JPH07215732A - Optical glass for polarization optical system and controlling method for photoelastic constant - Google Patents

Optical glass for polarization optical system and controlling method for photoelastic constant

Info

Publication number
JPH07215732A
JPH07215732A JP6013570A JP1357094A JPH07215732A JP H07215732 A JPH07215732 A JP H07215732A JP 6013570 A JP6013570 A JP 6013570A JP 1357094 A JP1357094 A JP 1357094A JP H07215732 A JPH07215732 A JP H07215732A
Authority
JP
Japan
Prior art keywords
optical
glass
polarization
optical system
photoelastic constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6013570A
Other languages
Japanese (ja)
Inventor
Motoi Ueda
基 上田
Takeshi Hasegawa
雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6013570A priority Critical patent/JPH07215732A/en
Priority to DE19580247T priority patent/DE19580247T1/en
Priority to PCT/JP1995/000164 priority patent/WO1995021137A1/en
Publication of JPH07215732A publication Critical patent/JPH07215732A/en
Priority to US08/691,923 priority patent/US5969861A/en
Priority to US09/368,892 priority patent/US6432854B1/en
Priority to US10/016,667 priority patent/US7057815B2/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical glass free from damaging the polarization property of optical information even under thermal stress or dynamic external stress and to enable to control the photoelastic constant of the optical glass by blending to have specific compound for the optical glass for polarization optical system. CONSTITUTION:The optical glass having the photoelasticity of substantially zero to the wavelength of incident light is obtained by having the composition consisting of 17.0-27.0% SiO2, 0.5-5.0% Li2O+Na2O+K2O, 73.0-75.0 PbO and 0-3.0% As2O3+Sb2O3 expressed in terms of oxide by wt.% in the optical glass for polarization optical system. And by changing the composition ratio of PbO contained in the lead glass, the photoelastic constant of the optical glass can be controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏光変調を行う空間光
変調素子や偏光ビームスプリッタなどの偏光光学系に使
用される偏光光学系用光学ガラスおよびその光弾性定数
制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical glass for a polarization optical system used in a polarization optical system such as a spatial light modulator for performing polarization modulation or a polarization beam splitter, and a method for controlling its photoelastic constant.

【0002】[0002]

【従来の技術】近年、光情報が有する偏光特性を制御す
る手段が増加し、偏光を利用した光学系、すなわち偏光
光学系の応用分野は加速度的に広がりつつある。偏光光
学系が応用される場合、光情報の偏光特性を高精度に制
御することが重要であるが、現状では必ずしも要求され
る性能を満足しているとはいえず、偏光特性の制御精度
をより向上することが望まれている。
2. Description of the Related Art In recent years, the number of means for controlling the polarization characteristics of optical information has increased, and the field of application of optical systems utilizing polarized light, that is, polarization optical systems, is acceleratingly expanding. When the polarization optical system is applied, it is important to control the polarization characteristics of the optical information with high accuracy, but at present, it cannot be said that the performance required is necessarily satisfied, and the control accuracy of the polarization characteristics is improved. Further improvement is desired.

