JPH08256769A - Immobilized ultrathermostable beta-galactosidase - Google Patents

Immobilized ultrathermostable beta-galactosidase

Info

Publication number
JPH08256769A
JPH08256769A JP8598095A JP8598095A JPH08256769A JP H08256769 A JPH08256769 A JP H08256769A JP 8598095 A JP8598095 A JP 8598095A JP 8598095 A JP8598095 A JP 8598095A JP H08256769 A JPH08256769 A JP H08256769A
Authority
JP
Japan
Prior art keywords
galactosidase
enzyme
immobilized
carrier
thermostable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8598095A
Other languages
Japanese (ja)
Inventor
Hideyuki Matsushita
秀之 松下
Hideto Chono
英人 蝶野
Kiyozou Asada
起代蔵 浅田
Susumu Tsunasawa
進 綱澤
Ikunoshin Katou
郁之進 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Shuzo Co Ltd
Original Assignee
Takara Shuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co Ltd filed Critical Takara Shuzo Co Ltd
Priority to JP8598095A priority Critical patent/JPH08256769A/en
Publication of JPH08256769A publication Critical patent/JPH08256769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE: To obtain an immobilized enzyme by supporting an ultrathermostable β-galactosidase derived from Pyrococcus furiosus on a carrier, excellent in durability, hardly eluting the enzyme, capable of sterilizing various germs at a high temperature, useful for processing a food and producing a saccharide compound. CONSTITUTION: Ultrathermostable β-galactosidase collectable from Pyrococcus furiosus DSM3,638, etc., is supported on an immobilizing carrier (insoluble carrier) stable to heat and physical shocks to give a high-temperature bioreactor. The immobilization can be carried out by a method for subjecting a carboxyl group, etc., of the enzyme to covalent bond formation with a functional group (amino group, etc.) introduced to the immobilizing carrier.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、糖質工学等の分野、並
びに食品工業において有用な固定化超耐熱性β−ガラク
トシダーゼに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immobilized super thermostable β-galactosidase useful in the fields of sugar engineering and the food industry.

【0002】[0002]

【従来の技術】β−ガラクトシダーゼ(β−galactosid
ase 、EC 3.2.1.23.) は、β−ガラクトシドを分解す
る酵素で、動物、植物、微生物より見出され、特に、細
菌では、大腸菌(Escherichia coli) を始めとして、ス
トレプトコッカス ラクティス(Streptococcus lacti
s) 、バチルス ズブチリス(Bacillus subtillis) 、
ストレプトコッカス サーモフィラス(Streptococcus
thermophilus) 、スルホロバス ソルファタリカス(Su
lfolobus solfataricus)などに存在していることが知ら
れている。このβ−ガラクトシダーゼは、そのラクトー
スのガラクトースとグルコースへの加水分解能を利用し
て、低乳糖牛乳の製造に使用されている。また、チーズ
製造の際大量に生成する乳清中のラクトースからガラク
トース、又はグルコースを製造するためにも用いられて
いる。また、近年β−ガラクトシダーゼの糖転移反応を
利用して糖を付与することによるオリゴ糖、複合糖質等
の糖化合物の製造も種々行われている(特開平6−25
275号、同6−38785号)。
2. Description of the Related Art β-galactosidase
ase, EC 3.2.1.23.) is an enzyme that decomposes β-galactoside and is found in animals, plants, and microorganisms. In particular, in bacteria, Streptococcus lacti (Streptococcus lacti), including Escherichia coli, is used.
s), Bacillus subtillis,
Streptococcus thermophilus (Streptococcus
thermophilus), sulfolobus solfataricus (Su
lfolobus solfataricus). This β-galactosidase is used for the production of low-lactose milk by utilizing its ability to hydrolyze lactose into galactose and glucose. It is also used to produce galactose or glucose from lactose in whey, which is produced in large quantities during cheese production. Further, in recent years, various production of sugar compounds such as oligosaccharides and complex sugars by imparting sugars by utilizing the transglycosylation reaction of β-galactosidase has been carried out (JP-A-6-25).
275, 6-38785).

【0003】可溶性のβ−ガラクトシダーゼをバッチ反
応により、食品加工に利用する際には、反応後の酵素の
失活化、酵素タンパク質の除去等の操作が必要となる。
また、低乳糖牛乳の製造のように酵素タンパク質の除去
が不可能な場合には、風味の低下が問題となる。高温下
で活性を示し、熱安定性の高い超耐熱性β−ガラクトシ
ダーゼ〔ヨーロピアン ジャーナル オブ バイオケミ
ストリー(European Journal of Biochemistry) 、第2
13巻、第305〜312頁(1993)〕は、酵素が
安定なために反応後の酵素の失活化が問題となる。これ
らの問題を解決するための手段として、β−ガラクトシ
ダーゼをある種の担体に保持させた固定化β−ガラクト
シダーゼの利用が求められる。例えば、中等度好熱性嫌
気性菌NA10株由来のβ−ガラクトシダーゼをセラミ
ック担体に固定化した場合、65℃で100時間までは
安定であるが、65℃、400時間処理では活性は約5
0%に低下する〔アプライド マイクロバイオロジー
アンド バイオテクノロジー(Applied Microbiology a
nd Biotechnology) 、第40巻、第618〜621頁
(1994)〕。
When soluble β-galactosidase is used in food processing by a batch reaction, it is necessary to carry out operations such as inactivation of enzyme after the reaction and removal of enzyme protein.
In addition, when it is impossible to remove the enzyme protein as in the production of low-lactose milk, deterioration of flavor becomes a problem. Super thermostable β-galactosidase which is active at high temperature and has high thermostability [European Journal of Biochemistry, No. 2
13: 305-312 (1993)], the inactivation of the enzyme after the reaction is a problem because the enzyme is stable. As a means for solving these problems, the use of immobilized β-galactosidase in which β-galactosidase is retained on a certain carrier is required. For example, when β-galactosidase derived from the moderate thermophilic anaerobic bacterium NA10 strain is immobilized on a ceramic carrier, it is stable at 65 ° C. for up to 100 hours, but the activity is about 5 at 65 ° C. for 400 hours.
Drop to 0% [Applied Microbiology
And Biotechnology (Applied Microbiology a
nd Biotechnology), 40, 618-621 (1994)].

【0004】[0004]

【発明が解決しようとする課題】上述のように高温にお
ける食品加工や糖化合物の製造には、経済性の問題から
繰返し使用、更には長期使用が可能であり、酵素の溶離
がなく、かつ微生物汚染を防ぐために短時間の高温での
殺菌工程に使用可能な固定化β−ガラクトシダーゼが求
められる。本発明の目的は、繰返し使用、更には長期使
用が可能で、酵素の溶離がなく、80℃以上の高温での
殺菌工程に使用可能な固定化超耐熱性β−ガラクトシダ
ーゼを提供することにある。
As described above, in the processing of foods at high temperature and the production of sugar compounds, they can be used repeatedly and even for a long period of time due to economical problems, and there is no elution of enzymes, and microorganisms do not elute. There is a need for an immobilized β-galactosidase that can be used in a short time high temperature sterilization process to prevent contamination. An object of the present invention is to provide an immobilized hyperthermophilic β-galactosidase that can be used repeatedly and for a long time, does not elute an enzyme, and can be used in a sterilization process at a high temperature of 80 ° C. or higher. .

