JPH0825786B2 - Refractory for continuous casting and manufacturing method thereof - Google Patents

Refractory for continuous casting and manufacturing method thereof

Info

Publication number
JPH0825786B2
JPH0825786B2 JP5004072A JP407293A JPH0825786B2 JP H0825786 B2 JPH0825786 B2 JP H0825786B2 JP 5004072 A JP5004072 A JP 5004072A JP 407293 A JP407293 A JP 407293A JP H0825786 B2 JPH0825786 B2 JP H0825786B2
Authority
JP
Japan
Prior art keywords
powder
metal
weight
refractory
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5004072A
Other languages
Japanese (ja)
Other versions
JPH06206759A (en
Inventor
昇 塚本
裕次 吉村
伸彦 今井
郁雄 斜森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP5004072A priority Critical patent/JPH0825786B2/en
Publication of JPH06206759A publication Critical patent/JPH06206759A/en
Publication of JPH0825786B2 publication Critical patent/JPH0825786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スライドバルブ用プレ
ート及び鋳造用ノズルなどに適した連続鋳造用耐火物及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory for continuous casting suitable for a slide valve plate, a casting nozzle and the like, and a method for producing the refractory.

【0002】[0002]

【従来の技術】一般に、スライドバルブ用プレートや鋳
造用ノズルなどの連続鋳造用耐火物としてアルミナ・カ
ーボン系のれんがが広く使用されており、品質特性とし
ては高耐食性、高強度、高耐スポール性に優れたものが
必要とされている。
2. Description of the Related Art Generally, alumina / carbon-based bricks are widely used as refractory materials for continuous casting such as slide valve plates and casting nozzles, and their quality characteristics are high corrosion resistance, high strength and high spall resistance. What is needed is excellent.

【0003】使用されるアルミナ・カーボン質れんが
は、耐火材料の他にカーボン原料及び金属Si粉を配合
し、結合剤としてフェノール樹脂を用いて混練し、れん
がを成形後、コークス中に埋め込んで1300〜150
0℃で高温焼成されたものが現在一般的である。
Alumina-carbonaceous bricks used are prepared by blending a carbon raw material and metallic Si powder in addition to the refractory material, kneading them using a phenol resin as a binder, molding the bricks, and then burying them in coke to form 1300. ~ 150
What has been fired at a high temperature at 0 ° C. is currently common.

【0004】しかし、これられんがを長時間使用や鋼中
酸素濃度の高い鋼種に適用した場合、れんがの損傷が著
しく大きくなり、耐用性の低下が問題となっている。こ
れは溶鋼中の酸素によるれんが中のカーボン原料やカー
ボンボンドを構成する炭素の酸化の影響が一般鋼に比べ
非常に大きく、れんが組織の脆化が著しく大きくなるた
め、れんがの耐食性が低下するからである。そのため連
続鋳造用耐火物には、このような使用条件下で十分対応
できる耐酸化性、耐食性に優れたものが要求されている
のが現状である。
However, when this brick is used for a long time or is applied to a steel type having a high oxygen concentration in the steel, the damage to the brick becomes extremely large, and the durability is deteriorated. This is because the influence of the oxygen in the molten steel on the carbon raw material in the brick and the oxidation of the carbon that constitutes the carbon bond is much larger than that of ordinary steel, and the brittle structure becomes significantly brittle, which reduces the corrosion resistance of the brick. Is. Therefore, it is the current situation that the refractory for continuous casting is required to have excellent oxidation resistance and corrosion resistance that can be sufficiently coped with under such use conditions.

【0005】そこで耐酸化性、耐食性の改善を図るため
に、例えば特公平1−52349号公報には、耐火性無機材
料の1種もしくは2種以上からなる骨材55〜97重量
%、0.5mm以下の粒径である2種以上の金属からな
る融点200〜700℃のAl合金、Mg合金の1種以
上1〜30重量%、及び熱硬化性合成樹脂2〜15重量
%より構成され、800℃以上の焼成工程を必要としな
いことを特徴とする溶融金属処理用耐火物が開示されて
いる。
In order to improve the oxidation resistance and the corrosion resistance, for example, Japanese Patent Publication No. 1-52349 discloses an aggregate of 55 to 97% by weight of 0.5 to 97% by weight of an aggregate made of one or more refractory inorganic materials. It is composed of an Al alloy having a melting point of 200 to 700 ° C. made of two or more kinds of metals having a particle diameter of 5 mm or less, one or more kinds of Mg alloy of 1 to 30% by weight, and a thermosetting synthetic resin of 2 to 15% by weight, Disclosed is a refractory for treating molten metal, which does not require a firing step at 800 ° C. or higher.

【0006】更に、より高強度化、高耐食性化を図るた
めに、例えば特開昭61−41861号公報には、マトリック
ス中に窒化アルミニウム結合と炭化珪素結合を有するこ
とを特徴とするカーボン・ボンド材質スライディング・
ノズル用プレートれんがが開示されている。また、該公
報によれば、このプレートれんがは、耐火性原料65〜
99重量%と、アルミニウムの含有量が51〜90重量
%かつシリコンの含有量が10〜49重量%の200メ
ッシュ以下のアルミニウム−シリコン合金粉末0.5〜
20重量%と、200メッシュ以下の炭素粉末0.5〜
15重量%とからなる原料配合物または耐火性原料65
〜99重量%と、アルミニウム粉末0.25〜18重量
%とシリコン粉末0.05〜10重量%とからなる20
0メッシュ以下の混合粉末と、200メッシュ以下の炭
素粉末0.5〜15重量%とからなる原料配合物を有機
結合剤を用いて混練成形した後、窒化性雰囲気中で焼成
することを特徴として製造するものである。
Further, in order to achieve higher strength and higher corrosion resistance, for example, Japanese Patent Application Laid-Open No. 61-41861 discloses a carbon bond characterized by having an aluminum nitride bond and a silicon carbide bond in a matrix. Material sliding ·
Nozzle plate bricks are disclosed. Further, according to the publication, the plate brick is made of refractory raw material 65 to
99% by weight, aluminum content of 51-90% by weight and silicon content of 10-49% by weight, aluminum-silicon alloy powder of 200 mesh or less 0.5-
20 wt% and carbon powder of 200 mesh or less 0.5-
15% by weight of raw material mixture or refractory raw material 65
.About.99% by weight, aluminum powder 0.25 to 18% by weight, and silicon powder 0.05 to 10% by weight 20
A raw material mixture consisting of a mixed powder of 0 mesh or less and 0.5 to 15% by weight of carbon powder of 200 mesh or less is kneaded and molded using an organic binder, and then fired in a nitriding atmosphere. It is manufactured.