【0003】偏光光学系を構成する基板やプリズムとい
った光学部品のうち、光情報が本来有するべき偏光特性
を保存する必要のある箇所の光学部品には、光学的に等
方性を有する材料が用いられている。これは、光学的に
異方性を有する(つまり複屈折性を有する)材料を透過
した光は、主光線とこれに直交する異常光線との間の位
相差(光路差)が材料を透過する前と比較して変化して
しまい、光情報の偏光特性が保存できないからである。
一般に、十分なアニールが施されたガラスは光学的に等
方性を有し、さらに耐久性、強度、透過率、屈折率およ
び価格の面からも他の材料に勝るガラスが多く存在する
ため、このようなガラスは偏光特性を保存すべき光学部
品に多く用いられている。特に、硼珪酸ガラス(たとえ
ばBK7=ドイツ ショット社の記号)は耐久性に優れ
て分散も小さいので、偏光光学系に多用されている。
Of optical components such as a substrate and a prism which constitute a polarization optical system, an optically isotropic material is used for an optical component at a portion where the polarization characteristic originally possessed by optical information needs to be preserved. Has been. This is because light transmitted through a material having optical anisotropy (that is, having birefringence) has a phase difference (optical path difference) between a principal ray and an extraordinary ray orthogonal to the principal ray that passes through the material. This is because the polarization characteristics of the optical information cannot be preserved because they change as compared with those before.
Generally, glass that has been sufficiently annealed has optical isotropy, and there are many glasses that are superior to other materials in terms of durability, strength, transmittance, refractive index, and price. Such glass is often used in optical components for which polarization characteristics should be preserved. In particular, borosilicate glass (for example, BK7 = a symbol of German Schott) has excellent durability and has a small dispersion, and is therefore widely used in polarizing optical systems.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来の偏光光学系用光学ガラスでも、熱応力や力学的
外部応力下においては、光弾性効果に起因する光学的異
方性が誘起され、この光学的異方性により光情報の偏光
特性が変化してしまって偏光光学系が所望の性能を得る
ことが難しくなる、という問題があった。
However, even in the above-mentioned conventional optical glass for polarizing optical system, the optical anisotropy caused by the photoelastic effect is induced under thermal stress or mechanical external stress. There is a problem that the polarization characteristics of optical information are changed due to optical anisotropy, and it becomes difficult for the polarization optical system to obtain desired performance.

【0005】これら熱応力や力学的外部応力は、主にガ
ラスと他の材料とを接合する場合やガラス表面に製膜す
る場合、ガラスに吸収される光エネルギーによる発熱が
無視できない場合、周辺機器が発熱した場合、さらには
内部、外部発熱があった際にガラスが熱膨張率の異なる
材料と接合されている場合、光学系に組みこむ際に治具
と接触する場合などに生じる。したがって、偏光光学系
を使用するときにガラスに熱応力や力学的外部応力が作
用することは避けられず、従来のガラスでは光学的異方
性が誘起されることは避けられなかった。
These thermal stresses and mechanical external stresses are mainly generated when joining glass and other materials, when forming a film on the glass surface, when the heat generated by the light energy absorbed by the glass cannot be ignored, and in peripheral equipment. Occurs when the glass is bonded to a material having a different coefficient of thermal expansion when it is internally or externally heated, or when it comes into contact with a jig when it is incorporated into an optical system. Therefore, it is unavoidable that thermal stress or mechanical external stress acts on the glass when the polarization optical system is used, and that optical anisotropy is unavoidable in the conventional glass.

【0006】本発明の目的は、熱応力や力学的外部応力
下においても光情報の偏光情報を害することのない偏光
光学系用光学ガラスを提供することにある。
An object of the present invention is to provide an optical glass for a polarizing optical system which does not impair the polarization information of optical information even under thermal stress or mechanical external stress.

【0007】[0007]

【課題を解決するための手段】一般に、ガラスのような
等質等方な透明体に力を加えて応力を生じさせると、こ
の透明体に光学的な異方性が生じ、ある種の結晶体と同
様に複屈折性を持つようになる。これは光弾性効果と呼
ばれている。応力が生じたときの透明体の屈折率はいわ
ゆる屈折率楕円体で表すことができ、このとき、屈折率
楕円体の主屈折率軸は主応力軸に一致する。一般に、主
屈折率をn1、n2、n3、主応力をσ1、σ2、σ3(それ
ぞれ添字が共通なものは同一方向にある)とすると、こ
れらの間には次式のような関係が成立する。
In general, when a force is applied to an isotropic transparent body such as glass to generate a stress, optical anisotropy is generated in the transparent body and a certain crystal is produced. It becomes birefringent like the body. This is called the photoelastic effect. The refractive index of the transparent body when stress is generated can be represented by a so-called refractive index ellipsoid, and at this time, the main refractive index axis of the refractive index ellipsoid coincides with the main stress axis. Generally, assuming that the main refractive indices are n 1 , n 2 , and n 3 , and the main stresses are σ 1 , σ 2 , and σ 3 (those having common subscripts are in the same direction), the following equation Such a relationship is established.

