JPH08259259A - Optical glass for polarizing optical system and method for controlling its refractive index - Google Patents

Optical glass for polarizing optical system and method for controlling its refractive index

Info

Publication number
JPH08259259A
JPH08259259A JP7061034A JP6103495A JPH08259259A JP H08259259 A JPH08259259 A JP H08259259A JP 7061034 A JP7061034 A JP 7061034A JP 6103495 A JP6103495 A JP 6103495A JP H08259259 A JPH08259259 A JP H08259259A
Authority
JP
Japan
Prior art keywords
glass
optical
optical system
optical glass
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7061034A
Other languages
Japanese (ja)
Inventor
Takeshi Hasegawa
雄 長谷川
Motoi Ueda
基 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7061034A priority Critical patent/JPH08259259A/en
Publication of JPH08259259A publication Critical patent/JPH08259259A/en
Priority to US09/368,892 priority patent/US6432854B1/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To make the photoelasticity constant C of optical glass practically zero to a common wavelength range of incident light by incorporating SiO2 , R2 O (R is Li, Na or K), RF, R2 SiF6 , PbO, PbF2 , As2 O3 and Sb2 O3 . CONSTITUTION: Oxides, fluorides, carbonates, nitrates, etc., of the components of optical glass as starting materials are weighed and mixed so as to give a compsn. consisting of, by mol, 40.0-54.0% SiO2 , 0.5-9.0% R2 O (R is Li, Na or K), 0-16.0% RF, 0-3.3% R2 SiF6 , 43.0-45.5%, in total, of PbO and 0-10.0% PbF2 and 0-1.5%, in total, of As2 O3 and Sb2 O3 and satisfying 0.1<=F/O<=18.0. The resultant starting material mixture is melted by heating to 1,000-1,300 deg.C, refined, homogenized by stirring, cast in a preheated metal mold and slowly cooled to obtain the objective optical glass whose photoelasticity constant C is practically zero to 0.4-3.0μm wavelength of incident light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏光変調を行う空間光
変調素子や偏光ビームスプリッタなどの偏光光学系に使
用される光弾性定数Cの小さい偏光光学系用光学ガラス
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical glass for a polarization optical system having a small photoelastic constant C used in a polarization optical system such as a spatial light modulator for polarization modulation or a polarization beam splitter.

【0002】[0002]

【従来の技術】近年、光情報の中で偏光特性は液晶をは
じめとし、様々な分野で利用されている。それに伴い偏
光を利用した光学系、すなわち偏光光学系において、光
情報の偏光特性を高精度に制御することが重要となる。
そこで、その精度をより向上させることが望まれてい
る。
2. Description of the Related Art In recent years, polarization characteristics of optical information have been used in various fields including liquid crystals. Accordingly, it is important to control the polarization characteristics of optical information with high accuracy in an optical system using polarized light, that is, a polarizing optical system.
Therefore, it is desired to further improve the accuracy.

【0003】偏光光学系を構成する基板やプリズムとい
った光学部品のうち、偏光特性の保持が要求される光学
部品には、光学的に等方性を有する材料が用いられてい
る。光学的に異方性を有する材料を用いると、透過した
光は主光線とこれに直交する異常光線との間の位相差
(光路差)が材料を透過する前と比較して変化してしま
い、偏光特性が保存できないからである。
Of optical components such as a substrate and a prism that constitute a polarization optical system, an optical component having optical isotropy is used for an optical component which is required to maintain polarization characteristics. If a material with optical anisotropy is used, the phase difference (optical path difference) between the chief ray and the extraordinary ray orthogonal to it will change in the transmitted light compared to before it passed through the material. , Because the polarization characteristics cannot be preserved.

【0004】一般に、充分にアニールが施されたガラス
は光学的に等方性を有し、さらに耐久性、強度、透過
率、屈折率及び価格等の面からも他の材料に勝るため、
このようなガラスは偏光特性を保存すべき光学部品に多
く用いられている。特に、硼珪酸ガラス(例えばBK7
=ドイツ、ショット社の記号)は、安価で耐久性に優
れ、分散も小さいので、偏光光学系に多用されている。
Generally, fully annealed glass has optical isotropy and is superior to other materials in terms of durability, strength, transmittance, refractive index and price.
Such glass is often used in optical components for which polarization characteristics should be preserved. In particular, borosilicate glass (eg BK7
= Symbol of Schott GmbH in Germany) is inexpensive, has excellent durability, and has a small dispersion, so it is widely used in polarization optical systems.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記の
従来の偏光光学系用光学ガラスを光学部品に用いた場合
でも、力学的外部応力や熱応力下においては、光弾性効
果に起因する光学的異方性が誘起される。その結果、こ
の光学的異方性により光情報の偏光特性が変化してしま
い偏光光学系が所望の性能を得ることが難しくなる、と
いう問題があった。
However, even when the above-mentioned conventional optical glass for a polarization optical system is used for an optical component, under optical external stress or thermal stress, an optical difference caused by a photoelastic effect is caused. Induction is induced. As a result, there is a problem that the polarization characteristics of optical information change due to this optical anisotropy, and it becomes difficult for the polarization optical system to obtain desired performance.

