.

【0051】(e)硬化板の作製 (d)で作製したプリプレグを(+45/0/-45/90)2S、およ
び(+45/0/-45/90)3Sの構成で積層した。これをオートク
レーブ中で、温度180 ℃、圧力 6kgf/cm2 の条件で2時
間硬化を行った。
(E) Preparation of Hardened Plate The prepreg prepared in (d) was laminated in the composition of (+ 45/0 / -45 / 90) 2S and (+ 45/0 / -45 / 90) 3S . This was cured in an autoclave at a temperature of 180 ° C. and a pressure of 6 kgf / cm 2 for 2 hours.

【0052】(f)圧縮強度の測定 (+45/0/-45/90)2Sの構成の硬化板を、0 ゜方向が12イン
チ、90゜方向が1.5 インチの長方形に切り出し、中央部
に直径0.25インチの円形の孔を穿孔して有孔板に加工
し、室温圧縮強度(24℃)、および高温高湿時圧縮強度
(71℃の温水に2週間浸漬後82℃で測定)をインストロ
ン1128型試験機を用いて測定した。結果は以下の通
りである。
(F) Measurement of compressive strength (+ 45/0 / -45 / 90) A 2S hardened plate was cut into a rectangle with 12 inches in the 0 ° direction and 1.5 inches in the 90 ° direction. A circular hole with a diameter of 0.25 inch is drilled to form a perforated plate, and the compressive strength at room temperature (24 ° C) and the compressive strength at high temperature and high humidity (measured at 82 ° C after dipping in hot water at 71 ° C for 2 weeks) are installed. It was measured using a Ron 1128 type tester. The results are as follows.

【0053】 室温圧縮強度 : 44.4ksi 高温高湿時圧縮強度 : 39.0ksi さらに、(+45/0/-45/90)3Sの構成の硬化板を0 ゜方向が
6 インチ、90゜方向が4 インチの長方形に切り出し、そ
の中央に270 インチ・ポンドの落錘衝撃を与え、衝撃後
の圧縮強度を測定した。結果は以下の通りである。
Room temperature compressive strength: 44.4ksi Compressive strength at high temperature and high humidity: 39.0ksi Furthermore, a cured plate of (+ 45/0 / -45 / 90) 3S configuration is
A 6-inch, 90-degree 4-inch rectangle was cut out, and a 270 inch-pound falling weight impact was applied to the center, and the compressive strength after impact was measured. The results are as follows.

【0054】 衝撃後圧縮強度 : 43.4ksi (実施例2) (a)プリプレグの作製 実施例1の(a)で調製した一次樹脂をリバースロール
コーターを用いて離型紙上に塗布量が45.7 g/m2 になる
よう塗布して樹脂フィルムを作製した。
Compressive strength after impact: 43.4 ksi (Example 2) (a) Preparation of prepreg The primary resin prepared in (a) of Example 1 was coated on release paper with a reverse roll coater at an application amount of 45.7 g / the resin film was prepared by coating so as to be m 2.

【0055】一方向に引き揃えた炭素繊維(T800H 、東
レ(株)製)を両側から、前記の一次樹脂フィルムでは
さみ、加熱加圧して樹脂を含浸させた。さらにその両側
に非晶質ポリエーテルイミド“ウルテム”1010の短
繊維(繊度1.4 デニール、繊維長1mm 、日東紡績(株)
製長繊維をカットしたもの、ガラス転移温度214℃)
を散布した。散布量は片面あたり6g/m2 とした。このよ
うにして炭素繊維目付190g/m2 、炭素繊維含有率64.8%
のプリプレグを得た。
Carbon fibers (T800H, manufactured by Toray Industries, Inc.) aligned in one direction were sandwiched from both sides with the primary resin film and heated and pressed to impregnate the resin. Amorphous polyetherimide "Ultem" 1010 short fibers on both sides (fineness 1.4 denier, fiber length 1 mm, Nitto Boseki Co., Ltd.)
Cut long fibers, glass transition temperature 214 ℃)
Was sprayed. The amount of spray was 6 g / m 2 per side. In this way, carbon fiber areal weight 190g / m 2 , carbon fiber content 64.8%
I got a prepreg of.

【0056】(b)硬化板の作製 (a)で作製したプリプレグを(+45/0/-45/90)2S、およ
び(+45/0/-45/90)3Sの構成で積層した。これをオートク
レーブ中で、温度180 ℃、圧力 6kgf/cm2 の条件で2時
間硬化を行った。
(B) Preparation of Hardened Plate The prepreg prepared in (a) was laminated in the composition of (+ 45/0 / -45 / 90) 2S and (+ 45/0 / -45 / 90) 3S . This was cured in an autoclave at a temperature of 180 ° C. and a pressure of 6 kgf / cm 2 for 2 hours.

【0057】(c)圧縮強度の測定 (+45/0/-45/90)2Sの構成の硬化板を、0 ゜方向が12イン
チ、90゜方向が1.5 インチの長方形に切り出し、中央部
に直径0.25インチの円形の孔を穿孔して有孔板に加工
し、室温圧縮強度(24℃)、および高温高湿時圧縮強度
(71℃の温水に2週間浸漬後82℃で測定)をインストロ
ン1128型試験機を用いて測定した。結果は以下の通
りである。
(C) Measurement of compressive strength (+ 45/0 / -45 / 90) A 2S hardened plate was cut into a rectangle with 12 inches in the 0 ° direction and 1.5 inches in the 90 ° direction. A circular hole with a diameter of 0.25 inch is drilled to form a perforated plate, and the compressive strength at room temperature (24 ° C) and the compressive strength at high temperature and high humidity (measured at 82 ° C after soaking in hot water at 71 ° C for 2 weeks) It was measured using a Ron 1128 type tester. The results are as follows.

【0058】 室温圧縮強度 : 44.2ksi 高温高湿時圧縮強度 : 38.7ksi さらに、(+45/0/-45/90)3Sの構成の硬化板を0 ゜方向が
6 インチ、90゜方向が4 インチの長方形に切り出し、そ
の中央に270 インチ・ポンドの落錘衝撃を与え、衝撃後
の圧縮強度を測定した。結果は以下の通りである。
Room temperature compressive strength: 44.2ksi Compressive strength at high temperature and high humidity: 38.7ksi Furthermore, a (+ 45/0 / -45 / 90) 3S hardened plate is
A 6-inch, 90-degree 4-inch rectangle was cut out, and a 270 inch-pound falling weight impact was applied to the center, and the compressive strength after impact was measured. The results are as follows.