【数1】n1=n0+C1σ1+C22+σ3) n2=n0+C1σ2+C23+σ1) n3=n0+C1σ3+C21+σ2) ここに、C1およびC2は光の波長および透明体の物質に
固有の定数である。
## EQU1 ## n 1 = n 0 + C 1 σ 1 + C 22 + σ 3 ) n 2 = n 0 + C 1 σ 2 + C 23 + σ 1 ) n 3 = n 0 + C 1 σ 3 + C 2 ( σ 1 + σ 2 ) where C 1 and C 2 are constants specific to the wavelength of light and the material of the transparent body.

【0008】このような透明体に光を入射すると、その
方向がσ3と同一方向となるように座標をとれば、入射
光はそれぞれσ1、σ2方向の、すなわち互いに振動面が
直交する2つの直線偏光に分かれる。透明体から出射す
るときには、各主応力方向の屈折率(n1、n2)が異な
るため、これら2つの直線偏光間には次式で表されるよ
うな光路差(位相差)Δφが生じる。
When light is incident on such a transparent body, if the coordinates are taken so that the direction is the same as σ 3 , the incident light is in the σ 1 and σ 2 directions, that is, the vibrating planes are orthogonal to each other. Divided into two linearly polarized light. Since the refractive index (n 1 , n 2 ) in each principal stress direction is different when the light is emitted from the transparent body, an optical path difference (phase difference) Δφ represented by the following equation occurs between these two linearly polarized lights. .

【数2】Δφ=(2π/λ)(n2−n1)・l =(2π/λ)(C1−C2)(σ2−σ1)・l =(2π/λ)・C・(σ2−σ1)・l ここに、λは光の波長、lは透明体の光透過厚である。
C=C1−C2は光弾性定数と呼ばれる。
## EQU2 ## Δφ = (2π / λ) (n 2 −n 1 ) · l = (2π / λ) (C 1 −C 2 ) (σ 2 −σ 1 ) · l = (2π / λ) · C -((Sigma) 2- (sigma) 1 ) * l Here, (lambda) is the wavelength of light and l is the light transmission thickness of a transparent body.
C = C 1 -C 2 is called photoelastic constant.

【0009】従来、偏光光学系に用いられていた光学ガ
ラスの光弾性定数Cの値は大きく、たとえば、上述のB
K7では2.78(波長λ=633nm)という値が得られてい
る。このため、熱応力や力学的外部応力により誘起され
る光学的異方性、およびこれに基づく光路差Δφが無視
できない値になる。
Conventionally, the value of the photoelastic constant C of the optical glass used in the polarization optical system is large.
In K7, a value of 2.78 (wavelength λ = 633 nm) is obtained. For this reason, the optical anisotropy induced by thermal stress or mechanical external stress, and the optical path difference Δφ based on the optical anisotropy become values that cannot be ignored.

【0010】そこで、本発明者は、光弾性定数Cが実質
的に零のガラスであれば熱応力や力学的外部応力下にお
いても光学的異方性がほとんど生じないことに鑑み、光
弾性定数Cが実質的に零になる光学ガラスにつき鋭意研
究した結果、酸化鉛(PbO)を含有する組成系のガラス
においては、酸化鉛の含有量により光弾性定数Cの値が
大きく依存することに着目した本発明を成すに至った。
Therefore, the present inventor considers that if the glass having a photoelastic constant C is substantially zero, optical anisotropy hardly occurs even under thermal stress or mechanical external stress. As a result of diligent research on an optical glass in which C is substantially zero, it is noted that in the glass containing lead oxide (PbO), the photoelastic constant C greatly depends on the content of lead oxide. The present invention has been accomplished.

【0011】したがって、本発明は第1に、「入射光の
波長に対して光弾性定数が実質的に零の範囲内にあるこ
とを特徴とする偏光光学系用光学ガラス」を提供する。
Therefore, the present invention firstly provides an "optical glass for a polarizing optical system, characterized in that the photoelastic constant is substantially zero with respect to the wavelength of incident light."

【0012】また、第2に、「酸化物換算の重量%で下
記の組成よりなることを特徴とする偏光光学系用光学ガ
ラス 記 SiO2 17.0〜 27.0% Li2O+Na2O+K2O 0.5〜 5.0% PbO 73.0〜 75.0% As2O3+Sb2O3 0 〜 3.0%」 を提供する。
Secondly, "Optical glass for polarizing optical system characterized by having the following composition in terms of oxide% by weight: SiO 2 17.0 to 27.0% Li 2 O + Na 2 O + K 2 O 0.5 to 5.0% PbO 73.0 to 75.0% As 2 O 3 + Sb 2 O 30 to 3.0% ”.