【0005】[0005]

【課題を解決するための手段】本発明を概説すれば、本
発明は固定化超耐熱性β−ガラクトシダーゼに関する発
明であって、ピロコッカス フリオサス由来の超耐熱性
β−ガラクトシダーゼを担体に保持させてなることを特
徴とする。
Means for Solving the Problems The present invention will be described in brief. The present invention relates to an immobilized super thermostable β-galactosidase, which comprises a carrier containing the super thermostable β-galactosidase derived from Pyrococcus furiosus. It is characterized by

【0006】本発明者らは、ピロコッカス フリオサス
(Pyrococcus furiosus)由来の超耐熱性β−ガラクトシ
ダーゼに着目し、該酵素の固定化を試みた。更に本発明
者らは、固定化に成功した超耐熱性β−ガラクトシダー
ゼの性質を検討したところ、驚くべきことに、該固定化
超耐熱性β−ガラクトシダーゼは、85℃において少な
くとも240時間活性が安定であり、かつ酵素の溶出な
しに反応が可能であることを見出し、その生化学的性質
を決定し、本発明を完成させた。
The present inventors paid attention to the super thermostable β-galactosidase derived from Pyrococcus furiosus and attempted to immobilize the enzyme. Furthermore, the present inventors have examined the properties of the super thermostable β-galactosidase that was successfully immobilized, and surprisingly, the immobilized super thermostable β-galactosidase has stable activity at 85 ° C. for at least 240 hours. And that the reaction is possible without elution of the enzyme, its biochemical properties were determined, and the present invention was completed.

【0007】以下、本発明をより詳細に説明する。本発
明に使用されるβ−ガラクトシダーゼは、耐熱性の優れ
たβ−ガラクトシダーゼであれば特に限定はされない
が、例えばピロコッカス属に属する菌株由来のβ−ガラ
クトシダーゼを用いることができる。例えばピロコッカ
ス フリオサス DSM3638から特開平6−189
756号公報記載の方法に準じて採取することができる
超耐熱性β−ガラクトシダーゼを用いることができる。
例えばピロコッカス フリオサス DSM3638由来
の超耐熱性β−ガラクトシダーゼ遺伝子を含有させた組
換えプラスミドを導入させた形質転換体から特開平6−
253855号公報、あるいは、特願平6−15435
6号明細書中に記載の方法に準じて採取することができ
る超耐熱性β−ガラクトシダーゼを用いることができ
る。なお、特願平6−154356号明細書中に記載の
形質転換体は、Escherichia coli JM109/pTG2ES-105 と
命名、表示され、通商産業省工業技術院生命工学工業技
術研究所にFERM BP−5023として寄託されて
いる。
The present invention will be described in more detail below. The β-galactosidase used in the present invention is not particularly limited as long as it is a β-galactosidase excellent in heat resistance, and for example, β-galactosidase derived from a strain belonging to the genus Pyrococcus can be used. For example, from Pyrococcus furiosus DSM3638 to JP-A-6-189
Super thermostable β-galactosidase that can be collected according to the method described in Japanese Patent No. 756 can be used.
For example, from a transformant in which a recombinant plasmid containing the hyperthermostable β-galactosidase gene derived from Pyrococcus furiosus DSM3638 is introduced, there is disclosed in
No. 253855, or Japanese Patent Application No. 6-15435.
Ultra thermostable β-galactosidase that can be collected according to the method described in No. 6 can be used. The transformant described in Japanese Patent Application No. 6-154356 is named and displayed as Escherichia coli JM109 / pTG2ES-105, and is designated as FERM BP-5023 at the Institute of Biotechnology, Ministry of International Trade and Industry. Has been deposited as.

【0008】また、本発明に使用される固定化担体(不
溶性担体)は、熱及び物理的衝撃に安定な固定化担体で
あれば特に限定されないが、例えば市販されている担体
を用いることができる。例えば市販のポリスチレンとジ
ビニルベンゼンのコポリマーを素材とした多孔性化学合
成ポリマーであるポロス(POROS) メディア〔パーセプテ
ィブ バイオシステムズ(Perseptive Biosystems)社
製〕を用いることができる。また、例えば市販のガラス
を素材とした、安定で広い表面積を有するコントロール
ポア グラス(コントロール ポア グラス社製)を
用いることができる。
The immobilization carrier (insoluble carrier) used in the present invention is not particularly limited as long as it is an immobilization carrier which is stable to heat and physical shock, and for example, a commercially available carrier can be used. . For example, commercially available porous chemically synthesized polymer POROS media [manufactured by Perseptive Biosystems] can be used. In addition, for example, control pore glass (manufactured by Control Pore Glass Co., Ltd.) made of commercially available glass and having a stable and large surface area can be used.

【0009】また、本発明に使用される固定化方法は、
熱及び物理的衝撃に安定な方法であれば特に限定されな
いが、例えば固定化担体に導入されたエポキシ基、アミ
ノ基、アルデヒド基等の官能基に酵素タンパク質のアミ
ノ基、カルボキシル基、スルフヒドリル基を化学的に温
和な条件で共有結合させる方法を用いることができる。
The immobilization method used in the present invention is as follows.
The method is not particularly limited as long as it is a method that is stable to heat and physical shock, but for example, an amino group, a carboxyl group, and a sulfhydryl group of an enzyme protein are added to functional groups such as an epoxy group, an amino group, and an aldehyde group that are introduced into an immobilized carrier. A method of covalently bonding under chemically mild conditions can be used.

