JPH07165461A - Baked magnesia-chromium brick and its production - Google Patents

Baked magnesia-chromium brick and its production

Info

Publication number
JPH07165461A
JPH07165461A JP5342095A JP34209593A JPH07165461A JP H07165461 A JPH07165461 A JP H07165461A JP 5342095 A JP5342095 A JP 5342095A JP 34209593 A JP34209593 A JP 34209593A JP H07165461 A JPH07165461 A JP H07165461A
Authority
JP
Japan
Prior art keywords
magnesia
brick
raw material
fired
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5342095A
Other languages
Japanese (ja)
Inventor
Tsuneo Kitai
恒雄 北井
Hirosuke Osaki
博右 大崎
Tetsuo Yamamoto
哲夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP5342095A priority Critical patent/JPH07165461A/en
Publication of JPH07165461A publication Critical patent/JPH07165461A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To obtain a baked magnesia-chromium brick having excellent corrosion resistance and slag infiltration resistance and to provide a process for the production of the brick. CONSTITUTION:This baked magnesia-chromium brick contains fine metal particles dispersed in a refractory texture and is obtained by forming a composition composed mainly of 5-70wt.% of chromite and the remaining part of magnesia raw material and baking in a non-oxidizing atmosphere at a high temperature. The baked magnesia-chromium brick contains fine metal particles dispersed in the refractory texture in non-oxidized state and, accordingly, reaction of the fine metal particles with MgO component of the magnesia raw material takes place during use to form a spinel represented by picrochromite. The brick has excellent corrosion resistance and slag infiltration resistance owing to the high melting point, low thermal expansion coefficient, etc., of the spinel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐食性、耐スラグ浸透
性に優れたマグネシア−クロム質焼成レンガおよびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesia-chromic fired brick excellent in corrosion resistance and slag penetration resistance and a method for producing the same.

【0002】[0002]

【従来の技術】マグネシア質原料とクロム鉄鉱を主骨材
とするマグネシア−クロム質焼成レンガは、耐食性、耐
熱スポーリング性に優れており、例えば、溶鋼真空脱ガ
ス炉の内張り材として使用されている。その材質改善
は、従来から盛んに行われている。例えば、特開平2−
141465号公報ではCr、Fe、Mg、Al、Si
などの金属粉およびその合金粉が添加された例が見られ
る。これらの金属粉や合金粉は、焼成工程または使用時
に酸化され、その際の体積膨張で耐火物組織の空隙を充
填し、耐火物組織を低気孔化させ、前記溶鋼真空脱ガス
炉の内張り材の耐食性向上に寄与されている。
2. Description of the Related Art Magnesia-chromic fired bricks containing a magnesia raw material and chromite as a main aggregate are excellent in corrosion resistance and heat spalling resistance, and are used, for example, as a lining material for a molten steel vacuum degassing furnace. There is. Conventionally, the material improvement has been actively performed. For example, Japanese Patent Laid-Open No. 2-
In Japanese Patent No. 141465, Cr, Fe, Mg, Al, Si
There are examples in which metal powders such as and alloy powders thereof are added. These metal powders and alloy powders are oxidized during the firing step or during use, and the volume expansion at that time fills the voids of the refractory structure to reduce the porosity of the refractory structure, and the lining material for the molten steel vacuum degassing furnace. Contributes to the improvement of corrosion resistance.

【0003】また、マグネシア−クロム質焼成レンガに
添加される酸化クロムは著しく難焼結である。この問題
を解決するため、特開昭62−207757号公報では
酸化クロムに金属クロムを併用し、両者が共晶を形成す
ることにより融点を降下させ難焼結を改善し、耐食性、
耐スラグ性に優れたマグネシア−クロム質焼成レンガが
紹介されている。
Also, the chromium oxide added to the magnesia-chromic fired brick is extremely difficult to sinter. In order to solve this problem, in Japanese Patent Laid-Open No. 62-207757, chromium oxide is used in combination with metallic chromium to form a eutectic, thereby lowering the melting point to improve sintering resistance, corrosion resistance,
Magnesia-chrome fired bricks with excellent slag resistance are introduced.

【0004】[0004]

【発明が解決しようとする課題】しかし、近年、高級鋼
の需要が増大するにしたがって二次精錬処理比率が増大
し、上記従来のマグネシア−クロム質焼成レンガでは十
分な寿命が得られていない。また、マグネシア−クロム
質焼成レンガではスラグ成分の浸透による変質層の形成
により、構造的スポーリングによる損傷が大きい。そこ
で本発明は、従来材質よりさらに耐食性および耐スラグ
浸透性に優れたマグネシア−クロム質焼成レンガを提供
したものである。
However, in recent years, as the demand for high-grade steel has increased, the secondary refining treatment ratio has increased, and the conventional magnesia-chromic fired bricks have not been able to achieve a sufficient life. Further, in magnesia-chromic fired bricks, damage due to structural spalling is large due to the formation of an altered layer due to the penetration of slag components. Therefore, the present invention provides a magnesia-chrome fired brick which is more excellent in corrosion resistance and slag penetration resistance than conventional materials.

【0005】[0005]

【課題を解決するための手段】本発明のマグネシア−ク
ロム質焼成レンガの構成は、 (1) クロム鉄鉱5〜70wt%、残部がマグネシア
質原料を主材とした配合物を焼結してなり、耐火物組織
内に金属微細粒子が非酸化状態で混在したマグネシア−
クロム質焼成レンガ。 (2) クロム鉄鉱5〜70wt%、金属粉10wt%
以下、残部がマグネシア質原料を主材とした配合物を焼
結してなり、耐火物組織内に金属微細粒子が非酸化状態
で混在したマグネシア−クロム質焼成レンガ。 (3) クロム鉄鉱5〜70wt%、残部がマグネシア
質原料を主材とした配合物を成形後、非酸化雰囲気で高
温焼成するマグネシア−クロム質焼成レンガの製造方
法。 (4) クロム鉄鉱5〜70wt%、金属粉10wt%
以下、残部がマグネシア質原料を主材とした配合物を成
形後、非酸化雰囲気で高温焼成するマグネシア−クロム
質焼成レンガの製造方法。 (5) 非酸化雰囲気が酸素分圧10%以下である上記
(3)又は(4)記載のマグネシア−クロム質焼成レン
ガの製造方法。である。
[Means for Solving the Problems] The composition of the magnesia-chromic fired brick of the present invention comprises: (1) Sintering a compounded mixture of chromium iron ore of 5 to 70 wt% and the balance of a magnesia raw material as a main material. , Magnesia containing fine metal particles in the refractory structure in a non-oxidized state
Chrome fired brick. (2) Chromite ore 5 to 70 wt%, metal powder 10 wt%
Hereinafter, a magnesia-chromium fired brick in which the remainder is obtained by sintering a composition containing a magnesia raw material as a main material and fine metal particles are mixed in a non-oxidized state in the refractory structure. (3) A method for producing a magnesia-chromic fired brick, in which a mixture containing 5 to 70 wt% of chromite ore and the balance of a magnesia raw material as a main material is molded and then fired at a high temperature in a non-oxidizing atmosphere. (4) Chromite ore 5 to 70 wt%, metal powder 10 wt%
Hereinafter, a method for producing a magnesia-chromic fired brick, in which a composition having the balance of a magnesia raw material as a main component is molded and then fired at a high temperature in a non-oxidizing atmosphere. (5) The method for producing a magnesia-chromic fired brick according to the above (3) or (4), wherein the non-oxidizing atmosphere has an oxygen partial pressure of 10% or less. Is.

【0006】[0006]

【作用】クロム鉄鉱とマグネシア質原料を主材とした配
合物を焼結してなることは、従来材質と同じである。本
発明の最大の特徴は、耐火物組織内に金属微細粒子が非
酸化状態で混在していることにある。
The function is the same as that of the conventional material, which is obtained by sintering a compound containing chromite ore and a magnesia raw material as main materials. The greatest feature of the present invention is that fine metal particles are mixed in the refractory structure in a non-oxidized state.

【0007】金属粉を添加してマグネシア−クロム質焼
成レンガを製造することは公知技術である。しかし、不
焼成レンガあるいは不定形耐火物でない限り、金属粉は
その焼成工程で酸化される。特開平2−141465号
公報に見られるように不焼成レンガおよび不定形耐火物
に金属粉を含有したものについてその効果が述べられて
いる。しかし、不焼成レンガおよび不定形耐火物は焼成
レンガのように骨材とマトリックスが焼結しておらず、
焼成レンガに比べマグネシア質原料のMgO成分と金属
粉の使用中における反応が十分でなく金属粉が残存して
いても耐食性は向上しない。
It is known in the art to add metal powder to produce magnesia-chromic fired bricks. However, unless it is unfired brick or amorphous refractory, the metal powder is oxidized in the firing process. As described in Japanese Patent Application Laid-Open No. 2-141465, the effect of unfired brick and amorphous refractory containing metal powder is described. However, unfired bricks and amorphous refractories do not have the aggregate and matrix sintered like fired bricks,
Corrosion resistance is not improved even when the MgO component of the magnesia raw material and the metal powder are not sufficiently reacted during use and the metal powder remains as compared with the case of baked bricks.

【0008】これに対し、焼成レンガでしかも耐火物組
織内に金属微細粒子が非酸化状態で混在したマグネシア
−クロム質焼成レンガは、耐食性に格段に優れているこ
とがわかった。これは、金属微細粒子が稼動面の高温雰
囲気により、マグネシア質原料のMgO成分と反応して
ピクロクロマイト(MgO・Cr23)に代表されるス
ピネルを生成するためと思われる。ピクロクロマイトは
高融点、低熱膨張性などの特性により、耐食性および耐
スラグ浸透性に優れている。
[0008] On the other hand, it was found that the fired bricks and the magnesia-chromium fired bricks in which fine metal particles were mixed in the refractory structure in a non-oxidized state were remarkably excellent in corrosion resistance. It is considered that this is because the fine metal particles react with the MgO component of the magnesia raw material in a high temperature atmosphere on the operating surface to generate spinel represented by picromchromite (MgO.Cr 2 O 3 ). Picrochromite has excellent corrosion resistance and slag penetration resistance due to its characteristics such as high melting point and low thermal expansion.

【0009】耐火物組織内に金属微細粒子が非酸化状態
で混在した材質にするためには、例えば次の方法があ
る。すなわち、焼成を非酸化雰囲気で行うことである。
炭素質焼成レンガの製造においては、炭素成分の酸化防
止のために非酸化雰囲気での焼成が行われることがあ
る。しかし、従来のマグネシア−クロム質焼成レンガな
どでは特別な操作をしない大気中での焼成、すなわち、
酸化雰囲気での焼成が行われている。
In order to obtain a material in which fine metal particles are mixed in a non-oxidized state in the refractory structure, there is, for example, the following method. That is, firing is performed in a non-oxidizing atmosphere.
In the production of carbonaceous fired bricks, firing may be performed in a non-oxidizing atmosphere to prevent oxidation of carbon components. However, in conventional magnesia-chromic fired bricks, etc., fired in the atmosphere without special operation, that is,
Firing is performed in an oxidizing atmosphere.

【0010】非酸化雰囲気としては焼成中のレンガ表面
に接する気体の酸素分圧が10%以下であることが望ま
しい。焼成時に非酸化雰囲気にする方法は特に限定され
るものではない。例えば、真空雰囲気、不活性ガスの導
入、昜酸化性部材または、空気遮断部材などで覆うなど
の方法があるが、設備、コストなどの兼ね合いから、任
意の手段で行えばよい。
As the non-oxidizing atmosphere, it is desirable that the oxygen partial pressure of the gas in contact with the brick surface during firing is 10% or less. The method of setting a non-oxidizing atmosphere during firing is not particularly limited. For example, there are methods such as vacuum atmosphere, introduction of an inert gas, and covering with a oxidative member, an air blocking member, or the like, but it may be performed by any means in consideration of equipment, cost, and the like.

【0011】本発明のレンガ材質には、クロム鉄鉱が配
合されている。クロム鉄鉱にはCr酸化物、Fe酸化物
などが含有されている。そして、非酸化雰囲気で焼成さ
れることにより、Cr酸化物、Fe酸化物などが還元さ
れ、金属微細粒子が生成される。
The brick material of the present invention contains chromite. Chromite contains Cr oxide, Fe oxide and the like. Then, by firing in a non-oxidizing atmosphere, Cr oxides, Fe oxides, etc. are reduced, and fine metal particles are generated.

【0012】また、本発明のレンガ配合には、金属粉を
特定量添加してもよい。非酸化雰囲気での焼成により、
金属粉は酸化せずにそのままの状態で残留する。前記し
たクロム鉄鉱からくる金属は主としてクロム鉄鉱粒内お
よびその周囲に生成されるが、添加した金属粉はマトリ
ックス部と共にマグネシア質原料内に浸透し、耐火物組
織内においてより均一に混在する。
A specific amount of metal powder may be added to the brick composition of the present invention. By firing in a non-oxidizing atmosphere,
The metal powder remains as it is without being oxidized. The above-mentioned metal from chromite is mainly formed in and around the chromite grains, but the added metal powder permeates into the magnesia raw material together with the matrix part and is more uniformly mixed in the refractory structure.

【0013】本発明の効果を顕著にするためには、耐火
物の断面組織において、10×10mmあたりに金属微
細粒子が占める総面積が0.01mm2 以上であること
が望ましい。図はマグネシア−クロム質焼成レンガの顕
微鏡写真の写生図であり、図1は本発明実施例品、図2
は比較例品の断面組織を示している。図1は本発明実施
例品において水平線群で囲んだ白抜き部分が金属微細粒
子である。実際には、金属光沢をしている。図2の従来
品では、この金属微細粒子の存在が確認できない。
In order to make the effect of the present invention remarkable, it is desirable that the total area occupied by the fine metal particles per 10 × 10 mm is 0.01 mm 2 or more in the cross-sectional structure of the refractory. FIG. 1 is a photomicrograph of a magnesia-chromic fired brick, FIG. 1 is an example of the present invention, and FIG.
Indicates the cross-sectional structure of the comparative example product. In FIG. 1, the white parts surrounded by the horizontal line group in the product of the present invention are fine metal particles. In fact, it has a metallic sheen. In the conventional product shown in FIG. 2, the presence of the metal fine particles cannot be confirmed.

【0014】本発明のレンガを、例えば非酸化雰囲気に
よる焼成によって大量生産しようとすると、レンガ表面
が一部酸化し、その部分は金属粉が酸化してしまうこと
がある。本発明のレンガは、組織全体に金属微細粒子が
混在することが好ましいことはもちろんであるが、一部
であれば酸化層が存在してもよい。しかし、本発明の効
果を得るには、金属微細粒子が混在する組織が、体積に
おいて、レンガ全体に対し70%以上であることが望ま
しい。
If the brick of the present invention is to be mass-produced by firing in a non-oxidizing atmosphere, for example, the surface of the brick may be partially oxidized and the metal powder may be oxidized at that portion. In the brick of the present invention, it is needless to say that the fine metal particles are mixed in the entire structure, but an oxide layer may be present if it is a part. However, in order to obtain the effect of the present invention, it is desirable that the structure in which the fine metal particles are mixed is 70% or more in volume with respect to the entire brick.

【0015】金属粉はスラグ成分と反応し低融点物質を
生成するため、技術常識からすれば耐食性低下の原因と
なるが、本発明のレンガにおいては、使用中に稼動面近
傍からマグネシア質原料のMgO成分との反応でスピネ
ルを生成し、耐食性を向上させるものである。
Since the metal powder reacts with the slag component to form a low-melting point substance, it is a cause of deterioration in corrosion resistance according to the common general technical knowledge. However, in the brick of the present invention, the magnesia raw material from the vicinity of the operating surface is used during use. It reacts with the MgO component to form spinel and improves the corrosion resistance.

【0016】本発明のレンガの製造において使用される
クロム鉄鉱およびマグネシア質原料は、従来の材質の耐
火物と同様のものが使用できる。クロム鉄鉱は、例え
ば、トルコクロム鉄鉱、マシンロッククロム鉄鉱、日本
クロム鉄鉱、トランスバールクロム鉄鉱などである。ク
ロム鉄鉱の構成成分がマグネシア質原料のMgO成分と
反応してスピネル組織を生成し、骨材間を強固に結合さ
せる作用をもつ。クロム鉄鉱が配合組成全体に占める割
合は、5〜70wt%、好ましくは20〜60wt%と
する。5wt%未満ではクロム鉄鉱がもつ組織結合機能
が十分でなく、耐食性に劣る。70wt%を超えるとそ
の分、マグネシア質原料の割合が少なくなって耐食性に
劣る。マグネシア質原料の具体例は、焼結または電融の
マグネシア、マグネシア−クロムなどである。
As the chromite ore and the magnesia raw material used in the production of the brick of the present invention, the same refractory materials as conventional materials can be used. Chromite is, for example, Turkish chromite, machine rock chromite, Japan chromite, transval chromite, or the like. The constituent components of chromite ore react with the MgO component of the magnesia raw material to generate a spinel structure, and have the action of firmly binding the aggregates. The proportion of chromite in the total composition is 5 to 70 wt%, preferably 20 to 60 wt%. If it is less than 5% by weight, the tissue bonding function of chromite is insufficient and the corrosion resistance is poor. When it exceeds 70 wt%, the proportion of the magnesia raw material decreases accordingly and the corrosion resistance deteriorates. Specific examples of the magnesia-based raw material include sintered or electrofused magnesia and magnesia-chromium.