【0013】さらに、第3に、「鉛ガラスに含まれるPb
Oの組成比を変化させることにより前記鉛ガラスの光弾
性定数を制御することを特徴とする偏光光学系用光学ガ
ラスの光弾性定数制御方法」を提供する。
Thirdly, "Pb contained in lead glass
A method for controlling a photoelastic constant of an optical glass for a polarizing optical system, which comprises controlling a photoelastic constant of the lead glass by changing a composition ratio of O.

【0014】[0014]

【作用】本発明の偏光光学系用光学ガラスにおいて、各
成分の組成範囲を上記のように限定した理由は次の通り
である。PbOは、上述のように、ガラスの光弾性定数C
がPbOの含有量に大きく依存し、具体的には、PbOの含有
量が増加するにしたがって光弾性定数Cの値が減少し、
ある一定量において零になって以降は負の値をとること
を利用し、光弾性定数Cの値を実質的に零に制御するた
めに用いられる。PbOの含有量により光弾性定数Cの値
が変化するのは、鉛イオンの配位状態がその含有量の増
加とともに変化するためと考えられる。ここにいう実質
的に零とは、本発明の光学ガラスを偏光光学系に使用し
たときに、光学的異方性に基づく光路差により偏光光学
系全体が受ける影響が無視できる程度の値をいい、一例
として波長500〜650nmの光に対して光弾性定数Cが-0.1
〜0.1[10-8cm2/N]の範囲にあればよい。この範囲の光弾
性定数Cを有する光学ガラスは、PbOの含有量を73〜75
重量%の範囲内にすることにより実現される。
The reason for limiting the composition range of each component in the optical glass for polarizing optical system of the present invention is as follows. As mentioned above, PbO is the photoelastic constant C of glass.
Greatly depends on the PbO content, and specifically, as the PbO content increases, the value of the photoelastic constant C decreases,
It is used to control the value of the photoelastic constant C to substantially zero by utilizing the fact that it takes a negative value after it becomes zero at a certain fixed amount. The reason that the value of the photoelastic constant C changes depending on the content of PbO is considered to be that the coordination state of lead ions changes as the content thereof increases. The term "substantially zero" as used herein means a value at which the influence of the entire polarization optical system due to the optical path difference based on optical anisotropy can be ignored when the optical glass of the present invention is used in the polarization optical system. As an example, the photoelastic constant C is -0.1 for light with a wavelength of 500 to 650 nm.
It should be in the range of ~ 0.1 [10 -8 cm 2 / N]. An optical glass having a photoelastic constant C in this range has a PbO content of 73 to 75.
It is realized by setting the content within the range of wt%.

【0015】SiO2は本発明の光学ガラスにおけるガラス
組成物であり、17重量%以上は必要であるが、27重量%
以上であると上述のPbOの含有量が所定範囲を外れて減
少してしまい、光弾性定数が大きくなってしまう。
SiO 2 is the glass composition in the optical glass of the present invention, and is required to be 17% by weight or more, but 27% by weight.
When it is above, the above-mentioned content of PbO will fall outside the predetermined range, and the photoelastic constant will become large.

【0016】Na2O+K2O+Li2Oといったアルカリ金属成分
は、ガラスの熔解温度およびガラス転移温度を下げ、ガ
ラスの失透に対する安定性を高める効果があるため、0.
5重量%以上必要であるが、5重量%を超えると化学的
耐久性を著しく損なう。As2O3+Sb2O3は必要に応じて添
加することができるが、3重量%を超えるとガラスの耐
失透性、分光透過特性等を損なう。
Alkali metal components such as Na 2 O + K 2 O + Li 2 O have the effects of lowering the melting temperature and glass transition temperature of the glass and increasing the stability of the glass against devitrification.
It is necessary to be 5% by weight or more, but if it exceeds 5% by weight, the chemical durability is significantly impaired. As 2 O 3 + Sb 2 O 3 can be added if necessary, but if it exceeds 3% by weight, devitrification resistance and spectral transmission characteristics of the glass are impaired.