【0007】[0007]

【発明が解決しようとする課題】特公平1−52349号公
報に記載されているような低融点金属粉を添加した不焼
成れんがは、れんがが溶鋼と接触した場合に、低融点金
属粉が溶鋼中の酸素と反応し酸化物となり、酸化物生成
に伴う体積膨張によりれんが組織を緻密にし、耐食性を
向上させ、鋼中酸素濃度の高い鋼種を受鋼した場合、従
来のれんがに比べ耐食性が優れている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Unfired bricks added with a low melting point metal powder as described in Japanese Patent Publication No. 1-52349 have a low melting point metal powder when the brick is in contact with the molten steel. When it reacts with the oxygen in it and becomes an oxide, the brick structure becomes dense due to the volume expansion accompanying the oxide formation, the corrosion resistance is improved, and when a steel type with a high oxygen concentration in the steel is received, the corrosion resistance is superior to conventional bricks. ing.

【0008】しかしながら、この不焼成れんがは、焼成
工程を経ていないためにバインダーとして用いているフ
ェノール樹脂の炭化が不十分であり、れんがを構成する
原料の結合性が低い。そのため、従来の焼成した連続鋳
造用炭素含有耐火物に比べれんが強度が低く、そして4
00〜1000℃の中間温度領域でのれんが組織の脆化
と強度脆化が大きい欠点がある。この欠点は、例えば取
鍋用プレートのように中間温度に長時間さらされる用途
の場合、摺動面の摩耗損傷が大きくなり、場合によって
は摺動不能といったプレートとして致命的な欠陥とな
る。従って、この低融点金属粉を添加したれんがの使用
に対しては制限がある。
However, since the unfired brick does not undergo the firing step, carbonization of the phenol resin used as the binder is insufficient, and the binding properties of the raw materials constituting the brick are low. Therefore, the brick strength is lower than that of conventional fired carbon-containing refractory materials for continuous casting, and
There is a drawback that the brittle structure of the brick and the strength embrittlement are large in the intermediate temperature range of 00 to 1000 ° C. This defect is a fatal defect as a plate, such as a large amount of wear and damage on the sliding surface, in some cases, such as a ladle plate that is exposed to an intermediate temperature for a long period of time. Therefore, there is a limit to the use of the brick to which the low melting point metal powder is added.

【0009】この問題の改善策として、低融点金属粉を
添加しバインダーとしてシリコン樹脂を活用した方法が
提案されている。しかしながら、シリコン樹脂は、従来
使用のフェノール樹脂に比べ非常に高価で、その改善効
果も不十分である。
As a countermeasure for this problem, a method has been proposed in which a low melting point metal powder is added and a silicon resin is used as a binder. However, the silicone resin is much more expensive than the conventionally used phenol resin, and its improvement effect is insufficient.

【0010】また、特開昭61−41861号公報に開示され
ているような金属Al粉と金属Si粉を併用するか、ま
たはAl−Si合金を使用した窒化アルミニウム結合と
炭化珪素結合を有するアルミナ・カーボン質れんがにつ
いては、金属Al粉添加量、炭素成分量の調整により、
れんが中で形成され、結合剤として作用する窒化アルミ
ニウムが、先の不焼成れんがの低融点金属粉と同様の効
果をもたらすため鋼中酸素濃度の高い鋼種などの特殊鋼
に適用できる。
Further, as disclosed in JP-A-61-41861, a metal Al powder and a metal Si powder are used in combination, or an alumina having an aluminum nitride bond and a silicon carbide bond using an Al-Si alloy is used.・ For carbonaceous bricks, by adjusting the amount of metallic Al powder added and the amount of carbon component,
Aluminum nitride, which is formed in the brick and acts as a binder, has the same effect as the low melting point metal powder of the unfired brick, and therefore can be applied to special steels such as steel grades having a high oxygen concentration in steel.

【0011】しかし、このれんがの特徴である窒化アル
ミニウムは、窒素ガス雰囲気中においては820℃付近
の低温から生成されるが、酸素−炭素−窒素の三成分が
共存する雰囲気下では、高温で窒素分圧が非常に高い条
件下でないと生成しにくい。
However, the aluminum nitride, which is the characteristic of this brick, is produced at a low temperature of around 820 ° C. in a nitrogen gas atmosphere, but in an atmosphere in which three components of oxygen-carbon-nitrogen coexist, nitrogen is produced at a high temperature. It is difficult to generate unless the partial pressure is very high.

【0012】通常、れんがの焼成は、コークス等の炭素
粉末に埋め込んで行う方法や、プロパンや灯油、重油を
不完全燃焼させCO、CO2雰囲気中で焼成する方法が
一般的である。これらの方法で金属Al粉を添加したれ
んがを高温で焼成した場合、通常窒化アルミニウムより
も炭化アルミニウムが生成する。
Generally, firing of bricks is carried out by embedding it in carbon powder such as coke, or by firing propane, kerosene, or heavy oil incompletely in a CO or CO 2 atmosphere. When a brick to which metal Al powder is added is fired at a high temperature by these methods, aluminum carbide is usually produced rather than aluminum nitride.

【0013】従って、金属Al粉と金属Si粉を併用ま
たはAl−Si合金を活用した窒化アルミニウム結合と
炭化珪素結合を有するアルミナ・カーボン質れんがを得
るためには、炭化アルミニウム生成の抑制を考慮し、窒
素ガス雰囲気のような非常に窒素雰囲気の影響が強い雰
囲気条件を制御して焼成する必要がある。そのため現状
設備での製造することは困難であり、設備の多大なる改
変を必要とする。また、窒化アルミニウム、炭化アルミ
ニウムの多量の生成は、れんがの耐消化性を低下させる
問題がある。
Therefore, in order to obtain an alumina-carbonaceous brick having an aluminum nitride bond and a silicon carbide bond in which a metal Al powder and a metal Si powder are used in combination or an Al--Si alloy is used, suppression of aluminum carbide generation is taken into consideration. It is necessary to control and fire the atmospheric conditions such as a nitrogen gas atmosphere, which is highly influenced by the nitrogen atmosphere. Therefore, it is difficult to manufacture with the current equipment, and the equipment needs to be greatly modified. Further, the production of a large amount of aluminum nitride and aluminum carbide has a problem of reducing the digestion resistance of bricks.