【0010】以下、ピロコッカス フリオサス DSM
3638由来の超耐熱性β−ガラクトシダーゼを、固定
化担体に保持させた固定化超耐熱性β−ガラクトシダー
ゼを例として説明する。特願平6−154356号明細
書中に記載のピロコッカス フリオサス DSM363
8由来の超耐熱性β−ガラクトシダーゼ遺伝子を含有さ
せた、組換えプラスミドを導入させた形質転換体、Esch
erichia coli JM109/pTG2ES-105 (FERM BP−5
023)を通常の培養条件、例えば、0.01%アンピ
シリンを含むL−ブロス培地(1%トリプトン、0.5
%酵母エキス、1%NaCl、pH7.2)中、37℃
で培養することにより、培養物中に超耐熱性β−ガラク
トシダーゼが蓄積される。該培養物から超耐熱性β−ガ
ラクトシダーゼを精製する場合は例えば菌体を集菌した
後、超音波処理により該菌体を破砕し、遠心分離により
得た上清について、例えばゲルろ過クロマトグラフィ
ー、イオン交換クロマトグラフィー、疎水クロマトグラ
フィー等の方法を組合せて、酵素の精製を行うことがで
きる。特に、超耐熱性β−ガラクトシダーゼを精製する
際には、超音波処理の前後に熱処理を行うと、夾雑タン
パク質を変性させ、精製を容易に行うことができ、有効
である。更に、SDS−ポリアクリルアミドゲル電気泳
動において単一にまで精製し、固定化に用いる。例え
ば、該精製酵素溶液を必要量に応じて希釈又は濃縮を行
い、超耐熱性β−ガラクトシダーゼ溶液として固定化に
用いる。また例えば、該精製酵素溶液を常法に従い凍結
乾燥し、超耐熱性β−ガラクトシダーゼの凍結乾燥標品
を作製する。次に、該凍結乾燥標品を、例えば、滅菌水
や緩衝液等に必要量に応じて溶解させ超耐熱性β−ガラ
クトシダーゼ溶液を調製し固定化に用いる。
Below, Pyrococcus furiosus DSM
The hyperthermostable β-galactosidase derived from 3638 will be described as an example of immobilized ultraheat-resistant β-galactosidase retained on an immobilization carrier. Pyrococcus furiosus DSM363 described in Japanese Patent Application No. 6-154356
A recombinant plasmid-introduced transformant containing a super thermostable β-galactosidase gene derived from Escherichia coli 8, Esch
erichia coli JM109 / pTG2ES-105 (FERM BP-5
023) under normal culture conditions, for example, L-broth medium containing 0.01% ampicillin (1% tryptone, 0.5%).
% Yeast extract, 1% NaCl, pH 7.2) at 37 ° C
The super thermostable β-galactosidase is accumulated in the culture by culturing at. When purifying ultra-thermostable β-galactosidase from the culture, for example, after collecting the bacterial cells, the bacterial cells are disrupted by ultrasonic treatment, and the supernatant obtained by centrifugation is, for example, gel filtration chromatography, The enzyme can be purified by combining methods such as ion exchange chromatography and hydrophobic chromatography. In particular, when purifying super thermostable β-galactosidase, it is effective to perform heat treatment before and after ultrasonication, because denatured contaminating proteins can be easily purified and purification can be performed. Further, it is purified to a single size by SDS-polyacrylamide gel electrophoresis and used for immobilization. For example, the purified enzyme solution is diluted or concentrated according to the required amount, and used for immobilization as a super thermostable β-galactosidase solution. Further, for example, the purified enzyme solution is freeze-dried according to a conventional method to prepare a freeze-dried preparation of super thermostable β-galactosidase. Next, the freeze-dried preparation is dissolved in, for example, sterilized water, a buffer or the like according to the required amount to prepare a super thermostable β-galactosidase solution and used for immobilization.

【0011】該超耐熱性β−ガラクトシダーゼ溶液に、
固定化担体を必要量添加し、固定化反応を行う。反応終
了後、反応上清の吸光度(280nm)を測定し、超耐
熱性β−ガラクトシダーゼの酵素タンパク質が固定化担
体に保持され、反応上清のタンパク質濃度が低下してい
ることを確認する。その後、更に緩衝液等で十分に超耐
熱性β−ガラクトシダーゼを供した固定化担体を洗浄
し、フィルターろ過等を行い回収する。この回収され、
不溶化している超耐熱性β−ガラクトシダーゼを固定化
超耐熱性β−ガラクトシダーゼとする。
The super thermostable β-galactosidase solution,
The required amount of the immobilization carrier is added and the immobilization reaction is performed. After completion of the reaction, the absorbance (280 nm) of the reaction supernatant is measured, and it is confirmed that the enzyme protein of super thermostable β-galactosidase is retained on the immobilized carrier and the protein concentration of the reaction supernatant is lowered. Then, the immobilized carrier sufficiently provided with the super thermostable β-galactosidase is washed with a buffer solution or the like, and collected by performing filter filtration or the like. This is recovered,
The insolubilized super thermostable β-galactosidase is referred to as immobilized super thermostable β-galactosidase.

【0012】該固定化超耐熱性β−ガラクトシダーゼの
生化学的性質は次の通りである。 (1)酵素活性測定法 得られた固定化超耐熱性β−ガラクトシダーゼを500
mMラクトースを含有する50mMクエン酸緩衝液(p
H5.1)2.0mlに懸濁し、よくかくはん後、振と
う条件(130rpm)下、85℃で2分間反応させ
る。次に、フィルターろ過を行い固定化酵素を分離する
ことにより反応を停止する。反応終了後、反応液の上清
中に生成したグルコース濃度をグルコース テスト ワ
コー(和光純薬社製)を用いて測定する。固定化酵素活
性は、固定化酵素1ml当りの酵素活性、及び固定化に
使用した酵素タンパク質1mg当りの酵素活性として表
示する。酵素活性の1酵素単位(ユニット)は85℃で
1分間に1μmolのD−グルコースを生成させる酵素
量とする。固定化担体として、エポキシ基が導入された
ポロスメディア セルフパック20EP(パーセプティ
ブ バイオシステムズ社製)、アルデヒド基が導入され
たポロスメディア セルフパック 20AL(パーセプ
ティブ バイオシステムズ社製)、アミノ基が導入され
たポロスメディア セルフパック 20NH(パーセプ
ティブ バイオシステムズ社製)、EP4612(オル
ガノ社製)、FP4611(オルガノ社製)を用いたと
きの結果を表1に示す。表1に示すように、固定化担体
に保持された超耐熱性β−ガラクトシダーゼは、高い活
性を示している。
The biochemical properties of the immobilized hyperthermophilic β-galactosidase are as follows. (1) Enzyme activity measurement method The immobilized super thermostable β-galactosidase thus obtained was added to 500
50 mM citrate buffer containing mM lactose (p
H5.1) Suspended in 2.0 ml, stirred well, and allowed to react at 85 ° C. for 2 minutes under shaking conditions (130 rpm). Next, the reaction is stopped by filtering with a filter to separate the immobilized enzyme. After completion of the reaction, the glucose concentration produced in the supernatant of the reaction solution is measured using Glucose Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.). The immobilized enzyme activity is expressed as the enzyme activity per 1 ml of the immobilized enzyme and the enzyme activity per 1 mg of the enzyme protein used for immobilization. One enzyme unit (unit) of the enzyme activity is the amount of enzyme that produces 1 μmol of D-glucose per minute at 85 ° C. As the immobilization carrier, epoxy group-introduced Poros Media Self Pack 20EP (manufactured by Perceptive Biosystems), aldehyde group-introduced Poros Media Self Pack 20AL (Perceptive Biosystems), and amino group-introduced Poros Media. Table 1 shows the results when using Media Self Pack 20NH (manufactured by Perceptive Biosystems), EP4612 (manufactured by Organo), and FP4611 (manufactured by Organo). As shown in Table 1, the super thermostable β-galactosidase retained on the immobilized carrier shows high activity.

【0013】[0013]

【表1】 [Table 1]

【0014】(2)熱安定性 固定化超耐熱性β−ガラクトシダーゼの熱安定性は、例
えば、85℃で24時間熱処理を行い、処理後の残存活
性を上記の(1)に示した酵素活性測定法で測定するこ
とにより確認する。その結果を表2に示す。表2に示す
ように、どの固定化担体を用いて作製した固定化超耐熱
性β−ガラクトシダーゼにおいても24時間の熱処理
後、80%以上の残存活性を有している。
(2) Thermostability The thermostability of the immobilized super thermostable β-galactosidase is, for example, heat treated at 85 ° C. for 24 hours, and the residual activity after the treatment is shown by the enzyme activity shown in (1) above. Confirm by measuring with the measuring method. The results are shown in Table 2. As shown in Table 2, any immobilized carrier prepared using the immobilized super thermostable β-galactosidase has a residual activity of 80% or more after heat treatment for 24 hours.

