JPH08259341A - Ceramic-metal joined body and its production - Google Patents

Ceramic-metal joined body and its production

Info

Publication number
JPH08259341A
JPH08259341A JP6779095A JP6779095A JPH08259341A JP H08259341 A JPH08259341 A JP H08259341A JP 6779095 A JP6779095 A JP 6779095A JP 6779095 A JP6779095 A JP 6779095A JP H08259341 A JPH08259341 A JP H08259341A
Authority
JP
Japan
Prior art keywords
iron
based metal
metal body
ceramic
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6779095A
Other languages
Japanese (ja)
Inventor
Ryuichi Matsuki
竜一 松木
Takeyoshi Takenouchi
武義 竹之内
Akio Kawanobe
晃生 川野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP6779095A priority Critical patent/JPH08259341A/en
Publication of JPH08259341A publication Critical patent/JPH08259341A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To obtain a joined body controlled in deforming amount of ceramic and free from occurrence of crack by relaxing heat stress by each carrying out specific treatment after or before joining in providing a joined body of ceramic with an iron-based metal body. CONSTITUTION: This joined body of ceramic (e.g. silicon nitride) with an iron- based metal body (e.g. carbon steel S20C) is obtained by carburizing the surface of the iron-based metal body before joining and cooling the metal body at 1-100 deg.C/sec under conditions preventing transformation of pearlite of the iron- based metal body after joining, preferably in the neighborhood of starting temperature of pearlite transformation and constituting the iron-based metal body so as to have one or more structures comprising martensite structure produced from supercooled austenite and/or other supercooled structure and relaxing heat stress generated in ceramic and the iron-based metal body by volume expansion in transformation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス・鉄系金属
体の接合体およびその製造方法に係り、内燃機関のタペ
ット、ロッカーアーム等の摺動部品をはじめ、各種のろ
う付け接合部品に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joined body of ceramics / iron-based metal bodies and a manufacturing method thereof, and is used for various brazed joint parts including sliding parts such as tappets and rocker arms of internal combustion engines. It

【0002】[0002]

【従来の技術】窒化珪素等のエンジニアリングセラミッ
クスは、優れた強度、耐熱性、耐摩耗性から自動車等の
機械部品への応用が望まれている。しかし、一般にセラ
ミックスは、硬度が高く脆いため難加工なことから、摺
動部品等に用いる場合は耐摩耗性の要求される部位のみ
をセラミックスに置き換えて性能の向上を図ることが多
い。この際、セラミックスとその他の部分(多くは鉄に
代表される金属)とを強固に接着・固定する必要があ
り、一般にはろう付け接合の手法が用いられる。しかし
ながら、窒化珪素や炭化珪素等のセラミックスは、熱膨
張率が鉄の1/4程度であり、ろう付け接合後の冷却時
に収縮率の差により極めて大きな熱応力を生じ、接合体
のセラミックス側にクラックを発生させることがある。
また、このような熱応力を蓄えた接合体は、冷却後の加
工によりクラックを生ずることがあり、接合後に所望の
形状を付与することが難しい。
2. Description of the Related Art Engineering ceramics such as silicon nitride are desired to be applied to mechanical parts such as automobiles because of their excellent strength, heat resistance and wear resistance. However, in general, ceramics are difficult to process because they have high hardness and brittleness. Therefore, when they are used for sliding parts and the like, it is often the case that only the portions that require abrasion resistance are replaced with ceramics to improve the performance. At this time, it is necessary to firmly bond and fix the ceramics and other parts (mostly metal represented by iron), and a brazing joining method is generally used. However, ceramics such as silicon nitride and silicon carbide have a coefficient of thermal expansion of about 1/4 that of iron, and when cooling after brazing and bonding, extremely large thermal stress is generated due to the difference in contraction rate, and the ceramics side of the bonded body is affected. May cause cracks.
In addition, the bonded body that has accumulated such thermal stress may cause cracks due to processing after cooling, and it is difficult to give a desired shape after bonding.

【0003】このような問題を解決するための手段とし
て、従来は特開昭62−171970のようにセラミッ
クスと金属間に軟質金属の緩衝板を介して応力緩和し、
接合体を得ていた。しかしこの方法ではセラミックスと
金属以外に緩衝板を必要とすることからコスト高とな
り、さらにセラミックス、金属、緩衝板の3つの部材を
高精度で接合するのが難しく、作業が煩雑になるなどの
問題があった。
As a means for solving such a problem, conventionally, as in Japanese Unexamined Patent Publication No. 62-171970, stress is relieved through a soft metal buffer plate between ceramics and metal,
I was getting a zygote. However, this method requires a buffer plate in addition to ceramics and metal, resulting in high cost, and it is difficult to join the three members of ceramics, metal, and buffer plate with high precision, and the work becomes complicated. was there.

【0004】これらの問題を解決するための方法とし
て、特開平2−199073にはセラミックスと金属の
直接接合法が開示されている。この方法では金属体の変
態膨張によるヒステリシスで冷却時に発生する熱応力を
緩和することから緩衝板を用いる必要がなく、従って、
精度および作業上の問題は回避できるものの、ガス冷却
によりマルテンサイト組織あるいはその他の過冷却組織
を得なければならず、このため適用できる鋼材が一部の
合金鋼に限られること、ガスを冷媒として充分な冷却速
度を得るために特殊な装置が必要となること等の問題が
あった。
As a method for solving these problems, Japanese Patent Application Laid-Open No. 2-199073 discloses a direct bonding method of ceramics and metal. In this method, it is not necessary to use a buffer plate because the thermal stress generated during cooling is relaxed by the hysteresis due to the transformation expansion of the metal body, and therefore,
Although problems with accuracy and work can be avoided, it is necessary to obtain a martensitic structure or other supercooled structure by gas cooling, and therefore applicable steel materials are limited to some alloy steels, and gas is used as a refrigerant. There has been a problem that a special device is required to obtain a sufficient cooling rate.

【0005】[0005]

【発明が解決しようとする課題】上記従来の接合体にお
いて、緩衝板を用いた場合は精度の問題、直接接合法で
は適用可能な鋼材の制限の問題があり、さらに両者とも
材料あるいは設備の面からコスト高となる欠点がある。
一方、エンジン部品等に多く用いられる鉄系材料は、低
炭素鋼に代表されるようなC含有量が0.2〜0.4%
程度の比較的低いものであり、この種の鋼材を用いて冷
却時のパーライト変態を阻止し、過冷却オーステナイト
からの変態組織を得るのは難しく、従って上記直接接合
法のような熱応力の緩和は困難である。
In the above-mentioned conventional bonded body, there is a problem of accuracy when a buffer plate is used, there is a problem of limitation of applicable steel materials in the direct bonding method, and both of them have a problem of material or equipment. Therefore, there is a drawback that the cost becomes high.
On the other hand, iron-based materials often used for engine parts and the like have a C content of 0.2 to 0.4% as represented by low carbon steel.
It is relatively low in degree, and it is difficult to prevent the pearlite transformation during cooling using this type of steel material and obtain a transformation structure from supercooled austenite, so it is possible to relax thermal stress like the above-mentioned direct joining method. It is difficult.

【0006】本発明の目的は、セラミックスと鉄系金属
体の接合体において、該鉄系金属体に接合前に浸炭する
ことにより、浸炭・焼き入れが可能ないかなる鋼材を用
いた場合も、冷却後のセラミックスと鉄系金属体に発生
する熱応力が緩和された接合体、その応力緩和により所
望の緩勾配を付与した接合体とその製造方法を提供する
ことにある。
An object of the present invention is to cool a joined body of ceramics and an iron-based metal body, even if any steel material that can be carburized and quenched by carburizing the iron-based metal body before joining is used. It is an object of the present invention to provide a bonded body in which the thermal stress generated in the subsequent ceramics and the iron-based metal body is relaxed, a bonded body in which a desired gentle gradient is provided by the stress relaxation, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】請求項1のセラミックス
・金属接合体は、セラミックスと鉄系金属体の接合体に
おいて鉄系金属体の表面に接合前に浸炭し、接合後の冷
却において鉄系金属体のパーライト変態(Ar1 )を阻
止することで、該鉄系金属体を過冷却オーステナイトよ
り生じるマルテンサイト組織あるいはその他の過冷却組
織の少なくとも1つで構成させ、且つその変態(Ar’
およびAr”)時の体積膨張によりセラミックスと鉄系
金属体に生じる熱応力を緩和したものである。
According to a first aspect of the present invention, there is provided a ceramic / metal joined body in which a surface of an iron-based metal body is carburized before joining in a joined body of a ceramic and an iron-based metal body, and the iron-based body is cooled after cooling. By preventing the pearlite transformation (Ar 1 ) of the metal body, the iron-based metal body is constituted by at least one of a martensite structure generated from supercooled austenite or another supercooled structure, and the transformation (Ar ′).
And Ar ″), the thermal stress generated in the ceramic and the iron-based metal body is relaxed.