【0014】即ち、本発明の目的は、長時間使用や溶鋼
中の酸素濃度の高い鋼種などに対応できる高耐食性を有
するスライドバルブ用プレート、鋳造用ノズルなどに適
した連続鋳造用耐火物及びその製造方法を提供すること
にある。
That is, an object of the present invention is a refractory for continuous casting, which is suitable for a slide valve plate, a casting nozzle, etc., which has high corrosion resistance and can be used for a long period of time or a steel type having a high oxygen concentration in molten steel. It is to provide a manufacturing method.

【0015】[0015]

【課題を解決するための手段】即ち、本発明に係る連続
鋳造用耐火物は、粒度0.2mm以上の金属Al粉(A)
と粒度0.2〜0.1mmの金属Al粉(B)とをA/B=
1〜3の構成比で1〜8重量%、金属Si粉を0.5〜
6重量%の範囲の量でかつ金属Al粉と金属Si粉の合
計量の40重量%以上の量、粒度が10μm以下の超微
粉仮焼アルミナを3〜20重量%、炭素原料を2〜12
重量%、残部が耐火性原料なる耐火組成物及び該耐火組
成物に対して外掛で2〜15重量%の結合剤から構成さ
れ、非酸化性雰囲気中で焼成されていることを特徴とす
る。
That is, the refractory for continuous casting according to the present invention is a metal Al powder (A) having a particle size of 0.2 mm or more.
And metal Al powder (B) having a particle size of 0.2 to 0.1 mm A / B =
The composition ratio of 1 to 3 is 1 to 8% by weight, and the metal Si powder is 0.5 to 0.5.
Amounts in the range of 6% by weight and 40% by weight or more of the total amount of metallic Al powder and metallic Si powder, 3 to 20% by weight of ultrafine powder calcined alumina having a particle size of 10 μm or less, and 2 to 12 carbon raw materials.
The composition is characterized in that it is composed of a refractory composition, which is a weight-resisting material, the balance being a refractory composition and a binder in an amount of 2 to 15% by weight with respect to the refractory composition, and is fired in a non-oxidizing atmosphere.

【0016】更に、本発明に係る連続鋳造用耐火物の製
造方法は、粒度0.2mm以上の金属Al粉(A)と粒度
0.2〜0.1mmの金属Al粉(B)とをA/B=1〜3
の構成比で1〜8重量%、金属Si粉を0.5〜6重量
%の範囲の量でかつ金属Al粉と金属Si粉の合計量の
40重量%以上の量、粒度が10μm以下の超微粉仮焼
アルミナを3〜20重量%、炭素原料を2〜12重量
%、残部が耐火性原料なる耐火組成物に、外掛で2〜1
5重量%の結合剤を混練し、所定の形状に成形した後、
850〜1100℃の温度で、非酸化性雰囲気中で焼成
することを特徴とする。
Further, in the method for producing a refractory for continuous casting according to the present invention, a metal Al powder (A) having a particle size of 0.2 mm or more and a metal Al powder (B) having a particle size of 0.2 to 0.1 mm are used. / B = 1 to 3
In the composition ratio of 1 to 8% by weight, the amount of the metal Si powder is in the range of 0.5 to 6% by weight, and the amount of the metal Al powder and the metal Si powder is 40% by weight or more, and the particle size is 10 μm or less. Ultrafine powder calcined alumina is 3 to 20% by weight, carbon raw material is 2 to 12% by weight, and the balance is 2-1 by external coating on a refractory composition which is a refractory raw material.
After kneading 5% by weight of the binder and molding into a predetermined shape,
It is characterized by firing at a temperature of 850 to 1100 ° C. in a non-oxidizing atmosphere.

【0017】[0017]

【作用】本発明は、金属アルミニウムが低融点であるこ
と、そして仮焼アルミナの高温での焼結性に着目し、熱
処理方法の検討と金属Al粉の添加量、粒度と超微粉仮
焼アルミナの活用等について検討を行った結果、金属A
l粉の添加量、粒度と金属Si粉の添加量を調整し、超
微粉仮焼アルミナを添加しかつ非酸化雰囲気中850〜
1100℃の焼成温度で焼成することにより、耐スポー
ル性、耐消化性を損なうことなく、耐火物の強度、中間
温度領域での耐酸化性と組織脆化を改善し耐食性を向上
させるものである。
The present invention pays attention to the fact that metallic aluminum has a low melting point and the sinterability of calcined alumina at high temperature, and the examination of the heat treatment method, the addition amount of metallic Al powder, the particle size and the ultrafine powder calcined alumina. As a result of examining utilization of
The amount of powder added, the particle size and the amount of metal Si powder added are adjusted, ultrafine powder calcined alumina is added, and 850 to 850 in a non-oxidizing atmosphere.
By firing at a firing temperature of 1100 ° C, the strength of the refractory, the oxidation resistance in the intermediate temperature range and the structure embrittlement are improved without impairing the spall resistance and digestion resistance, and the corrosion resistance is improved. .

【0018】すなわち、金属Al粉の粒度と添加量を限
定した耐火物を非酸化雰囲気850〜1100℃の焼成
温度で焼成することにより、添加した金属Al粉が軟化
してマトリックス組織の微細な部位まで浸透し、れんが
組織全体を緻密で強固なものにする。この作用により耐
食性、耐火物の強度、中間温度領域での組織脆化と耐酸
化性が改善される。
That is, by firing a refractory material in which the grain size and the addition amount of the metal Al powder are limited at a firing temperature of 850 to 1100 ° C. in a non-oxidizing atmosphere, the added metal Al powder is softened and a fine portion of the matrix structure is formed. Penetrate all the way to make the entire brick structure dense and strong. By this action, the corrosion resistance, the strength of the refractory, the structure embrittlement in the intermediate temperature range and the oxidation resistance are improved.