【0017】本発明の偏光光学系用光学ガラスは、各成
分の原料としてそれぞれの元素に対応する酸化物、炭酸
塩、硝酸塩などを使用し、それらを所望の割合に秤量し
混合して調合原料とし、これを1,000〜1,300℃に加熱し
て熔解し、清澄、攪拌を行って均質化した後、予め予熱
された金型に鋳込み徐冷することにより容易に製造する
ことができる。
In the optical glass for polarizing optical system of the present invention, oxides, carbonates, nitrates, etc. corresponding to respective elements are used as raw materials for the respective components, and these are weighed and mixed in a desired ratio to prepare a raw material for preparation. It can be easily produced by heating it to 1,000 to 1,300 ° C. to melt it, refining it, stirring it to homogenize it, then casting it in a preheated mold and slowly cooling it.

【0018】なお、酸化鉛を含有しない組成のガラスに
よっても光弾性定数Cを実質的に零にすることは可能で
あるが、熱膨張率が大きい、割れやすいといった性質を
有するため、偏光光学系への適用には注意を要する。以
下、実施例により本発明を具体的に説明するが、本発明
はこれに限定されるものではない。
Although it is possible to make the photoelastic constant C substantially zero by using glass having a composition not containing lead oxide, the polarizing optical system has properties such as large thermal expansion coefficient and easy cracking. Careful application to Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.

【0019】[0019]

【実施例】各成分の原料としてそれぞれの元素に対応す
る酸化物、炭酸塩、硝酸塩などを用意し、これらを高度
に精製した後、表1および表2に記載の割合となるよう
に秤量し、混合して調合原料とし、これを1,000〜1,300
℃に加熱して電気炉中で熔解し、清澄、攪拌を行って均
質化した後、予め予熱された金型に鋳込み徐冷すること
により偏光光学系熔光学ガラスを製造した。表1および
表2中の数値は、酸化物換算の重量%による成分割合を
示し、合計で100%になる。
[Examples] As raw materials for each component, oxides, carbonates, nitrates, etc. corresponding to each element were prepared, highly purified, and then weighed so that the ratios shown in Table 1 and Table 2 were obtained. , And mix it to prepare raw material, which is 1,000-1,300
A polarized optical system fused optical glass was manufactured by heating to ℃, melting in an electric furnace, clarification, stirring, homogenization, casting in a preheated mold and slow cooling. The numerical values in Table 1 and Table 2 show the component ratio by weight% in terms of oxide, and the total is 100%.

【0020】このようにして得られたガラスについて、
波長λ=633nmの光に対する光弾性定数および線膨張係
数を測定した。光弾性定数Cは、既知の波長λの光、既
知のサイズlの試料を用い、上述の式においてσ1=σ3
=0となる既知の一軸性応力σ2を試料に加えた状態で
光路差Δφを測定することにより算出した。測定結果を
表1および表2に示す。また、酸化鉛(PbO)の含有量
を横軸に、光弾性定数を縦軸にとったグラフを図1に示
す。酸化鉛の含有量が増加するに連れて光弾性定数はほ
ぼ直線的に減少し、ある点で零の値をとり、以降は負の
値をとることが理解できる。
Regarding the glass thus obtained,
The photoelastic constant and the linear expansion coefficient for light with a wavelength λ = 633 nm were measured. The photoelastic constant C is σ 1 = σ 3 in the above equation using light of known wavelength λ and sample of known size 1.
It was calculated by measuring the optical path difference Δφ with a known uniaxial stress σ 2 of = 0 being applied to the sample. The measurement results are shown in Tables 1 and 2. In addition, a graph in which the horizontal axis represents the content of lead oxide (PbO) and the vertical axis represents the photoelastic constant is shown in FIG. It can be understood that the photoelastic constant decreases almost linearly with an increase in the content of lead oxide, takes a value of zero at a certain point, and takes a negative value thereafter.