【0017】本発明のマグネシア−クロム質焼成レンガ
は、金属粉を添加すると耐食性向上の面でさらに好まし
い。金属粉を添加する場合は、配合物全体に占める割合
で10wt%以下とし、金属粉を添加したことによる効
果を十分に発揮させるには、下限の割合は1wt%が望
ましい。10wt%を超えるとれんが使用中において金
属微細粒子とマグネシア質原料の反応が顕著となりこの
反応による膨張が大きくなる。このためレンガ組織の開
放気孔が多くなり、耐食性が低下する。
The magnesia-chromic fired brick of the present invention is more preferably added with metal powder from the viewpoint of improving the corrosion resistance. When metal powder is added, the content of the metal powder is 10 wt% or less, and the lower limit is preferably 1 wt% in order to fully exert the effect of adding metal powder. If it exceeds 10 wt%, the reaction between the fine metal particles and the magnesia raw material becomes remarkable during the use of brick, and the expansion due to this reaction becomes large. For this reason, the open pores of the brick structure increase, and the corrosion resistance decreases.

【0018】金属粉の具体例は、Cr、Fe、Al、S
i、Mg、Niまたはその合金より選ばれる一種以上で
ある。合金の例としては、Al−Si、Al−Mg、F
e−Cr、Fe−Si、Fe−Ni、Ni−Crなどで
ある。以上の骨材、金属粉以外にも、本発明の効果を損
なわない範囲において、例えば酸化クロム、ピクロクロ
マイト、ジルコン、ジルコニア、炭素、炭化物、窒化
物、ほう化物、その他を適量添加してもよいことは、従
来のマグネシア−クロム質焼成レンガの製造と同様であ
る。
Specific examples of the metal powder include Cr, Fe, Al and S.
It is one or more selected from i, Mg, Ni and alloys thereof. Examples of alloys include Al-Si, Al-Mg, F
Examples include e-Cr, Fe-Si, Fe-Ni, and Ni-Cr. In addition to the above aggregates and metal powders, chromium oxide, picrochromite, zircon, zirconia, carbon, carbides, nitrides, borides, and the like may be added in appropriate amounts within a range that does not impair the effects of the present invention. What is good is similar to the production of conventional magnesia-chromic fired bricks.

【0019】成形は通常のレンガ製造法と変わりない。
有機質、無機質あるいは有機−無機複合質の結合剤を添
加し、混練後、フリクションプレス、オイルプレスなど
によって加圧する。焼成温度は、例えば1600〜19
00℃とする。未焼成部分が残らないように十分な保定
時間をとることが好ましい。
Molding is no different from normal brick making methods.
An organic, inorganic or organic-inorganic composite binder is added, and after kneading, pressure is applied by a friction press, an oil press or the like. The firing temperature is, for example, 1600 to 19
Set to 00 ° C. It is preferable to take a sufficient holding time so that no unbaked portion remains.

【0020】[0020]

【実施例】以下、本発明実施例とその比較例を示す。表
1及び表2は、本発明実施例、比較例およびその試験結
果である。
EXAMPLES Examples of the present invention and comparative examples will be described below. Tables 1 and 2 show examples of the present invention, comparative examples, and test results thereof.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】各例は、表1及び表2に示す配合組成に結
合剤としてフェノール樹脂を外掛けで4wt%添加し、
混練後、フリクションプレスにて並型形状に加圧成形し
た。焼成は、トンネルキルンにて1800℃×3時間で
行ない供試レンガとした。実施例1〜7、比較例1〜3
は非酸化雰囲気で、比較例4、5は酸化雰囲気で焼成を
行った。こうして得られた供試レンガを使用し、金属微
細粒子の混在量、耐食性、耐スラグ浸透性について試験
を行った。
In each example, 4 wt% of a phenol resin as an external additive was added to the composition shown in Tables 1 and 2 as a binder,
After kneading, pressure molding was performed into a normal shape by a friction press. Baking was performed in a tunnel kiln at 1800 ° C. for 3 hours to obtain a test brick. Examples 1-7, Comparative Examples 1-3
Was fired in a non-oxidizing atmosphere, and Comparative Examples 4 and 5 were fired in an oxidizing atmosphere. Using the test bricks thus obtained, the amount of fine metal particles mixed, corrosion resistance, and slag penetration resistance were tested.