【0019】ここで焼成温度を限定した理由は、焼成温
度が850℃未満の場合、金属Al粉の軟化、溶融が不
十分と結合剤例えばフェノール樹脂の炭化が不十分で組
織脆化が進み、先に述べた改善効果が見られないためで
ある。また、1100℃を超える焼成温度で焼成した場
合は、添加した金属Al粉が炭素原料と反応して炭化物
を生成することにより、非常に高強度の耐火物を得るこ
とができるが、耐消化性、耐食性、耐スポール性の低下
を招くので、連続鋳造用耐火物として使用に適さないた
めである。
The reason why the firing temperature is limited here is that when the firing temperature is lower than 850 ° C., the softening and melting of the metal Al powder are insufficient, the carbonization of the binder such as the phenol resin is insufficient, and the structure becomes brittle. This is because the improvement effect described above cannot be seen. Further, when fired at a firing temperature higher than 1100 ° C., the added metal Al powder reacts with the carbon raw material to generate a carbide, whereby a refractory having a very high strength can be obtained, but the fire resistance is high. It is because it is not suitable for use as a refractory for continuous casting, since it causes deterioration of corrosion resistance and spall resistance.

【0020】また、焼成温度と同時に添加する金属粉の
粒度、添加量を限定した理由は、耐火物の耐スポール性
と耐食性のバランスを取るためである。金属Al粉の粒
度の微細化や添加の増加は、耐食性、耐火物の強度、中
間温度領域での組織脆化と耐酸化性等の諸特性の改善に
対し非常に効果があるが、耐スポール性が著しく低下す
るため目的とする耐火物としては不適当である。また、
反対に金属Al粉を粗粒化し過ぎると、限定した焼成温
度で焼成した場合、金属Al粉が軟化しマトリックス組
織を緻密にするが、軟化した金属Al粉の部位が大きな
穴のようになり、組織の緻密性が損なわれ、耐食性が低
下する。本発明は、種々の検討の結果、金属Al粉の粒
度等を限定することにより、耐スポール性と耐食性のバ
ランスを取ることができた。そして金属Si粉は、金属
Al粉添加品における耐消化性の低下防止のために添加
する。金属Si粉の添加量は金属Al粉添加量に合わせ
て調整する必要がある。
The reason for limiting the particle size and the amount of the metal powder added at the same time as the firing temperature is to balance the spall resistance and corrosion resistance of the refractory material. Although finer grain size and increase of addition of metal Al powder are very effective for improving various properties such as corrosion resistance, strength of refractory, structure embrittlement and oxidation resistance in intermediate temperature range, spall resistance It is unsuitable as the target refractory because its properties are significantly reduced. Also,
On the other hand, if the metal Al powder is coarsened too much, the metal Al powder will soften and the matrix structure will become denser if fired at a limited firing temperature, but the softened metal Al powder will become large holes, The compactness of the structure is impaired and the corrosion resistance is reduced. As a result of various studies, the present invention was able to balance the spall resistance and the corrosion resistance by limiting the particle size of the metal Al powder. Then, the metal Si powder is added to prevent deterioration of the digestion resistance of the metal Al powder-added product. The addition amount of the metal Si powder needs to be adjusted according to the addition amount of the metal Al powder.

【0021】また、使用中、耐火物の溶鋼接触部位は、
溶鋼中の酸素により酸化作用を受ける。そのため、炭素
含有耐火物は溶鋼接触部位の炭素原料が酸化され、組織
が脆化し耐食性が低下する。しかし、本発明の耐火物は
溶鋼接触部位が溶鋼中の酸素により酸化作用を受けた場
合、溶鋼接触面の炭素原料が酸化されてもマトリックス
組織の微細な部位まで浸透した金属Alと、添加されて
いる粒度10μm以下の超微粉仮焼アルミナが反応し、
溶鋼接触面に強固なアルミナ焼結層を形成し、耐食性、
溶鋼流に対する耐摩耗性をより向上させる。
During use, the molten steel contact portion of the refractory is
Oxidized by oxygen in molten steel. Therefore, in the carbon-containing refractory, the carbon raw material at the molten steel contact site is oxidized, the structure becomes brittle, and the corrosion resistance decreases. However, when the molten steel contact portion is oxidized by oxygen in the molten steel, the refractory of the present invention is added with metallic Al that has penetrated to the fine portion of the matrix structure even if the carbon raw material on the molten steel contact surface is oxidized. The ultra fine powder calcined alumina with a particle size of 10 μm or less reacts,
By forming a strong alumina sintered layer on the molten steel contact surface, corrosion resistance,
Further improve wear resistance to molten steel flow.

【0022】以下、本発明に使用する原料の構成につい
て説明する。添加する金属粉のうち、金属Al粉の添加
量は、1〜8重量%が適当であり、金属Al粉の添加量
が1重量%未満であると目的とする効果を得ることがで
きず、また、金属Al粉の添加量が8重量%を超える場
合耐食性は向上するが耐スポール性が損なわれる。
The constitution of the raw materials used in the present invention will be described below. Among the metal powders to be added, the addition amount of the metal Al powder is appropriately 1 to 8% by weight, and if the addition amount of the metal Al powder is less than 1% by weight, the desired effect cannot be obtained, When the amount of the metal Al powder added is more than 8% by weight, corrosion resistance is improved but spall resistance is impaired.

【0023】添加する金属Al粉の粒度構成は、粒度
0.2mm以上、好ましくは0.2〜0.5mmの金属A
l粉(A)と、粒度0.2〜0.1mmの金属Al粉(B)の
併用が良く、構成は重量比でA/B=1〜3が適当であ
る。これは、A/B=1未満の場合耐スポール性が低下
し、A/B=3を超える場合には金属Al粉が軟化、溶
融した時れんが組織の緻密性が損なわれ、耐食性の低下
を招き易くなるためである。
The particle size composition of the metal Al powder to be added is such that the particle size of the metal A is 0.2 mm or more, preferably 0.2 to 0.5 mm.
1 powder (A) and a metal Al powder (B) having a particle size of 0.2 to 0.1 mm are preferably used in combination, and the composition is preferably A / B = 1 to 3 in weight ratio. This is because when A / B = 1 is less than 1, the spall resistance is reduced, and when A / B = 3 is exceeded, the metal Al powder is softened, and when melted, the denseness of the brick structure is impaired and corrosion resistance is reduced. This is because it is easy to invite them.

【0024】また、金属Si粉は、耐消化性の面から金
属Al粉の添加量に合わせて添加量を調整する。金属S
i粉の添加量としては、金属Al粉と金属Si粉の添加
金属粉総量の40%以上が適正であり、好ましくは40
〜80%である。
The amount of the metallic Si powder added is adjusted in accordance with the amount of the metallic Al powder added in terms of digestion resistance. Metal S
As the amount of i powder added, 40% or more of the total amount of added metal powder of metal Al powder and metal Si powder is appropriate, and preferably 40%.
~ 80%.