【0021】なお、比較例として、偏光光学系に従来多
用されていたBK7について、その成分割合、波長λ=
633nmの光に対する光弾性定数および線膨張係数の測定
結果を表2に示す。番号1〜7の光学ガラスの光弾性定
数がBK7のそれに比較してはるかに小さく、特に、番
号4〜6の光学ガラスについては光弾性定数が実質的に
零であるとみなせる範囲の値であることが理解できる。
また、番号1〜7の光学ガラスの線膨張係数はBK7の
それとほぼ同レベルであることから、BK7のかわりに
番号1〜7の光学ガラスを用いた場合でも、治具や他の
光学部品に熱膨張率の差に基づく影響を及ぼすことはな
い。
As a comparative example, the component ratio of BK7, which has been widely used in the polarization optical system, and the wavelength λ =
Table 2 shows the measurement results of the photoelastic constant and the linear expansion coefficient for light of 633 nm. The photoelastic constants of the optical glasses of Nos. 1 to 7 are much smaller than those of BK7, and in particular, the photoelastic constants of the optical glasses of Nos. 4 to 6 are values within a range that can be considered to be substantially zero. I understand.
Moreover, since the linear expansion coefficient of the optical glass of Nos. 1 to 7 is almost the same level as that of BK7, even when the optical glass of Nos. 1 to 7 is used instead of BK7, the jigs and other optical parts are There is no effect due to the difference in coefficient of thermal expansion.

【表1】 [Table 1]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】以上詳細に説明したように、本発明によ
ればPbOの組成比を選択することにより光弾性定数が実
質的に零の偏光光学系用光学ガラスを実現することがで
きるので、本発明のガラスに熱応力や力学的外部応力等
が生じても光学的異方性が実質上生じないようにするこ
とができる。よって、本発明のガラスを偏光光学系の光
学部品に適用することにより、熱応力や力学的外部応力
等の影響を排して光情報の偏光特性を保持することがで
きる。特に、本発明の偏光光学系用光学ガラスは、高精
度な偏光特性が要求される偏光ビームスプリッタや空間
光変調素子の読み出し側透明基板等に好適に用いられ
る。
As described in detail above, according to the present invention, by selecting the composition ratio of PbO, it is possible to realize an optical glass for a polarization optical system whose photoelastic constant is substantially zero. It is possible to prevent optical anisotropy from substantially occurring even when the glass of the present invention is subjected to thermal stress or mechanical external stress. Therefore, by applying the glass of the present invention to the optical component of the polarization optical system, the influence of thermal stress, mechanical external stress, etc. can be eliminated and the polarization characteristic of optical information can be maintained. In particular, the optical glass for a polarization optical system of the present invention is suitably used for a polarization beam splitter, a transparent substrate on the reading side of a spatial light modulator, etc., which requires highly accurate polarization characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化鉛の含有量と光弾性定数との関係を示す図
である。
FIG. 1 is a diagram showing the relationship between the content of lead oxide and the photoelastic constant.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 入射光の波長に対して光弾性定数が実質
的に零の範囲内にあることを特徴とする偏光光学系用光
学ガラス。
1. An optical glass for a polarization optical system having a photoelastic constant within a range of substantially zero with respect to the wavelength of incident light.
【請求項2】 請求項1に記載の偏光光学系用光学ガラ
スにおいて、 酸化物換算の重量%で下記の組成よりなることを特徴と
する偏光光学系用光学ガラス。 記 SiO2 17.0〜 27.0% Li2O+Na2O+K2O 0.5〜 5.0% PbO 73.0〜 75.0% As2O3+Sb2O3 0 〜 3.0%
2. The optical glass for a polarizing optical system according to claim 1, wherein the optical glass for a polarizing optical system has the following composition in a weight percentage of oxide. Note SiO 2 17.0 to 27.0% Li 2 O + Na 2 O + K 2 O 0.5 to 5.0% PbO 73.0 to 75.0% As 2 O 3 + Sb 2 O 3 0 to 3.0%
【請求項3】 鉛ガラスに含まれるPbOの組成比を変化
させることにより前記鉛ガラスの光弾性定数を制御する
ことを特徴とする偏光光学系用光学ガラスの光弾性定数
制御方法。
3. A method for controlling a photoelastic constant of an optical glass for a polarizing optical system, which comprises controlling a photoelastic constant of the lead glass by changing a composition ratio of PbO contained in the lead glass.
JP6013570A 1994-02-07 1994-02-07 Optical glass for polarization optical system and controlling method for photoelastic constant Pending JPH07215732A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6013570A JPH07215732A (en) 1994-02-07 1994-02-07 Optical glass for polarization optical system and controlling method for photoelastic constant
DE19580247T DE19580247T1 (en) 1994-02-07 1995-02-07 Optical glass for an optical polarization system, manufacturing process therefor and polarization beam splitter
PCT/JP1995/000164 WO1995021137A1 (en) 1994-02-07 1995-02-07 Optical glass for polarizing optical systems, method of manufacturing the same, and polarizing beam splitter
US08/691,923 US5969861A (en) 1994-02-07 1996-08-01 Polarizing optical system
US09/368,892 US6432854B1 (en) 1994-02-07 1999-08-05 Optical glass for polarizing optical system, production process therefor and polarizing beam splitter
US10/016,667 US7057815B2 (en) 1994-02-07 2001-10-26 Optical glass for polarizing optical system, production process therefor and polarizing beam splitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6013570A JPH07215732A (en) 1994-02-07 1994-02-07 Optical glass for polarization optical system and controlling method for photoelastic constant