【0059】 衝撃後圧縮強度 : 43.9ksi (実施例3) (a)不織布の作製 オリフィスを1個もうけた口金から吐出した非晶質ポリ
アミド“グリルアミド”TR−55(EMSER WE
RKE社製ポリアミド)の繊維を、金網上に先端に衝撃
板を設けたアスピレータと圧縮空気を用いて延伸、散布
して補修した。金網上に補修した繊維シートを加熱プレ
ス機を用いて熱接着し、“グリルアミド”TR−55の
不織布を作製した。不織布のガラス転移温度は157 ℃で
あった。繊維の目付は6.5g/m2 であった。
Compressive strength after impact: 43.9 ksi (Example 3) (a) Fabrication of non-woven fabric Amorphous polyamide “Grillamide” TR-55 (EMSER WE) discharged from a die with one orifice
Fibers of RKE polyamide) were stretched and dispersed by using an aspirator having an impact plate at the tip on a wire mesh and compressed air for repair. The fiber sheet repaired on the wire mesh was heat-bonded using a heat press machine to prepare a non-woven fabric of "Grillamide" TR-55. The glass transition temperature of the non-woven fabric was 157 ° C. The basis weight of the fiber was 6.5 g / m 2 .

【0060】(b)プリプレグの作製 実施例(a)で調製した一次樹脂をリバースロールコー
ターを用いて離型紙上に塗布量が 45.2g/m2 になるよう
塗布して樹脂フィルムを作製した。
(B) Preparation of prepreg The primary resin prepared in Example (a) was coated on release paper using a reverse roll coater to a coating amount of 45.2 g / m 2 to prepare a resin film.

【0061】一方向に引き揃えた炭素繊維(T800H 、東
レ(株)製)を両側から、前記の一次樹脂フィルムでは
さみ、加熱加圧して樹脂を含浸させた。さらにその両側
に(a)で作製した不織布を貼り付け、加熱加圧して不
織布に樹脂を含浸させた。このようにして炭素繊維目付
190g/m2 、炭素繊維含有率64.8%のプリプレグを得た。
Carbon fibers (T800H, manufactured by Toray Industries, Inc.) aligned in one direction were sandwiched from both sides with the primary resin film, and heated and pressed to impregnate the resin. Further, the non-woven fabric prepared in (a) was attached to both sides of the non-woven fabric, and the non-woven fabric was impregnated with resin by heating and pressing. In this way carbon fiber areal weight
A prepreg having 190 g / m 2 and a carbon fiber content of 64.8% was obtained.

【0062】(c)硬化板の作製 (b)で作製したプリプレグを(+45/0/-45/90)2S、およ
び(+45/0/-45/90)3Sの構成で積層した。これをオートク
レーブ中で、温度180 ℃、圧力 6kgf/cm2 の条件で2時
間硬化を行った。
(C) Preparation of Hardened Plate The prepreg prepared in (b) was laminated in the composition of (+ 45/0 / -45 / 90) 2S and (+ 45/0 / -45 / 90) 3S . This was cured in an autoclave at a temperature of 180 ° C. and a pressure of 6 kgf / cm 2 for 2 hours.

【0063】(d)圧縮強度の測定 (+45/0/-45/90)2Sの構成の硬化板を、0 ゜方向が12イン
チ、90゜方向が1.5 インチの長方形に切り出し、中央部
に直径0.25インチの円形の孔を穿孔して有孔板に加工
し、室温圧縮強度(24℃)、および高温高湿時圧縮強度
(71℃の温水に2週間浸漬後82℃で測定)をインストロ
ン1128型試験機を用いて測定した。結果は以下の通
りである。
(D) Measurement of compressive strength (+ 45/0 / -45 / 90) A 2S hardened plate was cut into a rectangle with 12 inches in the 0 ° direction and 1.5 inches in the 90 ° direction. A circular hole with a diameter of 0.25 inch is drilled to form a perforated plate, and the compressive strength at room temperature (24 ° C) and the compressive strength at high temperature and high humidity (measured at 82 ° C after dipping in hot water at 71 ° C for 2 weeks) are installed. It was measured using a Ron 1128 type tester. The results are as follows.

【0064】 室温圧縮強度 : 43.9ksi 高温高湿時圧縮強度 : 38.0ksi さらに、(+45/0/-45/90)3Sの構成の硬化板を0 ゜方向が
6 インチ、90゜方向が4 インチの長方形に切り出し、そ
の中央に270 インチ・ポンドの落錘衝撃を与え、衝撃後
の圧縮強度を測定した。結果は以下の通りである。
Room temperature compressive strength: 43.9ksi Compressive strength at high temperature and high humidity: 38.0ksi Furthermore, a cured plate of (+ 45/0 / -45 / 90) 3S configuration is
A 6-inch, 90-degree 4-inch rectangle was cut out, and a 270 inch-pound falling weight impact was applied to the center, and the compressive strength after impact was measured. The results are as follows.

【0065】 衝撃後圧縮強度 : 42.7ksi (実施例4) (a)編物の作製 一口筒編機(小池機械製作所製、MODEL CR-B)を用い
て、結晶性ポリアミド・ナイロン66のマルチフィラメ
ント(15デニール、7 フィラメント、東レ(株)製、融
点251 ℃)の編物(平編)を作成した。編物の繊維目付
は 7.0 g/m2 であった。
Compressive strength after impact: 42.7 ksi (Example 4) (a) Preparation of knitting Using a one-piece tubular knitting machine (MODEL CR-B manufactured by Koike Machinery Co., Ltd.), a crystalline polyamide-nylon 66 multifilament ( A knitted fabric (flat knitting) of 15 denier, 7 filaments, manufactured by Toray Industries, Inc., melting point 251 ° C) was prepared. The fiber basis weight of the knit was 7.0 g / m 2 .

【0066】(b)プリプレグの作製 実施例(a)で調製した一次樹脂をリバースロールコー
ターを用いて離型紙上に塗布量が44.7 g/m2 になるよう
塗布して樹脂フィルムを作製した。
(B) Preparation of prepreg The primary resin prepared in Example (a) was coated on a release paper using a reverse roll coater so that the coating amount was 44.7 g / m 2 to prepare a resin film.

【0067】一方向に引き揃えた炭素繊維(T800H 、東
レ(株)製)を両側から、前記の一次樹脂フィルムでは
さみ、加熱加圧して樹脂を含浸させた。さらにその両側
に(a)で作製した編物を貼り付けた。このようにして
炭素繊維目付190g/m2 、炭素繊維含有率64.8%のプリプ
レグを得た。
Carbon fibers (T800H, manufactured by Toray Industries, Inc.) aligned in one direction were sandwiched from both sides with the primary resin film and heated and pressed to impregnate the resin. Further, the knitted fabric produced in (a) was attached to both sides thereof. In this way, a prepreg having a carbon fiber areal weight of 190 g / m 2 and a carbon fiber content of 64.8% was obtained.

【0068】(c)硬化板の作製 (b)で作製したプリプレグを(+45/0/-45/90)2S、およ
び(+45/0/-45/90)3Sの構成で積層した。これをオートク
レーブ中で、温度180 ℃、圧力 6kgf/cm2 の条件で2時
間硬化を行った。
(C) Preparation of Hardened Plate The prepreg prepared in (b) was laminated in the composition of (+ 45/0 / -45 / 90) 2S and (+ 45/0 / -45 / 90) 3S . This was cured in an autoclave at a temperature of 180 ° C. and a pressure of 6 kgf / cm 2 for 2 hours.

【0069】(d)圧縮強度の測定 (+45/0/-45/90)2Sの構成の硬化板を、0 ゜方向が12イン
チ、90゜方向が1.5 インチの長方形に切り出し、中央部
に直径0.25インチの円形の孔を穿孔して有孔板に加工
し、室温圧縮強度(24℃)、および高温高湿時圧縮強度
(71℃の温水に2週間浸漬後82℃で測定)をインストロ
ン1128型試験機を用いて測定した。結果は以下の通
りである。
(D) Measurement of compressive strength (+ 45/0 / -45 / 90) A 2S hardened plate was cut into a rectangle with 12 inches in the 0 ° direction and 1.5 inches in the 90 ° direction. A circular hole with a diameter of 0.25 inch is drilled to form a perforated plate, and the compressive strength at room temperature (24 ° C) and the compressive strength at high temperature and high humidity (measured at 82 ° C after soaking in hot water at 71 ° C for 2 weeks) It was measured using a Ron 1128 type tester. The results are as follows.

【0070】 室温圧縮強度 : 44.0ksi 高温高湿時圧縮強度 : 38.3ksi さらに、(+45/0/-45/90)3Sの構成の硬化板を0 ゜方向が
6 インチ、90゜方向が4 インチの長方形に切り出し、そ
の中央に270 インチ・ポンドの落錘衝撃を与え、衝撃後
の圧縮強度を測定した。結果は以下の通りである。
Room temperature compressive strength: 44.0ksi High temperature and high humidity compressive strength: 38.3ksi In addition, a cured plate of (+ 45/0 / -45 / 90) 3S configuration is
A 6-inch, 90-degree 4-inch rectangle was cut out, and a 270 inch-pound falling weight impact was applied to the center, and the compressive strength after impact was measured. The results are as follows.

【0071】 衝撃後圧縮強度 : 42.2ksi (実施例5) (a)プリプレグの作製 実施例1の(a)で調製した一次樹脂をリバースロール
コーターを用いて離型紙上に塗布量が 43.7g/m2 になる
よう塗布して樹脂フィルムを作製した。
Compressive strength after impact: 42.2 ksi (Example 5) (a) Preparation of prepreg The primary resin prepared in (a) of Example 1 was coated on a release paper with a reverse roll coater in an amount of 43.7 g / the resin film was prepared by coating so as to be m 2.

【0072】一方向に引き揃えた炭素繊維(T800H 、東
レ(株)製)を両側から、前記の一次樹脂フィルムでは
さみ、加熱加圧して樹脂を含浸させた。さらにその両側
に非晶質ポリエーテルイミド“ウルテム”1010の長
繊維(繊度270デニール、フィラメント数10、日東
紡績(株)製フィラメントを分繊、ガラス転移温度21
4℃)を強化繊維と平行にドラムワインダーを用いて目
付が片面あたり8g/m2となるようピッチ4mm で巻き付け
た。このようにして炭素繊維目付190g/m2 、炭素繊維含
有率64.8%のプリプレグを得た。
Carbon fibers (T800H, manufactured by Toray Industries, Inc.) aligned in one direction were sandwiched from both sides with the primary resin film and heated and pressed to impregnate the resin. Further, on both sides thereof, long fibers of amorphous polyetherimide "Ultem" 1010 (fineness: 270 denier, number of filaments: 10, filaments manufactured by Nitto Boseki Co., Ltd. were separated, glass transition temperature: 21).
4 ° C.) was wound in parallel with the reinforcing fiber with a drum winder at a pitch of 4 mm so that the basis weight was 8 g / m 2 per side. In this way, a prepreg having a carbon fiber areal weight of 190 g / m 2 and a carbon fiber content of 64.8% was obtained.

【0073】(b)硬化板の作製 (a)で作製したプリプレグを(+45/0/-45/90)2S、およ
び(+45/0/-45/90)3Sの構成で積層した。これをオートク
レーブ中で、温度180 ℃、圧力 6kgf/cm2 の条件で2時
間硬化を行った。
(B) Preparation of Hardened Plate The prepreg prepared in (a) was laminated in the composition of (+ 45/0 / -45 / 90) 2S and (+ 45/0 / -45 / 90) 3S . This was cured in an autoclave at a temperature of 180 ° C. and a pressure of 6 kgf / cm 2 for 2 hours.

【0074】(c)圧縮強度の測定 (+45/0/-45/90)2Sの構成の硬化板を、0 ゜方向が12イン
チ、90゜方向が1.5 インチの長方形に切り出し、中央部
に直径0.25インチの円形の孔を穿孔して有孔板に加工
し、室温圧縮強度(24℃)、および高温高湿時圧縮強度
(71℃の温水に2週間浸漬後82℃で測定)をインストロ
ン1128型試験機を用いて測定した。結果は以下の通
りである。
(C) Measurement of compressive strength (+ 45/0 / -45 / 90) A 2S hardened plate was cut into a rectangle with 12 inches in the 0 ° direction and 1.5 inches in the 90 ° direction. A circular hole with a diameter of 0.25 inch is drilled to form a perforated plate, and the compressive strength at room temperature (24 ° C) and the compressive strength at high temperature and high humidity (measured at 82 ° C after dipping in hot water at 71 ° C for 2 weeks) are installed. It was measured using a Ron 1128 type tester. The results are as follows.

【0075】 室温圧縮強度 : 43.9ksi 高温高湿時圧縮強度 : 38.7ksi さらに、(+45/0/-45/90)3Sの構成の硬化板を0 ゜方向が
6 インチ、90゜方向が4 インチの長方形に切り出し、そ
の中央に270 インチ・ポンドの落錘衝撃を与え、衝撃後
の圧縮強度を測定した。結果は以下の通りである。
Room temperature compressive strength: 43.9ksi High temperature and high humidity compressive strength: 38.7ksi Further, a cured plate of (+ 45/0 / -45 / 90) 3S configuration is
A 6-inch, 90-degree 4-inch rectangle was cut out, and a 270 inch-pound falling weight impact was applied to the center, and the compressive strength after impact was measured. The results are as follows.

【0076】 衝撃後圧縮強度 : 38.6ksi (実施例6) (a)プリプレグの作製 実施例1の(a)で調製した一次樹脂をリバースロール
コーターを用いて離型紙上に塗布量が 45.3g/m2 になる
よう塗布して樹脂フィルムを作製した。
Compressive strength after impact: 38.6 ksi (Example 6) (a) Preparation of prepreg The primary resin prepared in (a) of Example 1 was coated on release paper with a reverse roll coater at an application amount of 45.3 g / the resin film was prepared by coating so as to be m 2.

【0077】一方向に引き揃えた炭素繊維(T800H 、東
レ(株)製)を両側から、前記の一次樹脂フィルムでは
さみ、加熱加圧して樹脂を含浸させた。さらにその両側
にポリエーテルイミド“ウルテム”のテープ状フィルム
(幅5 mm,厚み10ミクロン、住友ベークライト(株)
製フィルムをスリットしたもの、ガラス転移温度214
℃)を強化繊維と平行にドラムワインダーを用いて目付
が片面あたり6.4g/m2 となるようピッチ10mmで巻き付
けた。このようにして炭素繊維目付190g/m2 、炭素繊維
含有率64.8%のプリプレグを得た。
Carbon fibers (T800H, manufactured by Toray Industries, Inc.) aligned in one direction were sandwiched from both sides with the primary resin film and heated and pressed to impregnate the resin. Furthermore, tape-shaped films of polyetherimide "Ultem" on both sides (width 5 mm, thickness 10 micron, Sumitomo Bakelite Co., Ltd.)
Slit film made, glass transition temperature 214
C.) was wound in parallel with the reinforced fiber at a pitch of 10 mm using a drum winder so that the basis weight was 6.4 g / m 2 per side. In this way, a prepreg having a carbon fiber areal weight of 190 g / m 2 and a carbon fiber content of 64.8% was obtained.

【0078】(b)硬化板の作製 (a)で作製したプリプレグを(+45/0/-45/90)2S、およ
び(+45/0/-45/90)3Sの構成で積層した。これをオートク
レーブ中で、温度180 ℃、圧力 6kgf/cm2 の条件で2時
間硬化を行った。
(B) Preparation of Hardened Plate The prepreg prepared in (a) was laminated in the composition of (+ 45/0 / -45 / 90) 2S and (+ 45/0 / -45 / 90) 3S . This was cured in an autoclave at a temperature of 180 ° C. and a pressure of 6 kgf / cm 2 for 2 hours.

【0079】(c)圧縮強度の測定 (+45/0/-45/90)2Sの構成の硬化板を、0 ゜方向が12イン
チ、90゜方向が1.5 インチの長方形に切り出し、中央部
に直径0.25インチの円形の孔を穿孔して有孔板に加工
し、室温圧縮強度(24℃)、および高温高湿時圧縮強度
(71℃の温水に2週間浸漬後82℃で測定)をインストロ
ン1128型試験機を用いて測定した。結果は以下の通
りである。
(C) Measurement of compressive strength (+ 45/0 / -45 / 90) A 2S hardened plate was cut into a rectangle of 12 inches in the 0 ° direction and 1.5 inches in the 90 ° direction, and cut in the center. A circular hole with a diameter of 0.25 inch is drilled to form a perforated plate, and the compressive strength at room temperature (24 ° C) and the compressive strength at high temperature and high humidity (measured at 82 ° C after dipping in hot water at 71 ° C for 2 weeks) are installed. It was measured using a Ron 1128 type tester. The results are as follows.

【0080】 室温圧縮強度 : 44.5ksi 高温高湿時圧縮強度 : 39.1ksi さらに、(+45/0/-45/90)3Sの構成の硬化板を0 ゜方向が
6 インチ、90゜方向が4 インチの長方形に切り出し、そ
の中央に270 インチ・ポンドの落錘衝撃を与え、衝撃後
の圧縮強度を測定した。結果は以下の通りである。
Room temperature compressive strength: 44.5ksi High temperature and high humidity compressive strength: 39.1ksi Furthermore, a cured plate of (+ 45/0 / -45 / 90) 3S configuration is
A 6-inch, 90-degree 4-inch rectangle was cut out, and a 270 inch-pound falling weight impact was applied to the center, and the compressive strength after impact was measured. The results are as follows.

【0081】 衝撃後圧縮強度 : 40.1ksi (比較例1) (a)プリプレグの作製 実施例1の(a)で調製した樹脂をリバースロールコー
ターを用いて離型紙上に塗布量が 51.7g/m2 になるよう
塗布して樹脂フィルムを作製した。
Compressive strength after impact: 40.1 ksi (Comparative Example 1) (a) Preparation of prepreg The resin prepared in (a) of Example 1 was coated on release paper with a reverse roll coater at an amount of 51.7 g / m 2. A resin film was prepared by coating so as to be 2 .

【0082】一方向に引き揃えた炭素繊維(T800H 、東
レ(株)製)を両側から、前記の樹脂フィルムではさ
み、加熱加圧して樹脂を含浸させて炭素繊維目付190g/m
2 、炭素繊維含有率64.8%のプリプレグを得た。
Carbon fibers (T800H, manufactured by Toray Industries, Inc.) aligned in one direction are sandwiched from both sides with the above resin film, and heat and pressure are impregnated with the resin to give a carbon fiber basis weight of 190 g / m 2.
2. A prepreg with a carbon fiber content of 64.8% was obtained.

【0083】(b)硬化板の作製 (a)で作製したプリプレグを(+45/0/-45/90)2S、およ
び(+45/0/-45/90)3Sの構成で積層した。これらを実施例
1と同様の条件で硬化を行った。
(B) Preparation of Hardened Plate The prepreg prepared in (a) was laminated in the composition of (+ 45/0 / -45 / 90) 2S and (+ 45/0 / -45 / 90) 3S . These were cured under the same conditions as in Example 1.

【0084】(c)圧縮強度の測定 (+45/0/-45/90)2Sの構成の硬化板を、実施例1と同様に
有孔板に加工し、室温圧縮強度、および高温高湿時圧縮
強度を測定した。結果は以下の通りであった。 室温圧縮強度 : 45.2ksi 高温高湿時圧縮強度 : 39.0ksi さらに、(+45/0/-45/90)3Sの構成の硬化板を0 ゜方向が
6 インチ、90゜方向が4 インチの長方形に切り出し、そ
の中央に270 インチ・ポンドの落錘衝撃を与え、衝撃後
の圧縮強度を測定した。結果は以下の通りであった。
(C) Measurement of compressive strength (+ 45/0 / -45 / 90) A hardened plate having a composition of 2S was processed into a perforated plate in the same manner as in Example 1, and the compressive strength at room temperature and high temperature and high humidity were applied. The compressive strength was measured. The results were as follows. Room temperature compressive strength: 45.2ksi High temperature and high humidity compressive strength: 39.0ksi In addition, (+ 45/0 / -45 / 90) 3S hardened plate is
A 6-inch, 90-degree 4-inch rectangle was cut out, and a 270 inch-pound falling weight impact was applied to the center, and the compressive strength after impact was measured. The results were as follows.

【0085】 衝撃後圧縮強度 : 18.2ksi (比較例2) (a)樹脂組成物調製 下記原料を混練し、エポキシ樹脂組成物を得た。Compressive strength after impact: 18.2 ksi (Comparative example 2) (a) Preparation of resin composition The following raw materials were kneaded to obtain an epoxy resin composition.

【0086】 (1)テトラグリシジルジアミノジフェニルメタン (エピコート604、油化シェルエポキシ(株)製) 40.0部 (2)ビスフェノールA型エポキシ樹脂 (エピコート825、油化シェルエポキシ(株)製) 20.0部 (3)ビスフェノールF型エポキシ樹脂 (エピコート830、油化シェルエポキシ(株)製) 20.0部 (4)ポリエーテルスルホン (PES5003P、住友化学工業(株)製) 18.0部 (5)3,3'- ジアミノジフェニルスルホン (スミキュアS、住友化学工業(株)製) 43.0部 (b)樹脂硬化物の物性測定 (a)で調製した樹脂を180 ℃、2時間硬化して樹脂硬
化物の厚さ2mm の板を作製した。曲げ弾性率測定は、2m
m 厚の板を10mm幅に切り、スパン32mmにて行った。
(1) Tetraglycidyldiaminodiphenylmethane (Epicoat 604, manufactured by Yuka Shell Epoxy Co., Ltd.) 40.0 parts (2) Bisphenol A type epoxy resin (Epicoat 825, manufactured by Yuka Shell Epoxy Co., Ltd.) 20. 0 parts (3) Bisphenol F type epoxy resin (Epicoat 830, manufactured by Yuka Shell Epoxy Co., Ltd.) 20.0 parts (4) Polyether sulfone (PES5003P, manufactured by Sumitomo Chemical Co., Ltd.) 18.0 parts (5) ) 3,3'-Diaminodiphenylsulfone (Sumicure S, manufactured by Sumitomo Chemical Co., Ltd.) 43.0 parts (b) Physical properties of cured resin The resin prepared in (a) was cured at 180 ° C for 2 hours. A plate having a thickness of 2 mm was prepared from the cured resin. Flexural modulus measurement is 2m
A m-thick plate was cut into a width of 10 mm and a span of 32 mm was used.

【0087】硬化物の室温曲げ弾性率は、 350kgf/mm2
であり、沸水20時間吸水後82℃で測定した曲げ弾性率
は、270J/m2 であった。
The room temperature flexural modulus of the cured product was 350 kgf / mm 2
The bending elastic modulus measured at 82 ° C. after absorbing boiling water for 20 hours was 270 J / m 2 .

【0088】(c)プリプレグの作製 (a)で調製した一次樹脂をリバースロールコーターを
用いて離型紙上に塗布量が 45.7g/m2 になるよう塗布し
て樹脂フィルムを作製した。
(C) Preparation of prepreg A resin film was prepared by applying the primary resin prepared in (a) onto release paper using a reverse roll coater at a coating amount of 45.7 g / m 2 .

【0089】一方向に引き揃えた炭素繊維(T800H 、東
レ(株)製)を両側から、前記の一次樹脂フィルムでは
さみ、加熱加圧して樹脂を含浸させた。さらにその両側
に実施例1の(a)で調製したポリエーテルイミド“ウ
ルテム”1000の粒子を散布した。散布量は片面あた
り6g/m2 とした。このようにして炭素繊維目付190g/
m2 、炭素繊維含有率64.8%のプリプレグを得た。
Carbon fibers (T800H, manufactured by Toray Industries, Inc.) aligned in one direction were sandwiched from both sides with the primary resin film, and heated and pressed to impregnate the resin. Further, particles of the polyetherimide "Ultem" 1000 prepared in (a) of Example 1 were sprinkled on both sides thereof. The amount of spray was 6 g / m 2 per side. In this way carbon fiber areal weight 190g /
A prepreg having m 2 and a carbon fiber content of 64.8% was obtained.

【0090】(d)硬化板の作製 (c)で作製したプリプレグを(+45/0/-45/90)2S、およ
び(+45/0/-45/90)3Sの構成で積層した。これをオートク
レーブ中で、温度180 ℃、圧力 6kgf/cm2 の条件で2時
間硬化を行った。
(D) Preparation of Hardened Plate The prepreg prepared in (c) was laminated in the composition of (+ 45/0 / -45 / 90) 2S and (+ 45/0 / -45 / 90) 3S . This was cured in an autoclave at a temperature of 180 ° C. and a pressure of 6 kgf / cm 2 for 2 hours.

【0091】(e)圧縮強度の測定 (+45/0/-45/90)2Sの構成の硬化板を、0 ゜方向が12イ
ンチ、90゜方向が1.5インチの長方形に切り出し、中央
部に直径0.25インチの円形の孔を穿孔して有孔板に加工
し、室温圧縮強度(24℃)、および高温高湿時圧縮強度
(71℃の温水に2週間浸漬後82℃で測定)をインストロ
ン1128型試験機を用いて測定した。結果は以下の通
りである。
(E) Measurement of compressive strength (+ 45/0 / -45 / 90) A 2S hardened plate was cut into a rectangle of 12 inches in the 0 ° direction and 1.5 inches in the 90 ° direction, and cut in the center. A circular hole with a diameter of 0.25 inch is drilled to form a perforated plate, and the compressive strength at room temperature (24 ° C) and the compressive strength at high temperature and high humidity (measured at 82 ° C after dipping in hot water at 71 ° C for 2 weeks) are installed. It was measured using a Ron 1128 type tester. The results are as follows.

【0092】 室温圧縮強度 : 37.8ksi 高温高湿時圧縮強度 : 33.0ksi さらに、(+45/0/-45/90)3Sの構成の硬化板を0゜方向が
6インチ、90゜方向が4インチの長方形に切り出し、
その中央に270 インチ・ポンドの落錘衝撃を与え、衝撃
後の圧縮強度を測定した。結果は以下の通りである。
Room temperature compressive strength: 37.8 ksi High temperature and high humidity compressive strength: 33.0 ksi Further, a cured plate of (+ 45/0 / -45 / 90) 3S has a 0 ° direction of 6 inches and a 90 ° direction of 4 inches. Cut it out to a rectangle of inches,
A falling weight impact of 270 inch-pounds was applied to the center, and the compressive strength after impact was measured. The results are as follows.

【0093】 衝撃後圧縮強度 : 45.9ksiCompressive strength after impact: 45.9ksi

【0094】[0094]

【発明の効果】以上説明したように、実施例からも明ら
かなように、本発明のプリプレグより得られた繊維強化
複合材料は、圧縮系の機械特性、特に高温高湿条件で高
い有孔板圧縮強度と高い衝撃後の圧縮強度の両立を実現
する。したがって、本発明に係るプリプレグを用いて得
られる繊維強化複合材料は、ボルト穴等を有する有孔構
造材料として好適なものとなり、適用可能な用途を大き
く拡大することができる。
As described above, as is clear from the examples, the fiber-reinforced composite material obtained from the prepreg of the present invention has a mechanical property of compression system, especially a perforated plate having high temperature and high humidity conditions. Achieving both compression strength and high impact strength. Therefore, the fiber-reinforced composite material obtained by using the prepreg according to the present invention is suitable as a perforated structural material having a bolt hole or the like, and the applicable applications can be greatly expanded.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:00 105:08 C08L 63:00 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B29K 105: 00 105: 08 C08L 63:00

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】次の構成要素(A)、(B)、(C)から
なり、構成要素(C)が片面または両面の表層近傍に分
布したプリプレグ。 (A)強化繊維 (B)硬化物の室温の曲げ弾性率が 380kgf/mm2 以上で
あるエポキシ樹脂組成物 (C)熱可塑性樹脂の粒子、または繊維、またはフィル
1. A prepreg comprising the following constituent elements (A), (B) and (C), wherein the constituent element (C) is distributed near the surface layer on one side or both sides. (A) Reinforcing fiber (B) Epoxy resin composition having a room temperature flexural modulus of 380 kgf / mm 2 or more (C) Thermoplastic resin particles, fibers, or film
【請求項2】エポキシ樹脂組成物(B)の硬化物の沸水
20時間吸水後、82℃で測定した曲げ弾性率が 280kgf/mm
2 以上であることを特徴とする請求項1記載のプリプレ
グ。
2. Boiling water of a cured product of the epoxy resin composition (B)
After absorbing water for 20 hours, the flexural modulus measured at 82 ℃ is 280kgf / mm.
The prepreg according to claim 1, wherein the prepreg is 2 or more.
【請求項3】構成要素(C)の熱可塑性樹脂が結晶性で
あり、その融点が120 ℃以上であることを特徴とする請
求項1または請求項2記載のプリプレグ。
3. The prepreg according to claim 1 or 2, wherein the thermoplastic resin as the constituent element (C) is crystalline and has a melting point of 120 ° C or higher.
【請求項4】構成要素(C)の熱可塑性樹脂が非晶質で
あり、そのガラス転移点が120 ℃以上であることを特徴
とする請求項1または請求項2記載のプリプレグ。
4. The prepreg according to claim 1 or 2, wherein the thermoplastic resin as the constituent element (C) is amorphous and has a glass transition point of 120 ° C. or higher.
【請求項5】構成要素(C)の熱可塑性樹脂が、ポリア
ミド、ポリイミド、ポリエーテルイミド、ポリアミドイ
ミド、ポリスルホン、ポリエーテルスルホンより選ばれ
た少なくとも一種の樹脂であることを特徴とする請求項
1または請求項2記載のプリプレグ。
5. The thermoplastic resin of component (C) is at least one resin selected from polyamide, polyimide, polyetherimide, polyamideimide, polysulfone, and polyethersulfone. Alternatively, the prepreg according to claim 2.
【請求項6】構成要素(C)の熱可塑性樹脂が短繊維形
態をとることを特徴とする請求項1〜5のいずれかに記
載のプリプレグ。
6. The prepreg according to claim 1, wherein the thermoplastic resin as the constituent element (C) is in the form of short fibers.
【請求項7】構成要素(C)の熱可塑性樹脂が長繊維形
態をとることを特徴とする請求項1〜5のいずれかに記
載のプリプレグ。
7. The prepreg according to claim 1, wherein the thermoplastic resin as the constituent element (C) is in the form of long fibers.
【請求項8】構成要素(C)の熱可塑性樹脂が不織布形
態をとることを特徴とする請求項1〜5のいずれかに記
載のプリプレグ。
8. The prepreg according to claim 1, wherein the thermoplastic resin as the constituent element (C) is in the form of a non-woven fabric.
【請求項9】構成要素(C)の熱可塑性樹脂が編物形態
をとることを特徴とする請求項1〜5のいずれかに記載
のプリプレグ。
9. The prepreg according to any one of claims 1 to 5, wherein the thermoplastic resin as the constituent element (C) has a knitted form.
【請求項10】構成要素(C)の量が、(C)の存在す
る面について、面あたり4 〜15 g/m2 であることを特徴
とする請求項1〜9のいずれかに記載のプリプレグ。
10. The composition according to claim 1, wherein the amount of the component (C) is 4 to 15 g / m 2 per surface with respect to the surface on which (C) is present. Prepreg.
【請求項11】構成要素(B)が硬化剤として3,3'- ジ
アミノジフェニルスルホンを含有することを特徴とする
請求項1〜10のいずれかに記載のプリプレグ。
11. The prepreg according to claim 1, wherein the component (B) contains 3,3′-diaminodiphenyl sulfone as a curing agent.
【請求項12】請求項1〜11のいずれかに記載のプリ
プレグを硬化して得られる繊維強化複合材料。
12. A fiber-reinforced composite material obtained by curing the prepreg according to claim 1.
JP6287295A 1995-03-22 1995-03-22 Prepreg and fiber reinforced composite materials Expired - Lifetime JP3440615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6287295A JP3440615B2 (en) 1995-03-22 1995-03-22 Prepreg and fiber reinforced composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6287295A JP3440615B2 (en) 1995-03-22 1995-03-22 Prepreg and fiber reinforced composite materials

Publications (2)

Publication Number Publication Date
JPH08259713A true JPH08259713A (en) 1996-10-08
JP3440615B2 JP3440615B2 (en) 2003-08-25

Family

ID=13212806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6287295A Expired - Lifetime JP3440615B2 (en) 1995-03-22 1995-03-22 Prepreg and fiber reinforced composite materials

Country Status (1)

Country Link
JP (1) JP3440615B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003030819A (en) * 2001-07-16 2003-01-31 Toray Ind Inc Polyester film for magnetic recording medium and magnetic recording tape
JP2003036524A (en) * 2001-07-23 2003-02-07 Toray Ind Inc Magnetic recording medium base and magnetic recording tape
JP2005213352A (en) * 2004-01-29 2005-08-11 Arisawa Mfg Co Ltd Resin composition for prepreg and prepreg using the same
JP2010275492A (en) * 2009-05-30 2010-12-09 Toho Tenax Co Ltd Epoxy resin composition and prepreg
JP2010275505A (en) * 2009-06-01 2010-12-09 Mitsubishi Rayon Co Ltd Prepreg and production method thereof
JP2012086578A (en) * 2004-02-27 2012-05-10 Toray Ind Inc Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, fiber-reinforced composite material sheet, and casing for electric/electronic equipment
WO2012133033A1 (en) 2011-03-30 2012-10-04 東邦テナックス株式会社 Prepreg and method for manufacturing same
US8394491B2 (en) 2006-08-07 2013-03-12 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
EP2596947A1 (en) * 2010-07-21 2013-05-29 Toray Industries, Inc. Prepreg, fiber-reinforced composite material, and process for producing prepreg
WO2013099741A1 (en) 2011-12-26 2013-07-04 東レ株式会社 Carbon fiber base, prepreg, and carbon-fiber-reinforced composite material
JP2013531707A (en) * 2010-05-27 2013-08-08 ヘクセル コンポジット、リミテッド Structured thermoplastics in composite interleaf
WO2014050896A1 (en) 2012-09-26 2014-04-03 東邦テナックス株式会社 Prepreg and method for producing same
JP2014529536A (en) * 2011-08-29 2014-11-13 サイテク・テクノロジー・コーポレーシヨン Interlaminar reinforcement of thermoplastic resin
US9868265B2 (en) 2010-05-27 2018-01-16 Hexcel Composites, Limited Structured thermoplastic in composite interleaves
WO2018066600A1 (en) * 2016-10-04 2018-04-12 三菱ケミカル株式会社 Prepreg, prepreg laminate, and fiber-reinforced composite material
KR20180079729A (en) * 2017-01-02 2018-07-11 주식회사 엑시아머티리얼스 Quasi-Isotropic Product using the fiber reinforced composite material and manufacturing method therof
US10065393B2 (en) 2006-03-25 2018-09-04 Hexcel Composites Limited Structured thermoplastic in composite interleaves
US10618227B2 (en) 2006-03-25 2020-04-14 Hexcel Composites, Ltd. Structured thermoplastic in composite interleaves
WO2020235487A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Prepreg, laminate, and molded article
WO2020235485A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Prepreg, laminate, and molded article
WO2020235488A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Method for producing fiber-reinforced resin substrate, fiber-reinforced resin substrate, and molded article integrated therewith
WO2020235489A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Prepreg, layered body, and molded article
WO2020235484A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Prepreg, laminate, and molded article
WO2021117461A1 (en) 2019-12-11 2021-06-17 東レ株式会社 Prepreg, laminate, and integrated molded article
WO2021117460A1 (en) 2019-12-11 2021-06-17 東レ株式会社 Prepreg, laminate and integrated molded article
WO2021117465A1 (en) 2019-12-11 2021-06-17 東レ株式会社 Prepreg, laminate and integrated molded article
WO2021131347A1 (en) 2019-12-23 2021-07-01 東レ株式会社 Prepreg, molded article, and integrally molded article

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003030819A (en) * 2001-07-16 2003-01-31 Toray Ind Inc Polyester film for magnetic recording medium and magnetic recording tape
JP4529323B2 (en) * 2001-07-16 2010-08-25 東レ株式会社 Polyester film for magnetic recording medium and magnetic recording tape
JP2003036524A (en) * 2001-07-23 2003-02-07 Toray Ind Inc Magnetic recording medium base and magnetic recording tape
JP4529326B2 (en) * 2001-07-23 2010-08-25 東レ株式会社 Support for magnetic recording medium and magnetic recording tape
JP2005213352A (en) * 2004-01-29 2005-08-11 Arisawa Mfg Co Ltd Resin composition for prepreg and prepreg using the same
JP4553595B2 (en) * 2004-01-29 2010-09-29 株式会社有沢製作所 Prepreg resin composition and prepreg using the same
JP2012086578A (en) * 2004-02-27 2012-05-10 Toray Ind Inc Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, fiber-reinforced composite material sheet, and casing for electric/electronic equipment
US9963576B2 (en) 2004-02-27 2018-05-08 Toray Industríes, Inc. Fiber-reinforced composite sheet and integrated molding
US8877330B2 (en) 2004-02-27 2014-11-04 Toray Industries, Inc. Fiber-reinforced composite sheet
US10618227B2 (en) 2006-03-25 2020-04-14 Hexcel Composites, Ltd. Structured thermoplastic in composite interleaves
US10065393B2 (en) 2006-03-25 2018-09-04 Hexcel Composites Limited Structured thermoplastic in composite interleaves
US9221955B2 (en) 2006-08-07 2015-12-29 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8394491B2 (en) 2006-08-07 2013-03-12 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9828477B2 (en) 2006-08-07 2017-11-28 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9822228B2 (en) 2006-08-07 2017-11-21 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
JP2010275492A (en) * 2009-05-30 2010-12-09 Toho Tenax Co Ltd Epoxy resin composition and prepreg
JP2010275505A (en) * 2009-06-01 2010-12-09 Mitsubishi Rayon Co Ltd Prepreg and production method thereof
JP2013531707A (en) * 2010-05-27 2013-08-08 ヘクセル コンポジット、リミテッド Structured thermoplastics in composite interleaf
US9868265B2 (en) 2010-05-27 2018-01-16 Hexcel Composites, Limited Structured thermoplastic in composite interleaves
EP2596947A1 (en) * 2010-07-21 2013-05-29 Toray Industries, Inc. Prepreg, fiber-reinforced composite material, and process for producing prepreg
EP2596947A4 (en) * 2010-07-21 2014-05-07 Toray Industries Prepreg, fiber-reinforced composite material, and process for producing prepreg
EP3170857A1 (en) 2011-03-30 2017-05-24 Toho Tenax Co., Ltd. Prepreg and method for manufacturing same
WO2012133033A1 (en) 2011-03-30 2012-10-04 東邦テナックス株式会社 Prepreg and method for manufacturing same
US10047478B2 (en) 2011-03-30 2018-08-14 Toho Tenax Co., Ltd Prepreg and method for manufacturing same
JP2014529536A (en) * 2011-08-29 2014-11-13 サイテク・テクノロジー・コーポレーシヨン Interlaminar reinforcement of thermoplastic resin
KR20140113636A (en) 2011-12-26 2014-09-24 도레이 카부시키가이샤 Carbon fiber base, prepreg, and carbon-fiber-reinforced composite material
WO2013099741A1 (en) 2011-12-26 2013-07-04 東レ株式会社 Carbon fiber base, prepreg, and carbon-fiber-reinforced composite material
US10927226B2 (en) 2012-09-26 2021-02-23 Toho Tenax Co., Ltd. Prepreg and method for producing same
WO2014050896A1 (en) 2012-09-26 2014-04-03 東邦テナックス株式会社 Prepreg and method for producing same
JPWO2018066600A1 (en) * 2016-10-04 2018-10-04 三菱ケミカル株式会社 Prepreg, prepreg laminate, and fiber reinforced composite material
US11292883B2 (en) 2016-10-04 2022-04-05 Mitsubishi Chemical Corporation Prepreg, prepreg laminate, and fiber-reinforced composite material
WO2018066600A1 (en) * 2016-10-04 2018-04-12 三菱ケミカル株式会社 Prepreg, prepreg laminate, and fiber-reinforced composite material
KR20180079729A (en) * 2017-01-02 2018-07-11 주식회사 엑시아머티리얼스 Quasi-Isotropic Product using the fiber reinforced composite material and manufacturing method therof
WO2020235485A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Prepreg, laminate, and molded article
WO2020235489A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Prepreg, layered body, and molded article
WO2020235484A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Prepreg, laminate, and molded article
WO2020235488A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Method for producing fiber-reinforced resin substrate, fiber-reinforced resin substrate, and molded article integrated therewith
WO2020235487A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Prepreg, laminate, and molded article
US11840612B2 (en) 2019-05-23 2023-12-12 Toray Industries, Inc. Prepreg, laminate, and molding
US11878478B2 (en) 2019-05-23 2024-01-23 Toray Industries, Inc. Prepreg, laminate, and molding
WO2021117461A1 (en) 2019-12-11 2021-06-17 東レ株式会社 Prepreg, laminate, and integrated molded article
WO2021117460A1 (en) 2019-12-11 2021-06-17 東レ株式会社 Prepreg, laminate and integrated molded article
WO2021117465A1 (en) 2019-12-11 2021-06-17 東レ株式会社 Prepreg, laminate and integrated molded article
CN114746491A (en) * 2019-12-11 2022-07-12 东丽株式会社 Prepreg, laminate, and integrated molded article
WO2021131347A1 (en) 2019-12-23 2021-07-01 東レ株式会社 Prepreg, molded article, and integrally molded article
EP4082738A1 (en) 2019-12-23 2022-11-02 Toray Industries, Inc. Prepreg, molded article, and integrally molded article

Also Published As

Publication number Publication date
JP3440615B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
JP3440615B2 (en) Prepreg and fiber reinforced composite materials
EP0657492B1 (en) Prepregs, and processes for their production
JP3359037B2 (en) &#34;Prepreg and fiber-reinforced composite materials&#34;
CN104736614B (en) Fiber reinforcement high modulus polymer complex with enhancing interface phase
EP0885704B1 (en) Carbon fiber prepreg and method of production thereof
US20090162653A1 (en) Carbon fiber bundle, prepreg, and carbon fiber reinforced composite
EP0488389B1 (en) Prepregs, process for producing the same and laminates produced with the same
KR20140081817A (en) Benzoxazine resin composition, and fiber-reinforced composite material
JP7264050B2 (en) Prepregs and carbon fiber reinforced composites
KR20140127869A (en) Fiber-reinforced composite material
US6027794A (en) Prepregs, processes for their production, and composite laminates
JP2010095557A (en) Prepreg and fiber-reinforced composite material
JP3312470B2 (en) Prepreg and laminate
JP4671890B2 (en) Prepreg
JPH10231372A (en) Prepreg and its production
JP3365110B2 (en) Prepreg and fiber reinforced composite materials
JP2001114915A (en) Prepreg and fiber-reinforced composite material
JP3508346B2 (en) Prepreg and fiber reinforced composite materials
JP5668329B2 (en) Epoxy resin composition and fiber reinforced composite material using the same
JP2008050587A (en) Prepreg and composite material
JPH08325394A (en) Prepreg and fiber-reinforced composite material
EP0632087B1 (en) Prepreg, method of manufacturing the same, and laminated composite
JPH09176347A (en) Tubular long article produced from fiber-reinforced resin
JPH08225666A (en) Prepreg and composite material
JPH08176325A (en) Prepreg and fiber-reinforced composite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 11

EXPY Cancellation because of completion of term