【0024】金属微細粒子の混在量;レンガの最長方向
に垂直に切断する。この切断面の中央部組織の顕微鏡写
真をもとにして、10×10mmの正方形内に含まれる
金属微細粒子の面積を求めた。金属微細粒子の有無の確
認には、反射顕微鏡を用いたが、X線回折、EPMA点
分析などの手段によっても確認できる。
Amount of fine metal particles mixed: cut perpendicular to the longest direction of the brick. The area of the fine metal particles contained in a 10 × 10 mm square was determined based on the micrograph of the central structure of the cut surface. A reflection microscope was used to confirm the presence or absence of the fine metal particles, but it can also be confirmed by means such as X-ray diffraction and EPMA point analysis.

【0025】耐食性;回転侵食法によって行なった。重
量比でスラグ(CaO/SiO2 =3):鋼を6:4と
した侵食剤を投入し、ドラムを回転させながら1700
℃×30分間バーナーで加熱後、侵食剤を排出し、20
分間空冷させる。これを10回繰り返した後、溶損寸法
を測定した。
Corrosion resistance: Performed by the rotary erosion method. A weight ratio of slag (CaO / SiO 2 = 3): steel 6: 4 was added to the erosion agent, and the drum was rotated to 1700.
After heating in a burner at ℃ × 30 minutes, drain the erosion agent,
Allow to air cool for minutes. After repeating this 10 times, the erosion size was measured.

【0026】耐スラグ浸透性;回転浸食法によって前記
の耐食性を測定した供試レンガについて稼動面から10
mmの部分を採取し、化学分析を行った。これにより、
CaO、SiO2 の浸透程度の比較を行った。
Slag permeation resistance: 10 times from the operating surface of the test bricks whose corrosion resistance was measured by the rotary erosion method.
The mm portion was sampled and subjected to chemical analysis. This allows
The degree of penetration of CaO and SiO 2 was compared.

【0027】配合中のクロム鉄鉱量が、本発明範囲より
も少ない比較例1は、クロム鉄鉱がもつ組織結合力が弱
いため耐食性が劣る。逆に、配合中のクロム鉄鉱量が、
本発明範囲よりも多い比較例2は、マグネシア質原料の
割合が減り、マグネシア質原料のMgO成分とクロム鉄
鉱の反応が少なく、スピネルの生成も少なくなり、耐食
性が劣る。
In Comparative Example 1 in which the amount of chromite in the compound is less than the range of the present invention, the corrosion resistance is poor because the texture bonding of chromite is weak. Conversely, the amount of chromite in the formulation is
In Comparative Example 2 in which the content is larger than the range of the present invention, the ratio of the magnesia raw material is reduced, the reaction between the MgO component of the magnesia raw material and chromite is small, the spinel formation is small, and the corrosion resistance is poor.

【0028】配合中の金属粉量が本発明範囲よりも多い
比較例3もまた、使用中に金属微細粒子とマグネシア質
原料のMgO成分との反応が激しくなり、この反応によ
る膨張でレンガの組織が劣化し耐食性が劣る。また、比
較例4、5は酸化雰囲気下で焼成を行い、金属微細粒子
が存在しないので、マグネシア質原料のMgO成分との
反応が無く耐食性が劣っている。これに対し、本発明実
施例によるマグネシア−クロム質焼成レンガは耐食性に
優れると同時に耐スラグ浸透性にも優れる。
In Comparative Example 3 in which the amount of the metal powder in the composition is more than the range of the present invention, the reaction between the fine metal particles and the MgO component of the magnesia raw material becomes vigorous during use, and the brick structure is caused by the expansion due to this reaction. Deteriorates and the corrosion resistance is poor. Further, Comparative Examples 4 and 5 were fired in an oxidizing atmosphere and had no fine metal particles, so that they did not react with the MgO component of the magnesia raw material and thus had poor corrosion resistance. On the other hand, the magnesia-chrome fired brick according to the embodiment of the present invention has excellent corrosion resistance and at the same time excellent slag penetration resistance.

【0029】実機試験;前記実施例の項で示したのとほ
ぼ同様の方法で実機形状に製造したマグネシア−クロム
質焼成レンガのうち、実施例2、実施例4、実施例6、
比較例1および比較例4について実際に、RH式真空脱
ガス炉の下部槽の内張りに築造し、稼動した。
Actual machine test: Among the magnesia-chromic fired bricks manufactured in the actual machine shape by substantially the same method as shown in the above-mentioned Example, Example 2, Example 4, Example 6,
Regarding Comparative Example 1 and Comparative Example 4, actually, the RH type vacuum degassing furnace was built on the inner lining of the lower tank and operated.