【0015】[0015]

【表2】 表2 超耐熱性固定化β−ガラクトシダーゼの熱安定性 ──────────────────────────────────── 固定化担体 酵素量 85℃・24時間熱処理後の 残存活性率(%) ──────────────────────────────────── I ポロスメディアEP 2mg 121.0 III AL 2mg 96.2 V NH 2mg 83.8 VII FP4612 1mg 93.3 VIII FE4611 1mg 97.6 ────────────────────────────────────[Table 2] Table 2 Thermal stability of β-galactosidase immobilized with superheat resistance ───────────────────────────────── ──── Immobilized carrier Enzyme amount Residual activity rate (%) after heat treatment at 85 ℃ for 24 hours ──────────────────────────── ────────── I Porosmedia EP 2mg 121.0 III AL 2mg 96.2 V NH 2mg 83.8 VII FP4612 1mg 93.3 VIII FE4611 1mg 97.6 ────────── ────────────────────────────

【0016】(3)耐久性及び溶離酵素の確認 固定化超耐熱性β−ガラクトシダーゼの耐久性及び固定
化担体より溶出した溶離酵素の確認を行う。例えば、固
定化担体としてポロスメディア セルフパック 20E
P(パーセプティブ バイオシステムズ社製)を用いた
固定化超耐熱性β−ガラクトシダーゼの場合、85℃に
おいて、経時的に240時間、固定化超耐熱性β−ガラ
クトシダーゼの残存活性及び溶離酵素量を測定し、その
結果を図1に示す。すなわち、図1は熱処理による固定
化超耐熱性β−ガラクトシダーゼの残存活性と溶離酵素
量を示す図であり、縦軸の残存活性については、処理前
(0時間)の固定化超耐熱性β−ガラクトシダーゼ活性
を100%とした時の残存活性率(%、白丸印)で示
す。また、溶離酵素量については、上記処理後の固定化
超耐熱性β−ガラクトシダーゼ溶液のフィルターろ過上
清100μlに、10mM o−ニトロフェニル−β−
D−ガラクトピラノシドを含有する、50mMクエン酸
緩衝液(pH5.1)2.0mlを加え、85℃で3分
間反応させた後、生成したo−ニトロフェノールの量を
410nmにおける吸光度で測定することにより求めた
値と、標準物質として超耐熱性β−ガラクトシダーゼ
(10μg/ml)を同様にして測定した値とを比較す
ることで求められる酵素量を溶離酵素量(μg/ml、
黒四角印)として示す。図1に示すように、固定化超耐
熱性β−ガラクトシダーゼは、85℃で240時間処理
後も80%以上の残存活性率を有し、固定化担体に保持
させた酵素の溶離は見られない。
(3) Confirmation of Durability and Eluted Enzyme The durability of immobilized super thermostable β-galactosidase and the eluted enzyme eluted from the immobilized carrier are confirmed. For example, as an immobilization carrier, Poros Media Self Pack 20E
In the case of immobilized ultra-thermostable β-galactosidase using P (manufactured by Perceptive Biosystems), the residual activity and the amount of eluted enzyme of immobilized ultra-thermostable β-galactosidase were measured at 85 ° C. for 240 hours with time. The results are shown in FIG. That is, FIG. 1 is a diagram showing the residual activity of immobilized hyperthermophilic β-galactosidase by heat treatment and the amount of eluted enzyme. Regarding the residual activity on the vertical axis, the immobilized ultrathermostable β-galactose before treatment (0 hour) is shown. The residual activity rate (%, open circles) is shown when the galactosidase activity is 100%. The amount of eluted enzyme was 10 mM o-nitrophenyl-β-based on 100 μl of the supernatant of the immobilized ultra-thermostable β-galactosidase solution filtered through the filter after the above treatment.
After adding 2.0 ml of 50 mM citrate buffer (pH 5.1) containing D-galactopyranoside and reacting at 85 ° C for 3 minutes, the amount of o-nitrophenol produced was measured by the absorbance at 410 nm. The enzyme amount obtained by comparing the value obtained by performing the same with the value obtained by similarly measuring super thermostable β-galactosidase (10 μg / ml) as a standard substance was the amount of enzyme to be eluted (μg / ml,
It is shown as a black square mark). As shown in FIG. 1, the immobilized hyperthermostable β-galactosidase has a residual activity rate of 80% or more even after treatment at 85 ° C. for 240 hours, and no elution of the enzyme retained on the immobilized carrier is observed. .

【0017】上述のようにして得られた固定化超耐熱性
β−ガラクトシダーゼは、85℃において、活性の低下
及び酵素の溶離がなく、更には長時間使用が可能であ
り、微生物汚染防止のための80℃以上の高温での殺菌
工程に使用可能であり、食品工業、糖質工学分野におい
て、高温バイオリアクターとして有用である。
The immobilized ultra-thermostable β-galactosidase obtained as described above has no activity decrease and enzyme elution at 85 ° C., and can be used for a long time. It can be used in the sterilization process at a high temperature of 80 ° C. or higher, and is useful as a high temperature bioreactor in the food industry and sugar engineering fields.

【0018】[0018]