【0025】次に、粒度10μm以下の超微粉仮焼アル
ミナの添加量は、3〜20重量%が適当である。添加量
が3重量%未満の場合、超微粉仮焼アルミナの添加効果
を得ることができない。添加量が20重量%を超える場
合、耐食性、溶鋼流に対する耐摩耗性は向上するが、そ
の反面溶鋼接触部の耐スポール性が低下するため、溶鋼
接触部に亀裂が多発し、溶鋼接触部の剥離やれんが内部
への地金の侵入により、れんがの損傷が大きくなると予
想され適当でない。
Next, the addition amount of the ultrafine powder calcined alumina having a particle size of 10 μm or less is appropriately 3 to 20% by weight. If the amount added is less than 3% by weight, the effect of adding ultrafine powder calcined alumina cannot be obtained. When the addition amount exceeds 20% by weight, corrosion resistance and wear resistance to molten steel flow are improved, but on the other hand, spall resistance of the molten steel contact portion is decreased, so that cracks frequently occur in the molten steel contact portion, and the molten steel contact portion Brick damage is expected to increase due to peeling and intrusion of metal into the brick, which is not appropriate.

【0026】そして使用する炭素原料は鱗状黒鉛、人造
黒鉛、カーボンブラック、コークス粉、ピッチ粉等の公
知の炭素原料を使用することができる。炭素原料の添加
量は耐火材料全量に対し2〜12重量%が望ましい。添
加量を限定した理由は、炭素原料が2重量%未満になる
と炭素含有耐火物の耐スラグ浸潤性、耐スポール性が低
下し、また、12重量%を超える添加量では強度的に十
分なものが得られず耐摩耗性の低下や、溶鋼と接触した
場合鋼中酸素によるれんが組織の酸化が著しく大きくな
るためであり、炭素含有耐火物の特性を得ることができ
ないためである。
As the carbon raw material to be used, known carbon raw materials such as scaly graphite, artificial graphite, carbon black, coke powder and pitch powder can be used. The amount of carbon raw material added is preferably 2 to 12% by weight based on the total amount of refractory material. The reason for limiting the addition amount is that when the carbon raw material is less than 2% by weight, the slag infiltration resistance and spall resistance of the carbon-containing refractory material deteriorate, and the addition amount exceeding 12% by weight is sufficient for strength. This is because the wear resistance is not obtained and the oxidation of the brick structure due to oxygen in the steel is significantly increased when the steel comes into contact with molten steel, and the characteristics of the carbon-containing refractory cannot be obtained.

【0027】また、使用する耐火性原料は、ボーキサイ
ト、アンダリュサイト等のアルミナ−シリカ系の天然原
料や焼結アルミナ、電融アルミナ、スピネル、ムライト
等のアルミナ系合成原料を1種または2種以上使用す
る。しかしながら、耐火性原料の選定は、れんがの使用
条件によって決定する必要があり、特に耐火性原料を限
定するものではない。
The refractory raw material used is one or two kinds of alumina-silica-based natural raw materials such as bauxite and andalusite, and alumina-based synthetic raw materials such as sintered alumina, fused alumina, spinel and mullite. Use more. However, it is necessary to select the refractory raw material according to the usage conditions of the brick, and the refractory raw material is not particularly limited.

【0028】本発明の耐火物は、以上に示した原料を所
定量配合して得られた耐火組成物に、結合剤としてフェ
ノール樹脂を2〜15重量%(耐火組成物の重量に対す
る外掛の割合)用いてウェットパン、加圧ニーダー、ハ
イスピードミキサー等の混練機で混練し、フリクション
プレス、オイルプレス、真空フリクションプレス、真空
オイルプレス、場合によっては、ラバープレス等を用い
て所定の形状に成形する。次に、得られた成形体を乾燥
した後、850〜1100℃の非酸化雰囲気下で焼成す
る。焼成の方法としては、成形体をコークス中に埋め込
んでトンネルキルン、シャトルキルンで焼成する方法
や、プロパンや灯油、重油を不完全燃焼させCO、CO
2雰囲気中で焼成する方法等が挙げられる。
The refractory material of the present invention contains a phenolic resin as a binder in an amount of 2 to 15% by weight (a ratio of external coating to the weight of the refractory material) in the refractory material obtained by blending the above-mentioned raw materials in a predetermined amount. ) Using a kneading machine such as a wet pan, a pressure kneader, a high speed mixer, etc., and molding into a predetermined shape using a friction press, an oil press, a vacuum friction press, a vacuum oil press, or a rubber press in some cases. To do. Next, the obtained molded body is dried and then fired in a non-oxidizing atmosphere at 850 to 1100 ° C. As a firing method, a molded body is embedded in coke and fired in a tunnel kiln or a shuttle kiln, or propane, kerosene, and heavy oil are incompletely burned to produce CO, CO.
2 Examples include a method of firing in an atmosphere.

【0029】[0029]

【実施例】以下、実施例により本発明の連続鋳造用耐火
物を更に説明する。 実施例1 焼成温度及び金属Al粉の活用について検討した。検討
はアルミナ・カーボン質れんがを試製して、耐食性と耐
スポール性を評価した。検討の結果を以下に述べる。試
料の作成は、所定の原料を配合し、結合剤としてフェノ
ール樹脂を用いて混練し、成形し、得られた成形体を乾
燥した。そして、乾燥した成形体をコークス中に埋め込
んで所定の焼成温度で還元焼成し、試料とした。この
時、焼成時の雰囲気はコークスにより酸素が遮断された
状態で、非酸化雰囲気となる。耐食性の評価は、転炉ス
ラグでのスラグ侵食テストを行い、テスト後の侵食量を
比較品を100として指数評価した。また、耐スポール
性の評価は、試料表面をバーナーによって急加熱し、亀
裂の発生の有無を目視観察した。
EXAMPLES The refractory material for continuous casting of the present invention will be further described below with reference to examples. Example 1 The firing temperature and utilization of metal Al powder were examined. For the examination, alumina-carbonaceous bricks were trial-produced and the corrosion resistance and spall resistance were evaluated. The results of the examination are described below. The sample was prepared by blending predetermined raw materials, kneading and molding using a phenol resin as a binder, and drying the obtained molded body. Then, the dried compact was embedded in coke and reduction-fired at a predetermined firing temperature to obtain a sample. At this time, the atmosphere during firing is a non-oxidizing atmosphere with oxygen blocked by coke. The corrosion resistance was evaluated by performing a slag erosion test on converter slag, and indexing the amount of erosion after the test with the comparative product as 100. For the evaluation of spall resistance, the sample surface was rapidly heated by a burner, and the presence or absence of cracks was visually observed.