【0030】比較例1、比較例4の溶損速度1.5、
1.2に対し、実施例2、実施例4、実施例6は0.
8、0.6、0.6と小さく良好な結果を示した。稼動
面から10mmのスラグ成分の侵入量は、比較例1、比
較例4に比べ、実施例2、実施例4、実施例6は半分以
下の値であり、良好な耐スラグ浸透性を示した。その結
果、表には記載していないが、2倍程度の耐用性が得ら
れた。
Melt rate of 1.5 in Comparative Example 1 and Comparative Example 4,
1.2, the second, the fourth, and the sixth examples have a value of 0.
The results were as small as 8, 0.6, and 0.6, showing good results. The penetration amount of the slag component of 10 mm from the operating surface was less than half of the values of Example 2, Example 4, and Example 6 as compared with Comparative Example 1 and Comparative Example 4, showing good slag penetration resistance. . As a result, although not shown in the table, about twice the durability was obtained.

【0031】実機試験における築造部位は、RH式真空
脱ガス炉の中でも溶鋼の環流による損傷が著しい部位で
ある。この試験結果からも明らかなように、本発明によ
り得られたマグネシア−クロム質焼成レンガは、実機に
おいても十分な効果を発揮した。実機試験の例としてR
H式真空脱ガス炉の下部槽で行われた場合を記載した
が、DH式真空脱ガス炉、CAS装置などにおいても同
様な効果が得られた。
In the RH type vacuum degassing furnace, the construction site in the actual machine test is a site where the damage due to the recirculation of molten steel is remarkable. As is clear from this test result, the magnesia-chromic fired brick obtained by the present invention exhibited a sufficient effect even in an actual machine. R as an example of actual machine test
Although the case where it was performed in the lower tank of the H type vacuum degassing furnace was described, the same effect was obtained also in the DH type vacuum degassing furnace, the CAS apparatus and the like.

【0032】[0032]

【発明の効果】本発明により製造されるマグネシア−ク
ロム質焼成レンガには、レンガの大部分において金属微
細粒子が混在しており、従来のマグネシア−クロム質焼
成レンガに比べ、耐食性に優れている。また、耐スラグ
浸透性にも優れ、マグネシア−クロム質焼成レンガの損
傷の大きい要因となっているスラグ浸透による変質層の
生成を抑制し、構造的スポーリングを解決できる。その
結果、従来品に比し2倍程度の耐用性が得られ、その経
済的効果が大きい。
EFFECTS OF THE INVENTION In the magnesia-chromic fired brick produced by the present invention, fine metal particles are mixed in the majority of the brick, which is excellent in corrosion resistance as compared with the conventional magnesia-chrome fired brick. . Further, it has excellent resistance to slag penetration, and can suppress the formation of an altered layer due to slag penetration, which is a major cause of damage to magnesia-chromic fired bricks, and can solve structural spalling. As a result, the durability is about twice as high as that of the conventional product, and the economical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例4の組織の顕微鏡写真の写生図である。1 is a drawing of a micrograph of the structure of Example 4. FIG.

【図2】比較例5の組織の顕微鏡写真の写生図である。2 is a drawing of a micrograph of the structure of Comparative Example 5. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 哲夫 兵庫県高砂市荒井町新浜1−3−1 ハリ マセラミック株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuo Yamamoto 1-3-1 Niihama, Arai-machi, Takasago, Hyogo Prefecture Harima Ceramics Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 クロム鉄鉱5〜70wt%、残部がマグ
ネシア質原料を主材とした配合物を焼結してなり、耐火
物組織内に金属微細粒子が非酸化状態で混在したマグネ
シア−クロム質焼成レンガ。
1. A magnesia-chromium material comprising 5 to 70 wt% of chromite, the remainder being a mixture of a magnesia raw material as a main material, sintered, and fine metal particles mixed in a non-oxidized state in a refractory structure. Fired bricks.
【請求項2】 クロム鉄鉱5〜70wt%、金属粉10
wt%以下、残部がマグネシア質原料を主材とした配合
物を焼結してなり、耐火物組織内に金属微細粒子が非酸
化状態で混在したマグネシア−クロム質焼成レンガ。
2. Chromite ore 5 to 70 wt%, metal powder 10
A magnesia-chromic fired brick, which is obtained by sintering a mixture containing wt% or less and the remainder being a magnesia raw material as a main material, and in which fine metal particles are mixed in a non-oxidized state in the refractory structure.
【請求項3】 クロム鉄鉱5〜70wt%、残部がマグ
ネシア質原料を主材とした配合物を成形後、非酸化雰囲
気で高温焼成するマグネシア−クロム質焼成レンガの製
造方法。
3. A method for producing a magnesia-chromic fired brick, which comprises firing a high-temperature firing in a non-oxidizing atmosphere after molding a compounding mixture containing 5-70 wt% of chromite ore and the balance being a magnesia raw material.
【請求項4】 クロム鉄鉱5〜70wt%、金属粉10
wt%以下、残部がマグネシア質原料を主材とした配合
物を成形後、非酸化雰囲気で高温焼成するマグネシア−
クロム質焼成レンガの製造方法。
4. Chromite 5 to 70 wt%, metal powder 10
Magnesia which is not more than wt% and whose remainder is magnesia-based raw material as a main material and is then fired at high temperature in a non-oxidizing atmosphere
Method for producing chrome fired brick.
【請求項5】 非酸化雰囲気が酸素分圧10%以下であ
る請求項3又は4記載のマグネシア−クロム質焼成レン
ガの製造方法。
5. The method for producing a magnesia-chromic fired brick according to claim 3, wherein the non-oxidizing atmosphere has an oxygen partial pressure of 10% or less.
JP5342095A 1993-12-14 1993-12-14 Baked magnesia-chromium brick and its production Withdrawn JPH07165461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5342095A JPH07165461A (en) 1993-12-14 1993-12-14 Baked magnesia-chromium brick and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5342095A JPH07165461A (en) 1993-12-14 1993-12-14 Baked magnesia-chromium brick and its production

Publications (1)

Publication Number Publication Date
JPH07165461A true JPH07165461A (en) 1995-06-27

Family

ID=18351123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5342095A Withdrawn JPH07165461A (en) 1993-12-14 1993-12-14 Baked magnesia-chromium brick and its production

Country Status (1)

Country Link
JP (1) JPH07165461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128556A2 (en) * 2005-05-30 2006-12-07 Refractory Intellectual Property Gmbh & Co. Kg Refractory ceramic product
WO2008109222A2 (en) * 2007-03-07 2008-09-12 General Electric Company Treated refractory material and methods of making
CN104692810A (en) * 2013-12-05 2015-06-10 中钢集团耐火材料有限公司 Production method of metal compounded chromium oxide bricks

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128556A2 (en) * 2005-05-30 2006-12-07 Refractory Intellectual Property Gmbh & Co. Kg Refractory ceramic product
WO2006128556A3 (en) * 2005-05-30 2007-07-19 Refractory Intellectual Prop Refractory ceramic product
EA011907B1 (en) * 2005-05-30 2009-06-30 Рифректори Интеллектуал Проперти Гмбх & Ко.Кг Refractory ceramic product
WO2008109222A2 (en) * 2007-03-07 2008-09-12 General Electric Company Treated refractory material and methods of making
WO2008109222A3 (en) * 2007-03-07 2008-10-30 Gen Electric Treated refractory material and methods of making
US8105683B2 (en) 2007-03-07 2012-01-31 General Electric Company Treated refractory material and methods of making
CN104692810A (en) * 2013-12-05 2015-06-10 中钢集团耐火材料有限公司 Production method of metal compounded chromium oxide bricks

Similar Documents

Publication Publication Date Title
US4471059A (en) Carbon-containing refractory
JPH0545546B2 (en)
JP4681456B2 (en) Low carbon magnesia carbon brick
JPH0729847B2 (en) Magnesite-Carbon refractory
JPS602269B2 (en) Method for manufacturing carbon-containing unfired refractories
JPH07165461A (en) Baked magnesia-chromium brick and its production
EP0116194B1 (en) A carbon-containing refractory
KR930009349B1 (en) Refractory brick of mgo-c matrix
KR830001463B1 (en) Manufacturing method of fire brick
JP3031192B2 (en) Sliding nozzle plate refractories
JPH0825788B2 (en) Method for producing unburned carbon-containing brick
JP2540214B2 (en) Refractory material
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JP2018114507A (en) Slide plate refractory
JPH0585805A (en) Carbon-containing fire-resistant material
CA1189093A (en) Carbon-containing refractory
JPH03205339A (en) Carbon-containing refractory
JP3795933B2 (en) Magnesia-chromic fired brick
JPS63151660A (en) Lining brick for vacuum degassing furnace
JPH06206759A (en) Refractory for continuous casting and its production
JPH0283250A (en) Production of carbon-containing calcined refractory
JP2968542B2 (en) Refractory
JP2018144088A (en) Slide plate refractory
JPH0632649A (en) Carbon-containing refractory
JPH0987007A (en) Magnesia noncalcined brick

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306