【実施例】以下に実施例を挙げて本発明を更に具体的に
説明するが、本発明はこれらに限定されるものではな
い。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0019】実施例1 (1)超耐熱性β−ガラクトシダーゼの製造 特願平6−154356号明細書中に記載のピロコッカ
ス フリオサスDSM3638由来の超耐熱性β−ガラ
クトシダーゼ遺伝子を含有させた組換えプラスミドを導
入させた形質転換体、Escherichia coli JM109/pTG2ES-
105 (FERMBP−5023)を、0.01%アンピ
シリンを含むL−ブロス培地(1%ポリペプトン、0.
5%酵母エキス、1%NaCl、pH7.2)5mlに
懸濁し、37℃で16時間振とう培養を行った。更に、
該培養物を同条件の培地1.2リットルに懸濁し、37
℃で16時間振とう培養を行った。該培養物を遠心し回
収した菌体を1mM EDTAを含む20mMリン酸緩
衝液(pH7.0)に懸濁し、100℃で10分間熱処
理した。続いて超音波処理を行い更に100℃、10分
間熱処理を行い遠心後の上清をとり粗酵素液を得た。更
に、該粗酵素液をDEAE−セファロース(ファルマシ
ア社製)、ブチルトヨパール(トーヨーソーダ社製)、
セファデックスG−25(ファルマシア社製)の順番に
クロマトグラフィーを行い、SDSポリアクリルアミド
ゲル電気泳動において単一になるまで精製を行った。こ
うして精製した超耐熱性β−ガラクトシダーゼは、20
mMリン酸緩衝液(pH7.2)で、2.5mg/ml
の酵素濃度になるように調製し、凍結乾燥を行い超耐熱
性β−ガラクトシダーゼの凍結乾燥標品を得た。
Example 1 (1) Production of super thermostable β-galactosidase A recombinant plasmid containing the super thermostable β-galactosidase gene derived from Pyrococcus furiosus DSM3638 described in Japanese Patent Application No. 6-154356 was used. Introduced transformant, Escherichia coli JM109 / pTG2ES-
105 (FERMBP-5023) was added to L-broth medium containing 0.01% ampicillin (1% polypeptone, 0.
The cells were suspended in 5 ml of 5% yeast extract, 1% NaCl, pH 7.2) and shake-cultured at 37 ° C for 16 hours. Furthermore,
The culture was suspended in 1.2 liters of medium under the same conditions,
Shaking culture was performed at 16 ° C. for 16 hours. The bacterial cells recovered by centrifugation of the culture were suspended in 20 mM phosphate buffer (pH 7.0) containing 1 mM EDTA, and heat-treated at 100 ° C. for 10 minutes. Subsequently, ultrasonic treatment was carried out, heat treatment was further carried out at 100 ° C. for 10 minutes, and the supernatant after centrifugation was taken to obtain a crude enzyme solution. Further, the crude enzyme solution was added to DEAE-Sepharose (Pharmacia), Butyl Toyopearl (Toyo Soda),
Chromatography was performed in the order of Sephadex G-25 (manufactured by Pharmacia), and purification was performed by SDS polyacrylamide gel electrophoresis until it became single. The ultra thermostable β-galactosidase purified in this way is 20
2.5 mg / ml in mM phosphate buffer (pH 7.2)
Was prepared so that the enzyme concentration would be the same, and freeze-dried to obtain a freeze-dried preparation of ultra-thermostable β-galactosidase.

【0020】(2)各種固定化超耐熱性β−ガラクトシ
ダーゼの作製 (1)で得られた超耐熱性β−ガラクトシダーゼの凍結
乾燥標品を10mg/mlとなるように滅菌水に溶解さ
せ、酵素溶液Iとし、下記の各種固定化超耐熱性β−ガ
ラクトシダーゼの作製に用いた。
(2) Preparation of various immobilized super thermostable β-galactosidase The freeze-dried preparation of the super thermostable β-galactosidase obtained in (1) was dissolved in sterilized water to 10 mg / ml, and the enzyme was added. Solution I was used as a preparation of various immobilized ultra-heat-resistant β-galactosidase described below.

【0021】(2−1)2M硫酸ナトリウムを含有す
る、0.1Mホウ酸緩衝液(pH9.0)2.8mlに
上記酵素溶液I(0.2ml)を加え、全量3ml(酵
素量2mg)とした。該溶液に、エポキシ基が導入され
たポロスメディア セルフパックポロス20EP(パー
セプティブ バイオシステムズ社製)0.2gを添加
し、よくかくはんした後、振とう条件(130rpm)
下、室温で15時間反応させた。反応終了後、フィルタ
ーろ過を行い固定化酵素を回収した。次に、該固定化酵
素を0.1Mトリス塩酸緩衝液(pH8.3)3mlに
懸濁し、振とう条件(130rpm)下、室温で2時間
反応させることにより過剰のエポキシ基をブロックし
た。反応終了後、フィルターろ過を行い固定化酵素を回
収した。更に回収した固定化酵素をフィルター上で、5
0mMクエン酸緩衝液(pH5.1)20mlにて洗浄
を行った。このようにして得られた固定化超耐熱性β−
ガラクトシダーゼを50mMクエン酸緩衝液(pH5.
1)5.0mlに懸濁し、固定化超耐熱性β−ガラクト
シダーゼI溶液とした。
(2-1) The above enzyme solution I (0.2 ml) was added to 2.8 ml of 0.1 M borate buffer (pH 9.0) containing 2 M sodium sulfate, and the total amount was 3 ml (enzyme amount 2 mg). And To the solution, 0.2 g of Poros Media Self-Pack Poros 20EP (manufactured by Perceptive Biosystems) in which an epoxy group was introduced was added, stirred well, and then shaken (130 rpm).
The reaction was carried out at room temperature for 15 hours. After completion of the reaction, filtration with a filter was performed to recover the immobilized enzyme. Next, the immobilized enzyme was suspended in 3 ml of 0.1 M Tris-HCl buffer (pH 8.3) and reacted at room temperature for 2 hours under shaking conditions (130 rpm) to block excess epoxy groups. After completion of the reaction, filtration with a filter was performed to recover the immobilized enzyme. Further, the recovered immobilized enzyme was filtered on a filter to give 5
Washing was performed with 20 ml of 0 mM citrate buffer (pH 5.1). The immobilized superheat-resistant β-obtained in this way
Galactosidase was added to 50 mM citrate buffer (pH 5.
1) Suspended in 5.0 ml to give an immobilized super thermostable β-galactosidase I solution.

【0022】(2−2)2M硫酸ナトリウムを含有す
る、0.1Mホウ酸緩衝液(pH9.0)2.6mlに
上記酵素溶液I(0.4ml)を加え、全量3ml(酵
素量4mg)とした。該溶液を(2−1)と同様の方法
で、固定化超耐熱性β−ガラクトシダーゼを作製し、固
定化超耐熱性β−ガラクトシダーゼII溶液とした。
(2-2) The above enzyme solution I (0.4 ml) was added to 2.6 ml of 0.1 M borate buffer (pH 9.0) containing 2 M sodium sulfate, and the total amount was 3 ml (enzyme amount 4 mg). And Immobilized super thermostable β-galactosidase was prepared from the solution in the same manner as in (2-1) to obtain an immobilized super thermostable β-galactosidase II solution.