【0008】請求項2のセラミックス・金属接合体は、
請求項1の接合体でセラミックスと鉄系金属体に発生す
る熱応力を緩和することによりセラミックスに所望の緩
勾配を付与したものである。
The ceramic-metal bonded body according to claim 2 is
The bonded body of claim 1 relaxes the thermal stress generated in the ceramic and the iron-based metal body to give the ceramic a desired gentle gradient.

【0009】請求項3のセラミックス・金属接合体の製
造方法は、請求項1,2の接合体で鉄系金属体の表面を
接合前に浸炭し、ろう材の融点以上で、且つ鉄系金属体
のオーステナイト化温度(Ac1 )以上で接合した後、
冷却時のパーライト変態(Ar1 )開始温度付近で冷却
速度1〜100℃/sec.となるよう冷却することで
パーライト変態を阻止し、過冷却オーステナイトの変態
(Ar’およびAr”)による体積膨張でセラミックス
と鉄系金属体の収縮の変位差を低減することにより熱応
力を緩和した接合体および熱応力の緩和により所望の緩
勾配を付与したものである。
According to a third aspect of the present invention, there is provided a method for manufacturing a ceramic / metal joined body, wherein the surface of an iron-based metal body is carburized before joining by the joined body according to the first or second aspect, and the temperature is equal to or higher than the melting point of the brazing filler metal. After joining at the body's austenitizing temperature (Ac 1 ) or higher,
A cooling rate of 1 to 100 ° C./sec near the pearlite transformation (Ar 1 ) start temperature during cooling. The pearlite transformation is prevented by cooling so as to become the above, and the thermal stress is relaxed by reducing the displacement difference between the shrinkage of the ceramics and the iron-based metal body due to the volume expansion due to the transformation (Ar 'and Ar ") of supercooled austenite. A desired gentle gradient is provided by relaxing the bonded body and thermal stress.

【0010】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0011】本発明においてセラミックスとしては、低
熱膨張の窒化珪素、炭化珪素が特に好適であるが、その
他ジルコニア、アルミナ等の鉄系金属体よりも低熱膨張
率のいずれのセラミックスにも好適である。
In the present invention, low thermal expansion silicon nitride and silicon carbide are particularly preferable as the ceramics, but other ceramics having a lower thermal expansion coefficient than iron-based metal bodies such as zirconia and alumina are also preferable.

【0012】ろう材としてはTi,Zr,Hf等の活性
金属を含むいずれのろう材も用いることができるが、鉄
系金属体の耐熱性を考慮すれば活性金属添加銀ろうが望
ましい。Ti添加銀ろうの場合に好適なろう材の組成は
次のとおりである。
As the brazing material, any brazing material containing an active metal such as Ti, Zr or Hf can be used. However, considering the heat resistance of the iron-based metal body, an active metal-added silver brazing material is preferable. The composition of the brazing material suitable for the Ti-added silver brazing material is as follows.

【0013】Ag:72% Cu:23〜27% Ti:1〜5% また、活性金属を含まないろう材を用いる場合は、ろう
付けに先立ちセラミックスの接合面をメタライズ処理し
ても良い。
Ag: 72% Cu: 23-27% Ti: 1-5% When a brazing material containing no active metal is used, the joint surface of the ceramics may be metallized before brazing.

【0014】ろう付け温度は、ろう材の融点よりも50
〜100℃程度高い温度が適しており、上記組成範囲の
ろう材の場合、800〜950℃が好適である。鉄系金
属体としては、炭素鋼、合金鋼をはじめ浸炭および焼き
入れ可能な鋼材であればいずれも使用することができ
る。この鉄系金属体の浸炭深さは、ろう付け接合するセ
ラミックスの形状や接合後に付与したい形状により変化
させることができるが0.3〜1mm程度が好適であ
る。また、浸炭後の表面のC濃度は0.6〜1.0%程
度であることが好ましい。ろう付け接合に際しては、ろ
う材の融点以上の温度にて10〜60分間保持するのが
好ましく、冷却時においては鉄系金属体のパーライト変
態開始温度付近で1〜100℃/sec.で急冷するの
が好ましい。
The brazing temperature is 50 higher than the melting point of the brazing filler metal.
A temperature as high as about -100 ° C is suitable, and in the case of the brazing material having the above composition range, 800-950 ° C is suitable. As the iron-based metal body, any steel material that can be carburized and hardened such as carbon steel and alloy steel can be used. The carburizing depth of the iron-based metal body can be changed depending on the shape of the ceramic to be brazed and the shape desired to be applied after the joining, but is preferably about 0.3 to 1 mm. The C concentration on the surface after carburizing is preferably about 0.6 to 1.0%. During brazing, it is preferable to maintain the temperature at the melting point of the brazing material or higher for 10 to 60 minutes, and at the time of cooling, 1 to 100 ° C./sec. Around the pearlite transformation start temperature of the iron-based metal body. It is preferable to cool rapidly.