Publications (1)

Publication Number Publication Date
JPH07215732A true JPH07215732A (en) 1995-08-15

Family

ID=11836835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6013570A Pending JPH07215732A (en) 1994-02-07 1994-02-07 Optical glass for polarization optical system and controlling method for photoelastic constant

Country Status (1)

Country Link
JP (1) JPH07215732A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808795A (en) * 1995-03-06 1998-09-15 Nikon Corporation Projection type display apparatus
US6062694A (en) * 1995-03-06 2000-05-16 Nikon Corporation Projection type display apparatus
US6227670B1 (en) 1995-03-06 2001-05-08 Nikon Corporation Projection type display apparatus
US6756334B2 (en) 2001-05-29 2004-06-29 Kabushiki Kaisha Ohara Optical glass
JP2009507256A (en) * 2005-09-02 2009-02-19 カラーリンク・インコーポレイテッド Polarizing beam splitter and combiner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808795A (en) * 1995-03-06 1998-09-15 Nikon Corporation Projection type display apparatus
US6062694A (en) * 1995-03-06 2000-05-16 Nikon Corporation Projection type display apparatus
US6227670B1 (en) 1995-03-06 2001-05-08 Nikon Corporation Projection type display apparatus
US6464360B2 (en) 1995-03-06 2002-10-15 Nikon Corporation Projection type display apparatus
US6756334B2 (en) 2001-05-29 2004-06-29 Kabushiki Kaisha Ohara Optical glass
JP2009507256A (en) * 2005-09-02 2009-02-19 カラーリンク・インコーポレイテッド Polarizing beam splitter and combiner

Similar Documents

Publication Publication Date Title
US5969861A (en) Polarizing optical system
JP2007106627A (en) Optical glass
WO2015161779A1 (en) Fluorophosphate optical glass
JP4671647B2 (en) Optical glass with small photoelastic constant
US4726652A (en) Faraday rotation single-mode optical fiber
CN110156325B (en) Fluorophosphate glass, glass preform, optical element and optical instrument having the same
JP3426488B2 (en) Optical glass with small photoelastic constant
US3404015A (en) Low thermal expansion glasses
JP3653669B2 (en) Optical glass
WO2016024498A1 (en) Infrared-transmitting glass
JPH0848538A (en) Optical glass
JPH07215732A (en) Optical glass for polarization optical system and controlling method for photoelastic constant
JPH0573702B2 (en)
EP1262462B1 (en) Optical glass
US7057815B2 (en) Optical glass for polarizing optical system, production process therefor and polarizing beam splitter
JPH0948631A (en) Optical glass for polarizing optical system
JP5218059B2 (en) Optical glass
JP3301984B2 (en) Low photoelastic constant glass and optical glass
JP2011065130A (en) Nonlinear optical glass
JPH0948633A (en) Optical glass for polarizing optical system and polarizing light beam splitter using the same
JPH08259259A (en) Optical glass for polarizing optical system and method for controlling its refractive index
JPH07218723A (en) Polarizer
EP3995461A1 (en) Optical glass
JPS60171243A (en) High refractive index low dispersion optical glass for multi focal lens
US2967779A (en) Optical glass