【0023】(2−3)2M硫酸ナトリウムを含有す
る、0.1Mリン酸緩衝液(pH6.5)2.8mlに
上記酵素溶液I(0.2ml)を加え、全量3ml(酵
素量2mg)とした。該溶液に、アルデヒド基が導入さ
れたポロスメディア セルフパックポロス20AL(パ
ーセプティブ バイオシステムズ社製)0.2gを添加
し、よくかくはん後、振とう条件(130rpm)下、
室温で15時間反応させた。反応終了後、フィルターろ
過を行い固定化酵素を回収した。次に、該固定化酵素を
0.1M水素化ホウ素ナトリウムを含有する、0.1M
リン酸緩衝液(pH6.5)3mlに懸濁し、振とう条
件(130rpm)下、室温で2時間反応させた。これ
により上記反応で生成した酵素タンパク質の一級アミン
とポロスメディアのアルデヒド基との間で形成されるシ
ッフ塩基を還元し、安定な共有結合を形成させることが
できる。反応終了後、フィルターろ過を行い固定化酵素
を回収した。更に回収した固定化酵素をフィルター上
で、0.1Mトリス塩酸緩衝液(pH8.3)3mlに
懸濁し、振とう条件(130rpm)下、室温で2時間
反応させることにより、過剰のアルデヒド基をブロック
した。反応終了後、フィルターろ過を行い固定化酵素を
回収した。更に回収した固定化酵素をフィルター上で、
50mMクエン酸緩衝液(pH5.1)20mlにて洗
浄を行った。このようにして得られた固定化超耐熱性β
−ガラクトシダーゼを50mMクエン酸緩衝液(pH
5.1)5.0mlに懸濁し、固定化超耐熱性β−ガラ
クトシダーゼ1II 溶液とした。
(2-3) The above enzyme solution I (0.2 ml) was added to 2.8 ml of 0.1 M phosphate buffer (pH 6.5) containing 2 M sodium sulfate, and the total amount was 3 ml (enzyme amount 2 mg). And To the solution, 0.2 g of an aldehyde group-introduced Poros Media Self Pack Poros 20AL (manufactured by Perceptive Biosystems) was added, and after thorough stirring, under shaking conditions (130 rpm),
The reaction was carried out at room temperature for 15 hours. After completion of the reaction, filtration with a filter was performed to recover the immobilized enzyme. Next, the immobilized enzyme was added to 0.1M containing 0.1M sodium borohydride.
The suspension was suspended in 3 ml of a phosphate buffer (pH 6.5) and reacted at room temperature for 2 hours under shaking conditions (130 rpm). As a result, the Schiff base formed between the primary amine of the enzyme protein produced by the above reaction and the aldehyde group of the poros media can be reduced to form a stable covalent bond. After completion of the reaction, filtration with a filter was performed to recover the immobilized enzyme. Further, the recovered immobilized enzyme was suspended in 3 ml of 0.1 M Tris-HCl buffer (pH 8.3) on a filter, and allowed to react at room temperature for 2 hours under shaking conditions (130 rpm) to remove excess aldehyde groups. Blocked. After completion of the reaction, filtration with a filter was performed to recover the immobilized enzyme. Furthermore, the immobilized enzyme recovered was filtered,
Washing was performed with 20 ml of 50 mM citrate buffer (pH 5.1). The immobilized superheat resistance β thus obtained
Galactosidase in 50 mM citrate buffer (pH
5.1) Suspended in 5.0 ml to give an immobilized super thermostable β-galactosidase 1II solution.

【0024】(2−4)2M硫酸ナトリウムを含有す
る、0.1Mリン酸緩衝液(pH6.5)2.6mlに
上記酵素溶液I(0.4ml)を加え、全量3ml(酵
素量4mg)とした。該溶液を(2−3)と同様の方法
で、固定化超耐熱性β−ガラクトシダーゼを作製し、固
定化超耐熱性β−ガラクトシダーゼIV溶液とした。
(2-4) The above enzyme solution I (0.4 ml) was added to 2.6 ml of 0.1 M phosphate buffer (pH 6.5) containing 2 M sodium sulfate, and the total amount was 3 ml (enzyme amount 4 mg). And Immobilized super thermostable β-galactosidase was prepared from the solution in the same manner as in (2-3) to give an immobilized super thermostable β-galactosidase IV solution.

【0025】(2−5)2M硫酸ナトリウム及び1−エ
チル−3−(3−ジメチルアミノプロピル)−カルボジ
イミド塩酸塩12mgを含有する、0.1Mリン酸緩衝
液(pH6.0)2.8mlに上記酵素溶液I(0.2
ml)を加え、全量3ml(酵素量2mg)とした。該
溶液に、アミノ基が導入されたポロスメディア セルフ
パックポロス 20NH(パーセプティブ バイオシス
テムズ社製)0.2gを添加し、よくかくはん後、振と
う条件(130rpm)下、室温で15時間反応させ
た。反応終了後、フィルターろ過を行い固定化酵素を回
収した。更に回収した固定化酵素をフィルター上で、5
0mMクエン酸緩衝液(pH5.1)20mlにて洗浄
を行った。このようにして得られた固定化超耐熱性β−
ガラクトシダーゼを50mMクエン酸緩衝液(pH5.
1)5.0mlに懸濁し、固定化超耐熱性β−ガラクト
シダーゼV溶液とした。
(2-5) To 2.8 ml of 0.1M phosphate buffer (pH 6.0) containing 2M sodium sulfate and 12 mg of 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide hydrochloride. The enzyme solution I (0.2
ml) was added to make the total amount 3 ml (enzyme amount 2 mg). To the solution, 0.2 g of amino group-introduced Poros Media Self-Pack Poros 20NH (manufactured by Perceptive Biosystems) was added, and after thorough stirring, a reaction was carried out at room temperature for 15 hours under shaking conditions (130 rpm). After completion of the reaction, filtration with a filter was performed to recover the immobilized enzyme. Further, the recovered immobilized enzyme was filtered on a filter to give 5
Washing was performed with 20 ml of 0 mM citrate buffer (pH 5.1). The immobilized superheat-resistant β-obtained in this way
Galactosidase was added to 50 mM citrate buffer (pH 5.
1) Suspended in 5.0 ml to obtain an immobilized super thermostable β-galactosidase V solution.

【0026】(2−6)2M硫酸ナトリウム及び1−エ
チル−3−(3−ジメチルアミノプロピル)−カルボジ
イミド塩酸塩12mgを含有する、0.1Mリン酸緩衝
液(pH6.0)2.6mlに上記酵素溶液I(0.4
ml)を加え、全量3ml(酵素量4mg)とした。該
溶液を(2−5)と同様の方法で、固定化超耐熱性β−
ガラクトシダーゼを作製し、固定化超耐熱性β−ガラク
トシダーゼVI 溶液とした。
(2-6) To 2.6 ml of 0.1 M phosphate buffer (pH 6.0) containing 12 mg of 2 M sodium sulfate and 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide hydrochloride. The enzyme solution I (0.4
ml) was added to make the total amount 3 ml (enzyme amount 4 mg). The solution was treated with the same method as in (2-5) to immobilize superheat-resistant β-
Galactosidase was prepared and used as an immobilized super thermostable β-galactosidase VI solution.

【0027】(2−7)2M硫酸ナトリウム及び0.4
%1−エチル−3−(3−ジメチルアミノプロピル)−
カルボジイミド塩酸塩を含有する、0.1Mリン酸緩衝
液(pH6.0)2.9mlに上記酵素溶液I(0.1
ml)を加え、全量3ml(酵素量1mg)とした。該
溶液に、アミノ基が導入されたFP4612(オルガノ
社製)0.5gを添加し、よくかくはん後、振とう条件
(130rpm)下、室温で20時間反応させた。反応
終了後、フィルターろ過を行い固定化酵素を回収した。
更に回収した固定化酵素をフィルター上で、50mMク
エン酸緩衝液(pH5.1)20mlにて洗浄を行っ
た。このようにして得られた固定化超耐熱性β−ガラク
トシダーゼを50mMクエン酸緩衝液(pH5.1)
5.0mlに懸濁し、固定化超耐熱性β−ガラクトシダ
ーゼVII溶液とした。
(2-7) 2M sodium sulfate and 0.4
% 1-Ethyl-3- (3-dimethylaminopropyl)-
The enzyme solution I (0.1 ml) was added to 2.9 ml of 0.1 M phosphate buffer (pH 6.0) containing carbodiimide hydrochloride.
ml) was added to make the total amount 3 ml (enzyme amount 1 mg). To the solution, 0.5 g of amino group-introduced FP4612 (manufactured by Organo) was added, and after thoroughly stirring, the mixture was reacted under shaking conditions (130 rpm) at room temperature for 20 hours. After completion of the reaction, filtration with a filter was performed to recover the immobilized enzyme.
Further, the recovered immobilized enzyme was washed on the filter with 20 ml of 50 mM citrate buffer (pH 5.1). The immobilized super thermostable β-galactosidase thus obtained was treated with 50 mM citrate buffer (pH 5.1).
It was suspended in 5.0 ml to prepare an immobilized ultra-heat resistant β-galactosidase VII solution.

【0028】(2−8)2M硫酸ナトリウム及び0.4
%1−エチル−3−(3−ジメチルアミノプロピル)−
カルボジイミド塩酸塩を含有する、0.1Mリン酸緩衝
液(pH6.0)2.9mlに上記酵素溶液I(0.1
ml)を加え、全量3ml(酵素量1mg)とした。該
溶液に、アミノ基が導入されたFE4611(オルガノ
社製)0.5gを添加し、よくかくはん後、振とう条件
(130rpm)下、室温で20時間反応させた。反応
終了後、フィルターろ過を行い固定化酵素を回収した。
更に回収した固定化酵素をフィルター上で、50mMク
エン酸緩衝液(pH5.1)20mlにて洗浄を行っ
た。このようにして得られた固定化超耐熱性β−ガラク
トシダーゼを50mMクエン酸緩衝液(pH5.1)
5.0mlに懸濁し、固定化超耐熱性β−ガラクトシダ
ーゼVIII 溶液とした。
(2-8) 2M sodium sulfate and 0.4
% 1-Ethyl-3- (3-dimethylaminopropyl)-
The enzyme solution I (0.1 ml) was added to 2.9 ml of 0.1 M phosphate buffer (pH 6.0) containing carbodiimide hydrochloride.
ml) was added to make the total amount 3 ml (enzyme amount 1 mg). To this solution, 0.5 g of FE4611 having an amino group introduced (manufactured by Organo) was added, and after thoroughly stirring, the mixture was reacted for 20 hours at room temperature under shaking conditions (130 rpm). After completion of the reaction, filtration with a filter was performed to recover the immobilized enzyme.
Further, the recovered immobilized enzyme was washed on the filter with 20 ml of 50 mM citrate buffer (pH 5.1). The immobilized super thermostable β-galactosidase thus obtained was treated with 50 mM citrate buffer (pH 5.1).
It was suspended in 5.0 ml to prepare an immobilized ultra-heat resistant β-galactosidase VIII solution.

【0029】(3)酵素活性測定法 上記(2−1)〜(2−8)で作製した固定化超耐熱性
β−ガラクトシダーゼI〜VIII 溶液0.5mlをそれ
ぞれフィルターろ過を行い、得られた固定化超耐熱性β
−ガラクトシダーゼを500mMラクトースを含有する
50mMクエン酸緩衝液(pH5.1)2.0mlに懸
濁し、よくかくはん後、振とう条件(130rpm)
下、85℃で2分間反応させた。次に、フィルターろ過
を行い固定化酵素を分離することにより反応を停止し
た。反応終了後、反応液の上清中に生成したグルコース
濃度をグルコース テスト ワコー(和光純薬社製)を
用いて測定した。固定化酵素活性は、固定化酵素1ml
当りの酵素活性、及び固定化に使用した酵素タンパク質
1mg当りの酵素活性として表示した。酵素活性の1酵
素単位(ユニット)は85℃で1分間に1μmolのD
−グルコースを生成させる酵素量とした。上記(2−
1)〜(2−8)で作製した固定化超耐熱性β−ガラク
トシダーゼI〜VIII 溶液で行った結果を表1に示す。
表1に示すように、固定化担体に保持された超耐熱性β
−ガラクトシダーゼは、高い活性を示した。
(3) Method for measuring enzyme activity 0.5 ml of the immobilized super thermostable β-galactosidase I to VIII solutions prepared in (2-1) to (2-8) above were filtered and obtained. Fixed super heat resistance β
-Galactosidase was suspended in 2.0 ml of 50 mM citrate buffer (pH 5.1) containing 500 mM lactose, thoroughly stirred, and then shaken (130 rpm).
The reaction was carried out at 85 ° C. for 2 minutes below. Next, the reaction was stopped by filtering with a filter to separate the immobilized enzyme. After the completion of the reaction, the glucose concentration produced in the supernatant of the reaction solution was measured using Glucose Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.). Immobilized enzyme activity is 1 ml of immobilized enzyme
The enzyme activity per 1 unit and the enzyme activity per 1 mg of the enzyme protein used for immobilization were shown. One enzyme unit of enzyme activity is 1 μmol D per minute at 85 ° C.
-The amount of enzyme that produces glucose. Above (2-
Table 1 shows the results obtained by using the immobilized hyperthermophilic β-galactosidase I to VIII solutions prepared in 1) to (2-8).
As shown in Table 1, super heat resistance β retained on the immobilization carrier
-Galactosidase showed high activity.

【0030】(4)熱安定性 上記(2−1)、(2−3)、(2−5)、(2−
7)、(2−8)で作製した固定化超耐熱性β−ガラク
トシダーゼI、III 、V、VII、VIII 溶液の熱安定性
は、85℃で24時間熱処理を行い、処理後の残存活性
を上記の(3)に示した酵素活性測定法で測定すること
により確認した。その結果を表2に示す。表2に示した
ように、いずれの固定化超耐熱性β−ガラクトシダーゼ
においても24時間の熱処理による活性の低下は見られ
なかった。
(4) Thermal Stability The above (2-1), (2-3), (2-5) and (2-
7), the thermal stability of the immobilized super thermostable β-galactosidase I, III, V, VII, and VIII solutions prepared in (2-8) was evaluated by treating the residual activity after the heat treatment at 85 ° C. for 24 hours. It was confirmed by measuring with the enzyme activity measuring method described in (3) above. The results are shown in Table 2. As shown in Table 2, no decrease in activity was observed by heat treatment for 24 hours in any of the immobilized hyperthermostable β-galactosidases.

【0031】(5)耐久性及び溶離酵素の確認 (2−1)で作製した固定化超耐熱性β−ガラクトシダ
ーゼI溶液を用いて、固定化超耐熱性β−ガラクトシダ
ーゼの耐久性及び固定化担体より溶出した溶離酵素の確
認を行った。85℃において、経時的に240時間、固
定化超耐熱性β−ガラクトシダーゼの残存活性及び溶離
酵素量を測定した。その結果を図1に示す。すなわち、
図1は熱処理による固定化超耐熱性β−ガラクトシダー
ゼの残存活性と溶離酵素量を示す図であり、縦軸の残存
活性については、処理前(0時間)の固定化超耐熱性β
−ガラクトシダーゼ活性を100%とした時の残存活性
率(%、白丸印)で示す。また、溶離酵素量について
は、上記処理後の固定化超耐熱性β−ガラクトシダーゼ
溶液I(0.5ml)のフィルターろ過上清100μl
に、10mM o−ニトロフェニル−β−D−ガラクト
ピラノシドを含有する、50mMクエン酸緩衝液(pH
5.1)2.0mlを加え、85℃で3分間反応させた
後、生成したo−ニトロフェノールの量を410nmに
おける吸光度で測定することにより求めた値と、標準物
質として超耐熱性β−ガラクトシダーゼ(10μg/m
l)を同様にして測定した値とを比較することで求めら
れる酵素量を溶離酵素量(μg/ml、黒四角印)とし
て示す。図1に示すように、固定化超耐熱性β−ガラク
トシダーゼは、85℃で240時間処理後も80%以上
の残存活性率を有し、固定化担体に保持された酵素の溶
離は見られなかった。
(5) Confirmation of Durability and Eluted Enzyme The durability and immobilized carrier of the immobilized ultra-thermostable β-galactosidase prepared by using the immobilized ultra-thermostable β-galactosidase I solution prepared in (2-1) The more eluted enzyme was confirmed. At 85 ° C., the residual activity of immobilized hyperthermophilic β-galactosidase and the amount of eluted enzyme were measured over time for 240 hours. The result is shown in FIG. That is,
FIG. 1 is a diagram showing the residual activity of immobilized hyperthermophilic β-galactosidase by heat treatment and the amount of eluted enzyme. The residual activity on the vertical axis is the immobilized ultrathermophilic β before treatment (0 hour).
-Percentage of residual activity (%, open circles) when galactosidase activity is 100%. Regarding the amount of the enzyme to be eluted, 100 μl of the supernatant of the immobilized ultra-thermostable β-galactosidase solution I (0.5 ml) filtered through the filter after the above treatment
In a 50 mM citrate buffer (pH: 10 mM o-nitrophenyl-β-D-galactopyranoside).
5.1) After adding 2.0 ml and reacting at 85 ° C. for 3 minutes, the value obtained by measuring the amount of o-nitrophenol produced by the absorbance at 410 nm and the super heat resistance β- as a standard substance Galactosidase (10 μg / m
The amount of enzyme obtained by comparing 1) with the value measured in the same manner is shown as the amount of eluted enzyme (μg / ml, black square mark). As shown in FIG. 1, the immobilized hyperthermophilic β-galactosidase had a residual activity rate of 80% or more even after the treatment at 85 ° C. for 240 hours, and no elution of the enzyme retained on the immobilized carrier was observed. It was

【0032】[0032]

【発明の効果】本発明により、食品工業、糖質工学分野
において有用な固定化超耐熱性β−ガラクトシダーゼが
提供され、高温バイオリアクターとして該固定化超耐熱
性β−ガラクトシダーゼを用いることにより、熱に安定
で、繰返し使用ができ、更には長期使用が可能になる。
INDUSTRIAL APPLICABILITY According to the present invention, an immobilized super thermostable β-galactosidase useful in the food industry and sugar engineering field is provided. By using the immobilized super thermostable β-galactosidase as a high temperature bioreactor, It is stable, can be used repeatedly, and can be used for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固定化超耐熱性β−ガラクトシダーゼ
の残存活性率と溶離酵素量を示す図である。
FIG. 1 is a diagram showing the residual activity rate and the amount of eluted enzyme of immobilized hyperthermophilic β-galactosidase of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 綱澤 進 滋賀県大津市瀬田3丁目4番1号 寳酒造 株式会社中央研究所内 (72)発明者 加藤 郁之進 滋賀県大津市瀬田3丁目4番1号 寳酒造 株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Susumu Tsunazawa 3-4-1, Seta, Otsu City, Shiga Prefecture, Central Research Laboratory, Mina Shuzo Co., Ltd. (72) Inventor Ikuno Kato, 3-4 Seta, Otsu City, Shiga Prefecture No. 1 in the Central Research Laboratory of Tao Shuzo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ピロコッカス フリオサス由来の超耐熱
性β−ガラクトシダーゼを担体に保持させてなることを
特徴とする固定化超耐熱性β−ガラクトシダーゼ。
1. An immobilized super thermostable β-galactosidase, which is characterized in that the super thermostable β-galactosidase derived from Pyrococcus furiosus is held on a carrier.
JP8598095A 1995-03-20 1995-03-20 Immobilized ultrathermostable beta-galactosidase Pending JPH08256769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8598095A JPH08256769A (en) 1995-03-20 1995-03-20 Immobilized ultrathermostable beta-galactosidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8598095A JPH08256769A (en) 1995-03-20 1995-03-20 Immobilized ultrathermostable beta-galactosidase

Publications (1)

Publication Number Publication Date
JPH08256769A true JPH08256769A (en) 1996-10-08

Family

ID=13873861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8598095A Pending JPH08256769A (en) 1995-03-20 1995-03-20 Immobilized ultrathermostable beta-galactosidase

Country Status (1)

Country Link
JP (1) JPH08256769A (en)

Similar Documents

Publication Publication Date Title
EP1022334B1 (en) Novel amylases
DE2703615C2 (en)
EP0024182B1 (en) Thermo-stable micro-organism and proteolytic enzyme prepared therefrom, and processes for the preparation of the micro-organism and the proteolytic enzyme
CA1133410A (en) Enzymes and processes utilising enzymes
EP0234858A2 (en) Beta-amylase enzyme product, preparation and use thereof
Kvesitadze et al. Immobilization of mold and bacterial amylases on silica carriers
JP3734504B2 (en) Novel keratan sulfate degrading enzyme
JPH08256769A (en) Immobilized ultrathermostable beta-galactosidase
JPS61187787A (en) Polypeptide product
US4610965A (en) Adsorption-desorption purification of glucose isomerase
JPH0480675B2 (en)
EP0644260A1 (en) NOVEL ACID- AND HEAT-RESISTANT $g(a)-AMYLASE, PROCESS FOR PRODUCING THE SAME, AND METHOD OF LIQUEFYING STARCH BY USING THE SAME
JPH1118763A (en) Modification of beta-glactosidase
Hrmova et al. Protoplast formation of Neurospora crassa by an inducible enzyme system of Arthrobacter GJM-1
KR101252928B1 (en) Immobilized enzyme using pH-sensitive polymer and preparation method of linear alpha-1,4-glucans using the same
JP2664586B2 (en) Enzymes capable of synthesizing polyphenol glycosides
JPS5840468B2 (en) Purification method of cholesterol oxidase
JP2559400B2 (en) Malto-oligosaccharide-forming amylase and method for producing the same
JPS5929200B2 (en) Manufacturing method for water-insoluble tannin preparations
JP4139537B2 (en) Polygalacturonase
JPH10229876A (en) Alfa-1,3-multi-branched dextran-hydrolyzing enzyme, its production, and production of cyclic isomalto-oligosaccharide
JPH06319540A (en) Novel thermostable beta-galactosidase and production thereof
CA1219827A (en) Thermo-stable micro-organism
JP2623509B2 (en) Method for producing branched maltooligosaccharides
JPS58152482A (en) Heat-resistant proteolytic enzyme aqualysin i and preparation thereof