【0030】検討A Al金属粉添加品で焼成温度の検討を行った。表1のA
に検討結果を示す。その結果、A1〜A4(A3及びA
4は本発明品である)の耐食性は比較品比較1に比べ優
れている。また、焼成温度が高くなるにつれて耐食性が
向上するが、焼成温度が1100℃を超えると(A5)、
かえって耐食性は低下する傾向がある。次に、600℃
での酸化テストを行い、A1〜A5の中間温度領域での
耐酸化性を評価した。評価は、酸化後圧縮強度(MPa)
を測定し、形成された酸化層の崩壊状況を観察した。そ
の結果、図1に示すように焼成温度を高くすることによ
り、600℃での酸化後強度が向上する。強度測定にお
いて、650℃、800℃で焼成したA1及びA2は酸
化層が脆く崩れたのに対し、800℃以上で焼成したA
3〜A5は、650℃、800℃で焼成したA1及びA
2のような酸化層の「脆さ」は認められなかった。従っ
て、Al金属粉を添加は、800℃を超える焼成温度で
焼成することで、Al金属粉添加不焼成プレートでの問
題であった中間温度領域での酸化層の「脆さ」を解決す
ることができる。以上の結果から、耐食性、中間温度領
域での耐酸化性等から焼成温度としては、850℃〜1
100℃が望ましいことが判った。
Study A The firing temperature was examined for the Al metal powder added product. A in Table 1
The examination results are shown in. As a result, A1 to A4 (A3 and A
4 is the product of the present invention) is more excellent than the comparative product 1 in the corrosion resistance. Further, as the firing temperature increases, the corrosion resistance improves, but when the firing temperature exceeds 1100 ° C (A5),
On the contrary, the corrosion resistance tends to decrease. Next, 600 ℃
The oxidation resistance in the intermediate temperature range of A1 to A5 was evaluated. Evaluation is compressive strength after oxidation (MPa)
Was measured and the state of collapse of the formed oxide layer was observed. As a result, the strength after oxidation at 600 ° C. is improved by increasing the firing temperature as shown in FIG. In the strength measurement, the oxide layers of A1 and A2 baked at 650 ° C. and 800 ° C. were brittle and crumbled, whereas A baked at 800 ° C. or higher.
3 to A5 are A1 and A baked at 650 ° C. and 800 ° C.
No "brittleness" of the oxide layer such as 2 was observed. Therefore, by adding the Al metal powder, by firing at a firing temperature higher than 800 ° C., it is possible to solve the “brittleness” of the oxide layer in the intermediate temperature region, which was a problem in the non-fired plate with the addition of the Al metal powder. You can From the above results, from the corrosion resistance, the oxidation resistance in the intermediate temperature range and the like, the firing temperature is 850 ° C to 1
It has been found that 100 ° C is desirable.

【0031】[0031]

【表1】 [Table 1]

【0032】検討B Al金属粉の添加量について調査した。表1のBに検討
結果を示す。その結果、Al金属粉添加の増加により、
耐食性は向上する。しかし、添加量の増加は弾性率の増
加を招き、耐スポール性の低下を招く傾向がある。
Study B The amount of Al metal powder added was investigated. The examination results are shown in B of Table 1. As a result, due to the increase of Al metal powder addition,
Corrosion resistance is improved. However, the increase of the addition amount tends to increase the elastic modulus and decrease the spall resistance.

【0033】検討C Al金属粉の粒度構成について調査した。表1のCに検
討結果を示す、ここで、粒度0.2mm以上の金属Al
粉を(A)、粒度0.2mm〜0.1mmの金属Al粉を
(B)とする。その結果、(A)と(B)の重量比(A/B)の
増加により耐食性は低下し、A/B=3を超えると比較
品とほぼ同等の耐食性になる。また、A/B=1未満の
場合、金属Al粉の粒度が細かくなるほど耐食性は向上
するが、耐スペール性が著しく低下するため、目的とす
る用途には適正でないと言える。よって金属Al粉の添
加において、その構成はA/B=1〜3の範囲内が好ま
しいことが判る。
Study C The grain size composition of the Al metal powder was investigated. The examination results are shown in C of Table 1, where the metal Al having a grain size of 0.2 mm or more.
Powder (A), a metal Al powder with a particle size of 0.2 mm to 0.1 mm
(B). As a result, the corrosion resistance decreases due to the increase of the weight ratio (A / B) of (A) and (B), and when A / B = 3 is exceeded, the corrosion resistance becomes almost the same as that of the comparative product. Further, when A / B is less than 1, the finer the particle size of the metal Al powder is, the more the corrosion resistance is improved, but the spare resistance is remarkably reduced, and therefore it cannot be said to be suitable for the intended use. Therefore, it is understood that the composition of the metal Al powder is preferably within the range of A / B = 1 to 3 when added.

【0034】実施例2 Al金属粉とSi金属粉を併用した場合の焼成温度と耐
消化性の関係を調査した。試料の作成は、表2に示すよ
うに所定の原料を配合し、フェノール樹脂を結合剤とし
て用いて混練後、1000kgf/cm2の圧力でφ5
0mm×50mmの形状に成形した。その後、乾燥し、
コークス中に埋め込んで800℃から1500℃の各温
度で焼成した。
Example 2 The relationship between firing temperature and digestion resistance when Al metal powder and Si metal powder were used together was investigated. As shown in Table 2, a sample was prepared by blending predetermined raw materials, kneading with a phenol resin as a binder, and then applying φ5 at a pressure of 1000 kgf / cm 2.
It was molded into a shape of 0 mm × 50 mm. Then dry,
It was embedded in coke and fired at each temperature of 800 ° C to 1500 ° C.