【0006】これら力学的外部応力や熱応力は、主に以
下の状況下で生じるものと考えられる。力学的外部応力
は、主に、ガラスの加工工程(切断、他の材料との接
合、表面への成膜など)や、ガラスを光学系に組み込む
操作(治具での保持、接着など)の後に生じる。また、
熱応力は、主にガラス内部の発熱(光エネルギーの吸収
など)あるいは外部の発熱(周辺機器の発熱など)によ
り生じる。さらに、発熱の際に、ガラスと熱膨張率の異
なる材料を接触接合した場合にも応力が生じる。従っ
て、偏光光学系を光学部品で構成する場合、力学的外部
応力や熱応力が作用することは避けられず、従来の偏光
光学系用光学ガラスでは光学的異方性が誘起されること
は避けられなかった。
It is considered that these mechanical external stress and thermal stress mainly occur under the following conditions. The mechanical external stress is mainly due to the glass processing steps (cutting, joining with other materials, film formation on the surface, etc.) and operations for incorporating the glass into the optical system (holding with a jig, bonding, etc.). It occurs later. Also,
The thermal stress is mainly caused by heat generated inside the glass (such as absorption of light energy) or heat generated outside (such as heat generated from peripheral devices). Further, when heat is generated, stress is generated even when glass and a material having a different coefficient of thermal expansion are contact bonded. Therefore, when the polarization optical system is composed of optical components, it is unavoidable that mechanical external stress or thermal stress acts, and in the conventional polarization optical system optical glass, it is avoided that optical anisotropy is induced. I couldn't do it.

【0007】本発明の目的は、力学的外部応力や熱応力
下においても光情報の偏光特性を害することのない偏光
光学系用光学ガラスを見出し、さらにその屈折率を制御
することにより光学設計の可能性を広げることにある。
The object of the present invention is to find an optical glass for a polarizing optical system which does not impair the polarization characteristics of optical information even under mechanical external stress or thermal stress, and further control the refractive index of the optical glass to achieve optical design. To expand the possibilities.

【0008】[0008]

【課題を解決するための手段】一般に、ガラスのような
等質等方な透明体に力を加えて応力を生じさせると、こ
の透明体に光学的な異方性が生じ、ある種の結晶体と同
様に複屈折性を持つようになる。これは光弾性効果と呼
ばれている。応力が生じたときの透明体の屈折率はいわ
ゆる屈折率楕円体で表すことができ、この時、屈折率楕
円体の主屈折率軸は主応力軸に一致する。一般に主屈折
率をn1、n2、n3、主応力をσ1、σ2、σ3(それぞれ
添字が共通なものは同一方向にある)とすると、これら
の間には次のような関係が成立する。
Generally, when a force is applied to an isotropic transparent body such as glass to generate a stress, an optical anisotropy is generated in the transparent body and a certain crystal is produced. It becomes birefringent like the body. This is called the photoelastic effect. The refractive index of the transparent body when stress is generated can be represented by a so-called refractive index ellipsoid, and at this time, the main refractive index axis of the refractive index ellipsoid coincides with the main stress axis. Generally, assuming that the main refractive indices are n 1 , n 2 , and n 3 and the main stresses are σ 1 , σ 2 , and σ 3 (the ones having common subscripts are in the same direction), the following is obtained between them. The relationship is established.

【0009】[0009]

【数1】 [Equation 1]

【0010】このような透明体に光を入射する場合、そ
の方向がσ3と同一方向となるように座標を取れば、入
射光はそれぞれσ1、σ2方向の、すなわち互いに振動面
が直交する2つの直線偏光に分かれる。透明体から光が
出射する時には、各主応力方向の屈折率差(n1,n2
が生じるため、これらの2つの直線偏光間には次式で表
せるような光路差(位相差)Δφが生じる。
When light is incident on such a transparent body, if the coordinates are taken so that the direction is the same as σ 3 , the incident light is in the σ 1 and σ 2 directions, that is, the vibrating planes are orthogonal to each other. It is divided into two linearly polarized lights. When light is emitted from the transparent body, the difference in refractive index (n 1 , n 2 ) in each principal stress direction
Therefore, an optical path difference (phase difference) Δφ represented by the following equation is generated between these two linearly polarized lights.

【0011】[0011]

【数2】 [Equation 2]

【0012】従来、偏光光学系に用いられていた光学ガ
ラスの光弾性定数Cの値は大きく、例えば、上述のBK
7では2.78[10-8cm2/N](波長λ=633nm)という値が
得られている。この為、熱応力や力学的外部応力により
誘起される光学的異方性、及びこれに基づく光路差Δφ
が無視できない値となっている。また、特願平6−13
570において、本発明者らは、光弾性定数Cが実質的
に零のガラスであれば熱応力や力学的外部応力下におい
ても光学的異方性がほとんど生じないことに着目し、一
定量の鉛イオンを含有する組成系において、光弾性定数
Cが実質的に零になる偏光光学系用光学ガラスを見い出
した。しかし、先の発明における光弾性定数Cが実質的
に零である光学ガラスは、特定の屈折率でしか成り立た
ず、更に、可視領域の光学部品として用いるには、他の
入射光に比べて短波長域(例えば400nm〜480nm程度)の
透過率が充分とはいえなかった。
The value of the photoelastic constant C of the optical glass conventionally used in the polarization optical system is large.
In No. 7, a value of 2.78 [10 −8 cm 2 / N] (wavelength λ = 633 nm) is obtained. Therefore, the optical anisotropy induced by the thermal stress or the mechanical external stress and the optical path difference Δφ based on the optical anisotropy.
Is a value that cannot be ignored. In addition, Japanese Patent Application No. 6-13
At 570, the inventors of the present invention noted that if the glass having a photoelastic constant C is substantially zero, optical anisotropy hardly occurs even under thermal stress or mechanical external stress. We have found an optical glass for a polarizing optical system in which a photoelastic constant C is substantially zero in a composition system containing lead ions. However, the optical glass having the photoelastic constant C in the above invention is substantially zero only when it has a specific refractive index, and is shorter than other incident light when used as an optical component in the visible region. It cannot be said that the transmittance in the wavelength range (for example, about 400 nm to 480 nm) is sufficient.

【0013】そこで本発明者らは、鋭意研究した結果、
先の発明の組成系であって、さらにフッ素を導入するこ
とにより透過率を向上させ、ガラスの光弾性定数Cを実
質的に零に保つ組成、及びその屈折率を制御する方法を
見い出した。その結果、本発明は第1に、「入射光の波
長に対して光弾性定数Cが実質的に零の範囲内にある偏
光光学系用光学ガラスにおいて、該ガラスが酸化物換算
のmol%表示で SiO2 40.0〜54.0 % R2O(R:Li,Na,K) 0.5〜 9.0 % PbO 43.0〜45.5 % As2O3+Sb2O3 0〜 1.5 % の組成範囲にあり、且つ、 フッ素/酸素(F/O) 0.1〜18.0 % の範囲でフッ素を有することを特徴とする偏光光学系用
ガラス」あるいは「入射光の波長に対して光弾性定数C
が実質的に零の範囲内にある偏光光学系用光学ガラスに
おいて、該ガラスがmol%表示で SiO2 40.0〜54.0 % R2O(R:Li,Na,K) 0.5〜 9.0 % RF 0〜16.0 % R2SiF6 0〜 3.3 % PbO+PbF2 43.0〜45.5 % PbF2 0〜10.0 % As2O3+Sb2O3 0〜 1.5 % の組成範囲にあり、且つ、 フッ素/酸素(F/O) 0.1〜18.0 % の範囲でフッ素を有することを特徴とする偏光光学系用
ガラス」を提供するものである。入射光の波長は、好ま
しくは0.4μm〜3.0μmの範囲の波長である。
Therefore, as a result of earnest research, the present inventors have found that
In the composition system of the previous invention, the inventors have found a composition that improves the transmittance by further introducing fluorine and keeps the photoelastic constant C of glass substantially zero, and a method of controlling the refractive index thereof. As a result, the present invention firstly states that, in an optical glass for a polarizing optical system having a photoelastic constant C within a range of substantially zero with respect to a wavelength of incident light, the glass is an oxide-equivalent mol% display. SiO 2 40.0 to 54.0% R 2 O (R: Li, Na, K) 0.5 to 9.0% PbO 43.0 to 45.5% As 2 O 3 + Sb 2 O 3 0 to 1.5%, and fluorine / Oxygen (F / O) 0.1 to 18.0% fluorine in the range of glass for polarizing optics, or "photoelastic constant C for the wavelength of incident light.
Is in the range of substantially zero, in the optical glass for a polarizing optical system, the glass is SiO 2 40.0 to 54.0% R 2 O (R: Li, Na, K) 0.5 to 9.0% RF 0 to 16.0% R 2 SiF 60 to 3.3% PbO + PbF 2 43.0 to 45.5% PbF 20 0 to 10.0% As 2 O 3 + Sb 2 O 3 0 to 1.5% composition range and fluorine / oxygen (F / O) 0.1 to 18.0% of fluorine in the range. The wavelength of incident light is preferably in the range of 0.4 μm to 3.0 μm.

【0014】また、本発明は第2に、「入射光の波長に
対して光弾性定数Cが実質的に零の範囲内にある偏光光
学系用光学ガラスにおいて、該ガラスのフッ素/酸素(F
/O)の比率を変化させることにより屈折率を制御するこ
とを特徴とする偏光光学系用光学ガラスの屈折率制御方
法」を提供するものである。
Secondly, the present invention relates to an "optical glass for a polarizing optical system in which a photoelastic constant C is substantially zero with respect to a wavelength of incident light, in which the fluorine / oxygen (F
The method for controlling the refractive index of the optical glass for polarizing optical systems is characterized in that the refractive index is controlled by changing the ratio of / O).

【0015】なお、ここで言う光弾性定数Cが実質的に
零であるとは、ガラスを偏光光学系に使用する時の光学
的異方性による光路差の影響が系全体で無視できる程度
であり、例えば、入射光に対して光弾性定数Cが-0.1〜
0.1[10-8cm2/N]の範囲内であるものと考える。
It is to be noted that the photoelastic constant C here being substantially zero means that the influence of the optical path difference due to the optical anisotropy when glass is used in a polarizing optical system can be ignored in the entire system. Yes, for example, the photoelastic constant C for incident light is -0.1 to
It is considered to be within the range of 0.1 [10 -8 cm 2 / N].

【0016】[0016]

【作用】図1(A)は入射光の波長(633nm)に対して
光弾性定数Cが実質的に零になる一組成を例にとりF/
Oと屈折率の関係を示す。また、図1(B)はF/Oに
伴う光弾性定数Cの変動を示す。この様に、前記のガラ
スの屈折率はフッ素/酸素(F/O)の比率に対して線形性
が成り立ち、その光弾性定数Cはフッ素/酸素(F/O)の
比率と無関係に実質的に零になる。なお、光弾性定数C
は鉛イオンの含有量に依存し、フッ素の導入量には依存
しないので、この現象は本発明の組成系において成り立
つと考えられる。
FUNCTION FIG. 1A shows an example of a composition in which the photoelastic constant C becomes substantially zero with respect to the wavelength of incident light (633 nm) F /
The relationship between O and the refractive index is shown. In addition, FIG. 1B shows the fluctuation of the photoelastic constant C with F / O. As described above, the refractive index of the glass is linear with respect to the ratio of fluorine / oxygen (F / O), and its photoelastic constant C is substantially independent of the ratio of fluorine / oxygen (F / O). Becomes zero. The photoelastic constant C
Is dependent on the content of lead ions and not on the amount of fluorine introduced, this phenomenon is considered to hold in the composition system of the present invention.

【0017】更に、図2に本発明の組成系の10mm内部の
分光透過曲線を示す。本発明者らが先に見出した偏光光
学系用光学ガラスは短波長域の透過率が充分とはいえな
かったが、組成系にフッ素を導入することで短波長域の
透過率が向上する。この傾向は、フッ素/酸素(F/O)の
比率を増やすことで顕著になり、それに伴い吸収端も短
波長側にシフトする。
Further, FIG. 2 shows a spectral transmission curve within 10 mm of the composition system of the present invention. The optical glasses for polarizing optical systems, which the present inventors have previously found, did not have sufficient transmittance in the short wavelength region, but the introduction of fluorine into the composition system improves the transmittance in the short wavelength region. This tendency becomes remarkable when the ratio of fluorine / oxygen (F / O) is increased, and the absorption edge is also shifted to the short wavelength side accordingly.

【0018】本発明の偏光光学系用光学ガラスにおい
て、各成分の組成範囲を限定した理由は以下の通りであ
る。鉛イオンは、光弾性定数Cを制御するために用いら
れる。一般に鉛イオンを含有する組成系の光弾性定数C
はその含有量に依存することが知られており、鉛イオン
の含有量が43.0〜45.5mol%の時に光弾性定数Cの値が
実質的に零となる。
The reasons for limiting the composition range of each component in the optical glass for polarizing optical system of the present invention are as follows. Lead ions are used to control the photoelastic constant C. Generally, the photoelastic constant C of a composition system containing lead ions
Is known to depend on its content. When the content of lead ions is 43.0 to 45.5 mol%, the value of photoelastic constant C becomes substantially zero.

【0019】ガラス組成中にフッ素を導入すると屈折率
を下げ、分光透過曲線の短波長側の吸収端をより短波長
側に動かす効果がある。フッ素はKF、K2SiF6、P
bF 2等のフッ化物によりガラス組成中に導入すること
ができる。また、KF、K2SiF6及びPbF2では、
それぞれ16.0、3.3、10.0mol%まで導入可能であるが、
それを越えると過剰なフッ素により結晶が析出する。ま
た、複数のフッ化物を混合するとフッ素/酸素(F/O)の
比率が18.0%まで可能となる。
Refractive index when fluorine is introduced into the glass composition
Lower the absorption edge on the short wavelength side of the spectral transmission curve to a shorter wavelength.
Has the effect of moving to the side. Fluorine is KF, K2SiF6, P
bF 2Introduced into the glass composition by fluoride such as
Can be. Also, KF, K2SiF6And PbF2Then
It is possible to introduce up to 16.0, 3.3, 10.0 mol% respectively,
If it exceeds that, crystals are deposited due to excess fluorine. Well
In addition, when multiple fluorides are mixed, fluorine / oxygen (F / O)
The ratio can be up to 18.0%.

【0020】SiO2は本発明のガラスにおけるガラス
形成酸化物であり、40.0mol%以上は必要であるが、54.
0mol%以上あると前記の鉛イオンの含有量が所定範囲を
外れて減少してしまい、光弾性定数Cが大きくなってし
まう。Li2O,Na2O,K2Oといったアルカリ金属
酸化物は、ガラスの熔解温度及びガラス転移温度を下
げ、ガラスの失透に対する安定性を高める効果があるた
め、合計量で0.5mol%以上必要であるが、9.0mol%を超
えると化学的耐久性を著しく損なう。
SiO 2 is a glass-forming oxide in the glass of the present invention, and 40.0 mol% or more is necessary, but 54.
If it is 0 mol% or more, the content of the lead ion falls outside the predetermined range and decreases, and the photoelastic constant C increases. Alkali metal oxides such as Li 2 O, Na 2 O and K 2 O have the effect of lowering the melting temperature and glass transition temperature of glass and increasing the stability of glass against devitrification, so the total amount is 0.5 mol% or more. It is necessary, but if it exceeds 9.0 mol%, the chemical durability is significantly impaired.

【0021】脱泡剤としてのAs23+Sb23は必要
に応じて導入するが、1.5mol%を超えるとガラスの耐失
透性、分光透過特性等を損なう。以上のように、本発明
によれば、入射光の波長に対して光弾性定数Cが実質的
に零の範囲内にある偏光光学系用光学ガラスが得られ、
さらに、前記の組成範囲内であれば、任意に屈折率を調
整することができる。
As 2 O 3 + Sb 2 O 3 as a defoaming agent is introduced as needed, but if it exceeds 1.5 mol%, the devitrification resistance and the spectral transmission characteristics of the glass are impaired. As described above, according to the present invention, an optical glass for a polarization optical system having a photoelastic constant C within the range of substantially zero with respect to the wavelength of incident light is obtained,
Further, the refractive index can be arbitrarily adjusted within the above composition range.

【0022】本発明の偏光光学系用光学ガラスは、各成
分の原料として対応する酸化物、フッ化物、炭酸塩、硝
酸塩などを使用し、それらを所望の割合に秤量し混合し
て調合原料とし、これを1000〜1300℃に加熱して熔解
し、清澄、攪拌を行って均質化した後、予め予熱された
金型に鋳込み徐冷することにより容易に製造することが
できる。但し、硝酸塩は過剰に使用すると、本発明にお
けるフッ素の導入の効果が軽減される。
The optical glass for a polarizing optical system of the present invention uses corresponding oxides, fluorides, carbonates, nitrates, etc. as raw materials for each component, and weighs and mixes them in a desired ratio to prepare a compounding raw material. It can be easily produced by heating it to 1000 to 1300 ° C. to melt it, clarifying it, stirring it to homogenize it, then casting it in a preheated mold and slowly cooling it. However, if the nitrate is used in excess, the effect of introducing fluorine in the present invention is reduced.

【0023】本発明の偏光光学系用光学ガラスは、多く
の光学部品への応用が可能であるが、特に、高精度な偏
光特性が要求される偏光ビームスプリッタや空間光変調
素子の読み出し用透明基板に用いることができる。偏光
ビームスプリッタは、例えば図3に示すように、2つの
透光性基体の間に形成された2つの誘電体多層膜からな
る。図3においては、透光性基体として、本発明の偏光
光学系用光学ガラスを用いて2つのプリズム1、2を形
成し、その間に誘電体多層膜3、4が接着層5によって
保持されている。
The optical glass for a polarizing optical system of the present invention can be applied to many optical parts, but in particular, it is transparent for reading a polarizing beam splitter or a spatial light modulator which requires highly accurate polarization characteristics. It can be used as a substrate. The polarization beam splitter is, for example, as shown in FIG. 3, composed of two dielectric multilayer films formed between two translucent substrates. In FIG. 3, two prisms 1 and 2 are formed by using the optical glass for polarizing optical system of the present invention as a translucent substrate, and the dielectric multilayer films 3 and 4 are held by the adhesive layer 5 between them. There is.

【0024】空間光変調素子(Spatial Light Modulato
r : SLM)は、光導電材料の光導電効果と液晶の電
気光学効果を利用して光情報を変換するデバイスであ
る。空間光変調素子は、少なくとも、光導電層、液晶
層、及びこの2層への電圧印加を行う電圧印加手段を備
えている。例えば、図4に示すように、2枚の透明基板
を有し、書き込み側から透明基板6、透明電極8、光導
電層10、光吸収層11、誘電ミラー12、液晶層1
3、透明電極9、透明基板7からなる。本発明の光学ガ
ラスは、このような空間光変調素子の読み出し用の透明
基板として用いることができる。
Spatial Light Modulato
r: SLM) is a device that converts optical information by utilizing the photoconductive effect of a photoconductive material and the electro-optical effect of liquid crystal. The spatial light modulator includes at least a photoconductive layer, a liquid crystal layer, and a voltage applying unit that applies a voltage to the two layers. For example, as shown in FIG. 4, it has two transparent substrates, and the transparent substrate 6, the transparent electrode 8, the photoconductive layer 10, the light absorption layer 11, the dielectric mirror 12, and the liquid crystal layer 1 from the writing side.
3, a transparent electrode 9 and a transparent substrate 7. The optical glass of the present invention can be used as a transparent substrate for reading out such a spatial light modulator.

【0025】以下、実施例により本発明の偏光光学系用
光学ガラスを詳細に説明する。
The optical glass for polarizing optical system of the present invention will be described in detail below with reference to examples.

【0026】[0026]

【実施例】各成分の原料として対応する酸化物、フッ化
物、炭酸塩、硝酸塩などを用意し、それらを表1、2、
3及び4に記載の割合となるように秤量し混合して調合
原料とし、これを1000〜1300℃に加熱して電気炉中で熔
解し、清澄、攪拌を行って均質化した後、予め予熱され
た金型に鋳込み徐冷することにより偏光光学系光学ガラ
スを製造した。
EXAMPLE A corresponding oxide, fluoride, carbonate, nitrate or the like was prepared as a raw material for each component,
Weigh and mix the ingredients in the proportions described in 3 and 4 to prepare a blended raw material, heat it to 1000 to 1300 ° C, melt it in an electric furnace, clarify, stir and homogenize it, then preheat it beforehand. A polarizing optical system optical glass was manufactured by casting in the die and gradually cooling.

【0027】表1、2、3及び4にはmol%及びwt
%換算による成分割合を示し、それぞれが合計で100%
になる。このようにして得られた各ガラスについて、波
長λ=633nmの光に対する光弾性定数C、屈折率nd、1
0mm内部の透過率(透過率80%の時の波長)を測定した。
なお、光弾性定数Cは、式(1)及び式(2)において
波長λ=633nmの光、ガラスの光透過厚l=10mmの試料
を用い算出した。測定結果を表1、2、3及び4に示
す。
Tables 1, 2, 3 and 4 show mol% and wt.
Shows the component ratio by% conversion, each is 100% in total
become. For each glass thus obtained, the photoelastic constant C and the refractive index nd, 1 for light with a wavelength λ = 633 nm
The transmittance inside 0 mm (wavelength at a transmittance of 80%) was measured.
The photoelastic constant C was calculated by using a sample having a wavelength of λ = 633 nm and a glass light transmission thickness 1 = 10 mm in the formulas (1) and (2). The measurement results are shown in Tables 1, 2, 3 and 4.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【発明の効果】以上、詳細に説明したように、本発明の
偏光光学系用光学ガラスは、力学的外部応力や熱応力が
生じた時の光学的異方性による光路差を実質的に生じな
い。さらに、フッ素/酸素(F/O)の比率を選択すること
によって、光弾性定数Cを実質的に零に保ったまま屈折
率を一定の範囲で増減させることが可能になり光学設計
に大きく寄与する。例えば、ガラスの屈折率によって決
定される、光学薄膜の選択を容易にすることができる。
さらに、短波長域の透過率も向上しているため、多くの
光学部品への応用が可能になる。特に、高精度な偏光特
性が要求される偏光ビームスプリッタや空間光変調素子
の読み出し用透明基板に用いることができる。
As described above in detail, the optical glass for a polarizing optical system of the present invention substantially causes an optical path difference due to optical anisotropy when mechanical external stress or thermal stress occurs. Absent. Furthermore, by selecting the ratio of fluorine / oxygen (F / O), it is possible to increase or decrease the refractive index within a certain range while keeping the photoelastic constant C substantially zero, which greatly contributes to the optical design. To do. For example, the selection of the optical thin film, which is determined by the refractive index of the glass, can be facilitated.
Furthermore, since the transmittance in the short wavelength region is also improved, it can be applied to many optical components. In particular, it can be used as a reading transparent substrate for a polarization beam splitter or a spatial light modulator that requires highly accurate polarization characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る、フッ素/酸素(F/O)の比率に
伴うガラスの物性変化を示す図である。 (A)屈折率ndとの関係を示す図である。 (B)光弾性定数Cの変動を示す図である。
FIG. 1 is a diagram showing changes in the physical properties of glass with the ratio of fluorine / oxygen (F / O) according to the present invention. It is a figure which shows (A) refractive index nd. (B) It is a figure which shows the fluctuation | variation of the photoelastic constant C.

【図2】 実施例1、3、5の10mm内部の光学ガラ
スの分光透過曲線図である。
FIG. 2 is a spectral transmission curve diagram of optical glasses having a 10 mm inside of Examples 1, 3, and 5.

【図3】 本発明の光学ガラスが適用され得る偏光ビー
ムスプリッタの一例を示す概略図である。
FIG. 3 is a schematic view showing an example of a polarization beam splitter to which the optical glass of the present invention can be applied.

【図4】 本発明の光学ガラスが適用され得る空間光変
調素子の一例を示す概略図である。
FIG. 4 is a schematic view showing an example of a spatial light modulator to which the optical glass of the present invention can be applied.

【符号の説明】[Explanation of symbols]