【0015】[0015]

【作用】第1図は浸炭したS20C炭素鋼の冷却時の冷
却方法による収縮曲線の変化を示している。この鋼材と
セラミックスを850℃程度でろう付けした後の冷却過
程で、600℃程度までは鋼材およびろう材の塑性変形
により鋼材とセラミックスの界面には収縮差による熱応
力が発生せず、これは冷却速度に依存しない。しかし、
600℃以下では、鋼材が既に通常のパーライト変態を
終了している場合、この温度域から室温まで熱膨張係数
の差にしたがって、接合体内の熱応力が増大しつづけ、
その結果室温まで冷却した接合体には極めて大きな熱応
力が蓄えられる。
OPERATION FIG. 1 shows the change in the shrinkage curve of the carburized S20C carbon steel depending on the cooling method during cooling. In the cooling process after brazing this steel material and ceramics at about 850 ° C., thermal stress due to shrinkage difference does not occur at the interface between the steel material and the ceramics up to about 600 ° C. due to plastic deformation of the steel material and the brazing material. Does not depend on cooling rate. But,
Below 600 ° C., when the steel material has already completed the normal pearlite transformation, the thermal stress in the bonded body continues to increase in accordance with the difference in thermal expansion coefficient from this temperature range to room temperature,
As a result, extremely large thermal stress is stored in the bonded body cooled to room temperature.

【0016】本発明は、第2図のように鋼材のパーライ
ト変態を阻止し、過冷却オーステナイトからマルテンサ
イト組織あるいは他の過冷却組織が生じる際の体積膨張
により、500℃以下の温度域での熱応力の緩和を行う
ものである。また、浸炭深さを制御することにより得ら
れる膨張量が変化することから発生する熱応力を調整
し、冷却後のセラミックスの形状を制御することができ
る。なお、第3図はセラミックスの円板と円筒形の鉄系
金属体を接合・冷却した場合のセラミックスに生じる変
形の概念図である。
According to the present invention, as shown in FIG. 2, pearlite transformation of a steel material is prevented, and volume expansion occurs when a martensite structure or other supercooled structure is generated from supercooled austenite. The thermal stress is alleviated. Further, it is possible to adjust the thermal stress generated due to the change in the expansion amount obtained by controlling the carburizing depth and control the shape of the ceramics after cooling. Note that FIG. 3 is a conceptual diagram of deformation that occurs in ceramics when a ceramic disk and a cylindrical iron-based metal body are joined and cooled.

【0017】[0017]

【実施例】【Example】

実施例1 直径30mm、長さ50mmの炭素鋼S20C(組成
C:0.21%,Si:0.25%,Mn:0.42
%,P:0.030%以下,S:0.035%以下)の
円柱体を浸炭し、ろう付け接合に使用する面(30mm
φの片側端面)の浸炭肌を除去するために0.1mmの
研磨を施した。次いで、この端面にTi添加銀ろうを介
して、直径30mm、厚さ1.5mmの窒化珪素を接合
した、ろう材の組成はAg:72%,Cu:26%,T
i:2%であり、ろう材の厚さは50μmとした。接合
に際しては第4図に示す昇温曲線とし、接合後850℃
より油中急冷とした。その結果、第3図に示すセラミッ
クスの変形量dは40μmであった。
Example 1 Carbon steel S20C having a diameter of 30 mm and a length of 50 mm (composition
C: 0.21%, Si: 0.25%, Mn: 0.42
%, P: 0.030% or less, S: 0.035% or less) a surface used for carburizing and brazing (30 mm
Polishing of 0.1 mm was performed to remove the carburized skin on one end face of φ). Next, silicon nitride having a diameter of 30 mm and a thickness of 1.5 mm was bonded to this end face through a Ti-added silver brazing material. The composition of the brazing material was Ag: 72%, Cu: 26%, T
i: 2%, and the thickness of the brazing material was 50 μm. The temperature rising curve shown in Fig. 4 was used for joining and 850 ° C after joining.
More quenched in oil. As a result, the amount of deformation d of the ceramic shown in FIG. 3 was 40 μm.

【0018】実施例2 実施例1で用いた炭素鋼の接合に使用する面を0.3m
m研磨し、同様の条件にて接合・急冷して接合体を得
た。この接合体のセラミックスの変形量dは60μmで
あった。なお、第5図から分かるように、この際の炭素
鋼の接合面のC濃度は約0.6%である。
Example 2 The surface used for joining the carbon steel used in Example 1 was 0.3 m.
m was polished, and joined and rapidly cooled under the same conditions to obtain a joined body. The amount of deformation d of the ceramic of this bonded body was 60 μm. As can be seen from FIG. 5, the C concentration on the joint surface of the carbon steel at this time is about 0.6%.

【0019】比較例3 実施例1で用いた炭素鋼の接合に使用する面を1.0m
m研磨し、同様の条件にて接合・急冷して接合体を得
た。この接合体のセラミックスの変形量dは75μmで
あった。なお、この際の炭素鋼の接合面のC濃度は約
0.2%であり、浸炭層は除去されていた。
Comparative Example 3 The carbon steel used in Example 1 had a surface of 1.0 m used for joining.
m was polished, and joined and rapidly cooled under the same conditions to obtain a joined body. The amount of deformation d of the ceramic of this bonded body was 75 μm. The carbon concentration at the joining surface of the carbon steel at this time was about 0.2%, and the carburized layer had been removed.

【0020】これらの実施例および比較例から明らかな
とおり、鋼材表面のC濃度を制御することにより発生す
る熱応力を緩和し、且つセラミックスの変形量を調節で
きる。
As is clear from these Examples and Comparative Examples, the thermal stress generated by controlling the C concentration on the surface of the steel material can be relaxed and the amount of deformation of the ceramics can be adjusted.

【0021】[0021]

【発明の効果】以上のとおり本発明によると、熱応力を
緩和し、且つセラミックスの変形量を制御したセラミッ
クスと鉄系金属体の接合体を製造することができる。
As described above, according to the present invention, it is possible to manufacture a bonded body of a ceramic and an iron-based metal body in which thermal stress is relaxed and the amount of deformation of the ceramic is controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼材及びセラミックスの熱膨張率を示すグラフ
である。
FIG. 1 is a graph showing the coefficient of thermal expansion of steel materials and ceramics.

【図2】クラウニング量を示す断面図である。FIG. 2 is a sectional view showing a crowning amount.

【図3】接合体を示す断面図である。FIG. 3 is a cross-sectional view showing a joined body.

【図4】熱処理の温度パターン図である。FIG. 4 is a temperature pattern diagram of heat treatment.

【図5】浸炭による炭素濃度分布図である。FIG. 5 is a carbon concentration distribution map by carburization.

【符号の説明】 1 鋼材 2 セラミックス[Explanation of symbols] 1 Steel 2 Ceramics

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セラミックスと鉄系金属体の接合体にお
いて鉄系金属体の表面に接合前に浸炭し、接合後の冷却
において鉄系金属体のパーライト変態(Ar1 )を阻止
することで、該鉄系金属体を過冷却オーステナイトより
生じるマルテンサイト組織あるいはその他の過冷却組織
の少なくとも1つで構成させ、且つその変態(Ar’お
よびAr”)時の体積膨張によりセラミックスと鉄系金
属体に生じる熱応力を緩和した接合体。
1. In a joined body of a ceramic and an iron-based metal body, by carburizing the surface of the iron-based metal body before joining and preventing pearlite transformation (Ar 1 ) of the iron-based metal body in cooling after joining, The iron-based metal body is composed of at least one of a martensite structure generated from supercooled austenite or other supercooled structure, and a volume expansion occurs during its transformation (Ar 'and Ar ") into a ceramic and an iron-based metal body. A bonded body that relaxes the generated thermal stress.
【請求項2】 請求項1の接合体でセラミックスと鉄系
金属体に発生する熱応力を緩和することによりセラミッ
クスに所望の緩勾配を付与した接合体。
2. The joined body according to claim 1, wherein the ceramic is provided with a desired gentle gradient by relaxing the thermal stress generated in the ceramic and the iron-based metal body.
【請求項3】 請求項1,2の接合体で鉄系金属体の表
面を接合前に浸炭し、ろう材の融点以上で、且つ鉄系金
属体のオーステナイト化温度(Ac1 )以上で接合した
後、冷却時のパーライト変態(Ar1 )開始温度付近で
冷却速度1〜100℃/sec.となるよう冷却するこ
とでパーライト変態を阻止し、過冷却オーステナイトの
変態(Ar’およびAr”)による体積膨張でセラミッ
クスと鉄系金属体の収縮の変位差を低減することにより
熱応力を緩和した接合体および熱応力の緩和により所望
の緩勾配を付与した接合体の作製方法。
3. The joined body according to claim 1, wherein the surface of the iron-based metal body is carburized before joining, and the joining is performed at the melting point of the brazing material or more and the austenitizing temperature (Ac 1 ) of the iron-based metal body or more. After that, the cooling rate is 1 to 100 ° C./sec near the pearlite transformation (Ar 1 ) start temperature during cooling. The pearlite transformation is prevented by cooling so as to become the above, and the thermal stress is relaxed by reducing the displacement difference between the shrinkage of the ceramics and the iron-based metal body due to the volume expansion due to the transformation (Ar 'and Ar ") of supercooled austenite. A method for manufacturing a bonded body and a bonded body in which a desired gentle gradient is provided by relaxing thermal stress.
JP6779095A 1995-03-27 1995-03-27 Ceramic-metal joined body and its production Withdrawn JPH08259341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6779095A JPH08259341A (en) 1995-03-27 1995-03-27 Ceramic-metal joined body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6779095A JPH08259341A (en) 1995-03-27 1995-03-27 Ceramic-metal joined body and its production

Publications (1)

Publication Number Publication Date
JPH08259341A true JPH08259341A (en) 1996-10-08

Family

ID=13355109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6779095A Withdrawn JPH08259341A (en) 1995-03-27 1995-03-27 Ceramic-metal joined body and its production

Country Status (1)

Country Link
JP (1) JPH08259341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429375A (en) * 2011-03-25 2013-12-04 日本碍子株式会社 Bonded object of tungsten carbide-based superhard alloy and process for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429375A (en) * 2011-03-25 2013-12-04 日本碍子株式会社 Bonded object of tungsten carbide-based superhard alloy and process for producing same
US20140017509A1 (en) * 2011-03-25 2014-01-16 Ngk Insulators, Ltd. Bonded object of tungsten carbide-based superhard alloy and process for producing same
US9254626B2 (en) * 2011-03-25 2016-02-09 Ngk Insulators, Ltd. Bonded object of tungsten carbide-based superhard alloy and process for producing same

Similar Documents

Publication Publication Date Title
KR101156265B1 (en) High-strength four-phase steel alloys
JPH0835054A (en) Method of thermochemically processing thin-wall structure part
JP2811020B2 (en) Joint of ceramic and steel and method of manufacturing the same
JP4488347B2 (en) Leaf spring and manufacturing method thereof
JP2000337410A (en) Rotor for disc brake
JPH08259341A (en) Ceramic-metal joined body and its production
JPH0568538B2 (en)
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JPH04191315A (en) Method for heat-treating composite material
JPS60187621A (en) Heat treatment of spheroidal graphite cast iron
JP3038922B2 (en) Sliding component and method of manufacturing the same
KR100246705B1 (en) Manufacturing method for sliding parts
WO1997000374A1 (en) Sliding part and method for manufacturing the same
JPH0234911B2 (en) KINZOKUTOSERAMITSUKUSUTONOSETSUGOBUHINNOSEIZOHOHO
JPH1053811A (en) Manufacture of steel member
JPH0227408B2 (en)
JPH07136863A (en) Manufacture of gear made of austemper ductile cast iron
JPH11131184A (en) Case hardening steel minimal in heat treatment strain
JPH0447023B2 (en)
JPH11131181A (en) Manufacture of base plate for diamond saw excellent in durability and diamond saw
JPS6299454A (en) Non-magnetizable roll bearing constitutional member comprising hardened austenite material
JP7262376B2 (en) steel material
JPH111749A (en) Steel for induction hardening, excellent in bending fatigue strength and rolling fatigue strength
JPH05112816A (en) Production of adi product having good dimensional accuracy
JP2907011B2 (en) Method for producing nitrided steel member with less heat treatment distortion

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604