【0035】[0035]

【表2】 [Table 2]

【0036】消化試験は、試料をオートクレーブを用い
て水蒸気圧980MPa、105℃/3時間の条件で行
い、評価は、試験後の試料の亀裂発生状況を目視観察し
た。消化試験の結果を図2に示す。その結果、図2に示
すようにAl金属粉とSi金属粉の金属添加量総量にお
いて、Si金属粉量が40%未満の場合(A、B、C)、
耐消化性は、焼成温度に関係なく非常に悪い。しかし、
Si金属粉量が40%以上(D、E及びF)では、焼成温
度によって若干微亀裂の発生が認められるが、適正な焼
成温度で焼成することで耐消化性の低下を防止すること
ができることが判る。
The digestion test was performed on the sample using an autoclave under the conditions of water vapor pressure of 980 MPa and 105 ° C./3 hours, and the evaluation was conducted by visually observing the crack generation state of the sample after the test. The results of the digestion test are shown in FIG. As a result, as shown in FIG. 2, when the amount of Si metal powder is less than 40% in the total metal addition amount of Al metal powder and Si metal powder (A, B, C),
Digestion resistance is very poor regardless of firing temperature. But,
When the amount of Si metal powder is 40% or more (D, E and F), some cracks are observed depending on the firing temperature, but it is possible to prevent degradation of digestion resistance by firing at an appropriate firing temperature. I understand.

【0037】実施例3 超微粉仮焼アルミナの添加効果について調査した。検討
方法は実施例1と同様である。表3に検討結果を示す。
Example 3 The effect of adding ultrafine calcined alumina was investigated. The examination method is the same as that of the first embodiment. Table 3 shows the examination results.

【0038】[0038]

【表3】 [Table 3]

【0039】その結果、超微粉仮焼アルミナ添加量の増
加とともに耐食性は向上し、超微粉仮焼アルミナの活用
は耐食性向上に効果があることが判る。しかし、添加量
の増加により、耐スポール性が低下する傾向があり、必
要以上の添加は望ましくないといえる。
As a result, it can be seen that the corrosion resistance is improved as the amount of the ultrafine powder calcined alumina added is increased, and the use of the ultrafine powder calcined alumina is effective in improving the corrosion resistance. However, since the spall resistance tends to decrease due to the increase in the amount of addition, it can be said that addition of more than necessary is not desirable.

【0040】実施例4 実施例1ないし3の検討結果を基に、アルミナ・カーボ
ン質れんがを試作し、実炉テストを行った。試作したれ
んがの品質を表4に示す。試作は、表4に示す原料を配
合し、フェノール樹脂を用いて混練し、230mm×1
14mm×65mm形状に成形し、乾燥した後、非酸化
雰囲気下(コークス中に埋め込む)、900℃の焼成温度
で焼成した。表4で示すように本発明品は比較品に比べ
品質が優れている。本発明品1と比較品3及び4につい
て熱間強度特性を調査した。比較品3は、Al金属粉添
加の不焼成プレート材質で、比較品4は、従来使用の焼
成プレート材質である。
Example 4 Based on the examination results of Examples 1 to 3, alumina-carbonaceous bricks were prototyped and tested in an actual furnace. Table 4 shows the quality of prototype bricks. For the trial production, the raw materials shown in Table 4 were blended and kneaded using a phenol resin, and 230 mm x 1
After being molded into a 14 mm × 65 mm shape and dried, it was fired at a firing temperature of 900 ° C. in a non-oxidizing atmosphere (embedded in coke). As shown in Table 4, the product of the present invention is superior in quality to the comparative product. The hot strength characteristics of the present invention product 1 and the comparative products 3 and 4 were investigated. Comparative product 3 is a non-fired plate material added with Al metal powder, and comparative product 4 is a conventionally used firing plate material.

【0041】[0041]

【表4】 [Table 4]

【0042】その結果、図3に示すように、従来材質の
熱間強度特性は、高温において強度が低下する傾向があ
るが、Al金属粉添加品(本発明品1と比較品3)は、高
温での強度低下がなく、そして本発明品1は、比較品3
に比べ強度が高い。従って、本発明品は従来の熱間強度
特性を改善し、向上させていることが判る。また、本発
明品1と比較品3及び4を鋼中酸素濃度の高い鋼種(酸
素濃度100〜200ppm)での操作が多いA社にて
取鍋スライドバルブプレートとして使用した。その結
果、比較品3、4は溶鋼接触部の溶損が激しく、耐用は
最高3チャージ(以下、chと表す)が限界であったが、
本発明品1は比較品に比べ面損傷が低減し、4chの安
定使用が可能になり、耐用が向上した。次に、本発明品
2をB社の取鍋用スライドバルブ下ノズルとして使用し
た。その結果、比較品5は溶損が大きく、3chが使用
の限界であった。しかし、本発明品2の適用により、4
chの安定使用が可能になった。
As a result, as shown in FIG. 3, the hot strength characteristics of the conventional materials tend to decrease in strength at high temperatures, but the Al metal powder added products (Invention product 1 and Comparative product 3) are There is no reduction in strength at high temperature, and the product 1 of the present invention is the product of comparative product 3
Higher strength than Therefore, it can be seen that the product of the present invention improves and improves the conventional hot strength property. Further, the product 1 of the present invention and the comparative products 3 and 4 were used as ladle slide valve plates by Company A, which often operates with steel types having a high oxygen concentration in steel (oxygen concentration 100 to 200 ppm). As a result, the comparative products 3 and 4 had severe melting loss at the molten steel contact portion, and the maximum service life was 3 charges (hereinafter referred to as ch), but
The product 1 of the present invention has less surface damage than the comparative product, enables stable use of 4 channels, and has improved durability. Next, the product 2 of the present invention was used as a slide valve lower nozzle for a ladle of Company B. As a result, Comparative product 5 had a large melting loss, and the limit of use was 3ch. However, by applying the product 2 of the present invention, 4
The stable use of ch has become possible.

【0043】[0043]

【発明の効果】本発明の連続鋳造用耐火物は、長時間使
用や溶鋼中の酸素濃度の高い鋼種などに対応できる高耐
食性並びに耐スポール性を有し、スライドバルブ用プレ
ート、鋳造用ノズルなどに適した耐火物である。
EFFECTS OF THE INVENTION The refractory for continuous casting of the present invention has high corrosion resistance and spall resistance that can be used for a long period of time or a steel type having a high oxygen concentration in molten steel, and has a slide valve plate, a casting nozzle, etc. It is a refractory suitable for.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の検討Aで得られた耐火物の焼成温度
(℃)と600℃3時間酸化後の圧縮強度(MPa)の関係
を示すグラフである。
FIG. 1 Firing temperature of the refractory material obtained in Study A of Example 1
2 is a graph showing the relationship between (° C.) and the compressive strength (MPa) after oxidation at 600 ° C. for 3 hours.