1、2・・・プリズム 3、4・・・誘電体多層膜 5 ・・・接着層 6、7・・・透明基板 8、9・・・透明電極 10 ・・・光導電層 11 ・・・光吸収層 12 ・・・誘電ミラー 13 ・・・液晶層 1, 2 ... Prism 3, 4 ... Dielectric multilayer film 5 ... Adhesive layer 6, 7 ... Transparent substrate 8, 9 ... Transparent electrode 10 ... Photoconductive layer 11 ... Light absorption layer 12 ... Dielectric mirror 13 ... Liquid crystal layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】入射光の波長に対して光弾性定数Cが実質
的に零の範囲内にある偏光光学系用光学ガラスにおい
て、該ガラスが酸化物換算のmol%表示で SiO2 40.0〜54.0 % R2O(R:Li,Na,K) 0.5〜 9.0 % PbO 43.0〜45.5 % As2O3+Sb2O3 0〜 1.5 % の組成範囲にあり、且つ、 フッ素/酸素(F/O) 0.1〜18.0 % の範囲でフッ素を有することを特徴とする偏光光学系用
光学ガラス。
1. An optical glass for a polarizing optical system having a photoelastic constant C within a range of substantially zero with respect to the wavelength of incident light, wherein the glass is SiO 2 40.0 to 54.0 in terms of oxide equivalent mol%. % R 2 O (R: Li, Na, K) 0.5 to 9.0% PbO 43.0 to 45.5% As 2 O 3 + Sb 2 O 30 0 to 1.5% composition range and fluorine / oxygen (F / O ) An optical glass for a polarizing optical system, which has fluorine in the range of 0.1 to 18.0%.
【請求項2】入射光の波長に対して光弾性定数Cが実質
的に零の範囲内にある偏光光学系用光学ガラスにおい
て、該ガラスがmol%表示で SiO2 40.0〜54.0 % R2O(R:Li,Na,K) 0.5〜 9.0 % RF 0〜16.0 % R2SiF6 0〜 3.3 % PbO+PbF2 43.0〜45.5 % PbF2 0〜10.0 % As2O3+Sb2O3 0〜 1.5 % の組成範囲にあり、且つ、 フッ素/酸素(F/O) 0.1〜18.0 % の範囲でフッ素を有することを特徴とする偏光光学系用
光学ガラス。
2. An optical glass for a polarizing optical system having a photoelastic constant C within a range of substantially zero with respect to a wavelength of incident light, wherein the glass is SiO 2 40.0 to 54.0% R 2 O expressed in mol%. (R: Li, Na, K) 0.5 to 9.0% RF 0 to 16.0% R 2 SiF 60 to 3.3% PbO + PbF 2 43.0 to 45.5% PbF 20 to 10.0% As 2 O 3 + Sb 2 O 3 0 An optical glass for a polarizing optical system, which has a composition range of ˜1.5% and a fluorine / oxygen (F / O) content of 0.1˜18.0%.
【請求項3】入射光の波長に対して光弾性定数Cが実質
的に零の範囲内にある偏光光学系用光学ガラスにおい
て、該ガラスのフッ素/酸素(F/O)の比率を変化させる
ことにより屈折率を制御することを特徴とする偏光光学
系用光学ガラスの屈折率制御方法。
3. In an optical glass for a polarizing optical system having a photoelastic constant C within a range of substantially zero with respect to the wavelength of incident light, the ratio of fluorine / oxygen (F / O) of the glass is changed. A refractive index control method for an optical glass for a polarizing optical system, characterized in that the refractive index is controlled thereby.
【請求項4】請求項1または請求項2に記載の偏光光学
系用光学ガラスにおいて、 前記入射光の波長が、0.4μm〜3.0μmの範囲の
波長であることを特徴とする偏光光学系用光学ガラス。
4. The polarizing optical system optical glass according to claim 1, wherein the incident light has a wavelength in the range of 0.4 μm to 3.0 μm. System optical glass.
JP7061034A 1994-02-07 1995-03-20 Optical glass for polarizing optical system and method for controlling its refractive index Pending JPH08259259A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7061034A JPH08259259A (en) 1995-03-20 1995-03-20 Optical glass for polarizing optical system and method for controlling its refractive index
US09/368,892 US6432854B1 (en) 1994-02-07 1999-08-05 Optical glass for polarizing optical system, production process therefor and polarizing beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7061034A JPH08259259A (en) 1995-03-20 1995-03-20 Optical glass for polarizing optical system and method for controlling its refractive index

Publications (1)

Publication Number Publication Date
JPH08259259A true JPH08259259A (en) 1996-10-08

Family

ID=13159603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7061034A Pending JPH08259259A (en) 1994-02-07 1995-03-20 Optical glass for polarizing optical system and method for controlling its refractive index

Country Status (1)

Country Link
JP (1) JPH08259259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262462A1 (en) 2001-05-29 2002-12-04 Kabushiki Kaisha Ohara Optical glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262462A1 (en) 2001-05-29 2002-12-04 Kabushiki Kaisha Ohara Optical glass
US6756334B2 (en) 2001-05-29 2004-06-29 Kabushiki Kaisha Ohara Optical glass

Similar Documents

Publication Publication Date Title
US5969861A (en) Polarizing optical system
CN116655238A (en) Optical glass and optical component
Morey et al. The relation between the composition and the density and optical properties of glass. I. The soda-lime-silica glasses
JP4671647B2 (en) Optical glass with small photoelastic constant
JP2007106627A (en) Optical glass
US20050075234A1 (en) Optical glass
JP2023126854A (en) Optical glass and optical component
JP3426488B2 (en) Optical glass with small photoelastic constant
CN105948482A (en) Optical glass and preparation method thereof
JP3653669B2 (en) Optical glass
WO2019151316A1 (en) Optical glass and optical component
US6432854B1 (en) Optical glass for polarizing optical system, production process therefor and polarizing beam splitter
EP1262462B1 (en) Optical glass
US7057815B2 (en) Optical glass for polarizing optical system, production process therefor and polarizing beam splitter
JP2005037651A (en) Optical glass for lens mounted in projector, its manufacturing method, lens mounted in projector, and projector
JPH0948631A (en) Optical glass for polarizing optical system
JP3301984B2 (en) Low photoelastic constant glass and optical glass
JPH08259259A (en) Optical glass for polarizing optical system and method for controlling its refractive index
JPH07215732A (en) Optical glass for polarization optical system and controlling method for photoelastic constant
JPH0948633A (en) Optical glass for polarizing optical system and polarizing light beam splitter using the same
JP2011065130A (en) Nonlinear optical glass
JPH07218723A (en) Polarizer
JP2003292339A (en) Optical glass for prism, method for producing the same, and optical component for prism
JP4138366B2 (en) Optical glass
JP3321414B2 (en) Light polarization control element