【図2】実施例2において得られた耐火物A〜Fの金属
Al粉と金属Si粉の総量中の金属Si粉の割合(%)と
耐消化性の関係を焼成温度(℃)毎にまとめた結果であ
る。
FIG. 2 shows the relationship between the ratio (%) of metal Si powder in the total amount of metal Al powder and metal Si powder of refractories A to F obtained in Example 2 and the digestion resistance for each firing temperature (° C.). This is the summary result.

【図3】実施例4で得られた耐火物の各測定温度(℃)に
おける熱間曲げ強度(MPa)を示すグラフである。
FIG. 3 is a graph showing hot bending strength (MPa) at each measurement temperature (° C.) of the refractory material obtained in Example 4.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒度0.2mm以上の金属Al粉(A)と
粒度0.2〜0.1mmの金属Al粉(B)とをA/B=1
〜3の構成比で1〜8重量%、金属Si粉を0.5〜6
重量%の範囲の量でかつ金属Al粉と金属Si粉の合計
量の40重量%以上の量、粒度が10μm以下の超微粉
仮焼アルミナを3〜20重量%、炭素原料を2〜12重
量%、残部が耐火性原料なる耐火組成物及び該耐火組成
物に対して外掛で2〜15重量%の結合剤から構成さ
れ、非酸化性雰囲気中で焼成されていることを特徴とす
る連続鋳造用耐火物。
1. A / B = 1 for a metal Al powder (A) having a particle size of 0.2 mm or more and a metal Al powder (B) having a particle size of 0.2 to 0.1 mm.
1 to 8 wt% in composition ratio of ~ 3, 0.5 to 6 of metal Si powder
An amount of 40% by weight or more of the total amount of the metal Al powder and the metal Si powder in an amount in the range of% by weight, 3 to 20% by weight of ultrafine powder calcined alumina having a particle size of 10 μm or less, and 2 to 12% by weight of carbon raw material. %, The balance being composed of a refractory composition which is a refractory raw material and a binder of 2 to 15% by weight on the basis of the refractory composition, which is fired in a non-oxidizing atmosphere. Refractories for.
【請求項2】 粒度0.2mm以上の金属Al粉(A)と
粒度0.2〜0.1mmの金属Al粉(B)とをA/B=1
〜3の構成比で1〜8重量%、金属Si粉を0.5〜6
重量%の範囲の量でかつ金属Al粉と金属Si粉の合計
量の40重量%以上の量、粒度が10μm以下の超微粉
仮焼アルミナを3〜20重量%、炭素原料を2〜12重
量%、残部が耐火性原料なる耐火組成物に、外掛で2〜
15重量%の結合剤を混練し、所定の形状に成形した
後、850〜1100℃の温度で、非酸化性雰囲気中で
焼成することを特徴とする連続鋳造用耐火物の製造方
法。
2. A / B = 1 of a metal Al powder (A) having a particle size of 0.2 mm or more and a metal Al powder (B) having a particle size of 0.2 to 0.1 mm.
1 to 8 wt% in composition ratio of ~ 3, 0.5 to 6 of metal Si powder
An amount of 40% by weight or more of the total amount of the metal Al powder and the metal Si powder in an amount in the range of% by weight, 3 to 20% by weight of ultrafine powder calcined alumina having a particle size of 10 μm or less, and 2 to 12% by weight of carbon raw material. %, The balance is 2 to the external refractory composition
A method for producing a refractory for continuous casting, which comprises kneading 15% by weight of a binder, shaping the mixture into a predetermined shape, and then firing the mixture in a non-oxidizing atmosphere at a temperature of 850 to 1100 ° C.
JP5004072A 1993-01-13 1993-01-13 Refractory for continuous casting and manufacturing method thereof Expired - Fee Related JPH0825786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5004072A JPH0825786B2 (en) 1993-01-13 1993-01-13 Refractory for continuous casting and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5004072A JPH0825786B2 (en) 1993-01-13 1993-01-13 Refractory for continuous casting and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06206759A JPH06206759A (en) 1994-07-26
JPH0825786B2 true JPH0825786B2 (en) 1996-03-13

Family

ID=11574611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5004072A Expired - Fee Related JPH0825786B2 (en) 1993-01-13 1993-01-13 Refractory for continuous casting and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0825786B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101977869B (en) * 2008-03-25 2013-09-04 黑崎播磨株式会社 Plate brick and production method therefor
US8609562B2 (en) 2008-12-18 2013-12-17 Krosakiharima Corporation Plate brick production method and plate brick

Also Published As

Publication number Publication date
JPH06206759A (en) 1994-07-26

Similar Documents

Publication Publication Date Title
JP4634263B2 (en) Magnesia carbon brick
JP4681456B2 (en) Low carbon magnesia carbon brick
WO2008056655A1 (en) Durable sleeve bricks
JP5737503B2 (en) Plate refractory for sliding nozzle
JPH0825786B2 (en) Refractory for continuous casting and manufacturing method thereof
JP3638081B2 (en) Refractory material containing low carbonaceous carbon and method for producing the same
JPH05105506A (en) Slide valve plate brick
JP6767659B2 (en) Slide plate refractory
JP2006021972A (en) Magnesia-carbon brick
JP3197680B2 (en) Method for producing unburned MgO-C brick
JP4234804B2 (en) Plate brick for sliding nozzle device
JPS6141861B2 (en)
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
TWI762076B (en) refractory
US20230028785A1 (en) Refractory product
JP6744555B2 (en) Sliding gate type plate refractory
JP6784922B2 (en) Slide plate refractory
JPH09328378A (en) Production of carbon-containing basic refractory
JPH0585805A (en) Carbon-containing fire-resistant material
KR840001242B1 (en) A lining structure of converter
JP2005139062A (en) Low carbon unfired brick
CA1189093A (en) Carbon-containing refractory
JP4671141B2 (en) Upper nozzle brick
JPH07165461A (en) Baked magnesia-chromium brick and its production
JPH0283250A (en) Production of carbon-containing calcined refractory

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees