JPH08256287A - Electron beam control method in image pickup tube - Google Patents

Electron beam control method in image pickup tube

Info

Publication number
JPH08256287A
JPH08256287A JP7059411A JP5941195A JPH08256287A JP H08256287 A JPH08256287 A JP H08256287A JP 7059411 A JP7059411 A JP 7059411A JP 5941195 A JP5941195 A JP 5941195A JP H08256287 A JPH08256287 A JP H08256287A
Authority
JP
Japan
Prior art keywords
image pickup
pickup tube
current
circuit
signal current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7059411A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakamura
和彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP7059411A priority Critical patent/JPH08256287A/en
Publication of JPH08256287A publication Critical patent/JPH08256287A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To reduce the adjustment time for an automatic beam optimum (ABO) control function and to improve the yield of a low power impregnated cathode image pickup tube by improving reduction in a beam current in the ABO control in a television camera employing the low power impregnated cathode image pickup tube. CONSTITUTION: A DC potential (or amplification factor) of an ABO processing circuit A2 is made proportional to an integrated value of a signal current of the image pickup tube 1 in a television camera employing the low power impregnated cathode image pickup tube. Since a special ABO process circuit to manage a history of an integration value of a signal current of the image pickup tube 1 is not required, a beam current is increased so as to have provision for a screen requiring a high mean beam current by having only to add an integration circuit A5 to a DC recovery circuit of an existing ABO processing circuit A2 to attain a stable ABO characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮像管を用いたテレビ
ジョンカメラの、大光量入射時の特性の改良に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of the characteristics of a television camera using an image pickup tube when a large amount of light is incident.

【0002】[0002]

【従来の技術】一般に、多孔質タングステンに酸化バリ
ウムを含浸させたカソード(以下、含浸カソードと称
す)を用いた層流ダイオードガン型撮像管は、その消費
電力が大きいが、高解像度の画像が得られるという特徴
を有する。近年、含浸カソード部分を細径化することに
よって、消費電力を低減させた層流ダイオードガン型撮
像管(以下、低電力含浸カソード撮像管と称す)が実用
化され、ハイビジョンカメラ等のテレビジョンカメラに
使用されている。
2. Description of the Related Art In general, a laminar flow diode gun type image pickup tube using a cathode in which porous tungsten is impregnated with barium oxide (hereinafter referred to as an impregnated cathode) consumes a large amount of power but has a high resolution image. It has the characteristic of being obtained. In recent years, a laminar flow diode gun type imaging tube (hereinafter referred to as a low power impregnation cathode imaging tube) with reduced power consumption by reducing the diameter of the impregnated cathode portion has been put into practical use, and a television camera such as a high-definition camera. Is used for.

【0003】ここで、上記低電力含浸カソード撮像管の
ビーム特性を、図4を用いて説明する。図4において、
横軸のEC1は、第1の制御電極(以下、第1グリッドま
たはG1と称す)に印加される電圧、縦軸のIbは、ビ
ーム電流を表す。
The beam characteristics of the low power impregnated cathode image pickup tube will be described with reference to FIG. In FIG.
The horizontal axis E C1 represents the voltage applied to the first control electrode (hereinafter referred to as the first grid or G1), and the vertical axis Ib represents the beam current.

【0004】この撮像管のG1に印加される電圧EC1
または電流が、例えば、概ね一定であっても、多くのビ
ーム電流を長時間流し続けるとなると、撮像管の構成部
分の熱的変形等によって撮像管のビーム電流Ibが低減
する。そのため、例えば、図4の実線に示される特性
が、点線の様な特性に変動し、ビーム電流がより減少す
る。また、少ないビーム電流を流し続けるとなると、今
度はビーム電流が少なくなることによって、上記熱的変
形等の要因でなるビーム電流の減少傾向がなくなってい
き、次第にビーム電流が回復して増大し、図4の実線の
様な特性になる。そのため、ビーム電流の動的変化の程
度によっては、この変動が繰り返されることになる。な
お、このビーム特性の変動は、一般にビームドリフトと
呼ばれている。
The voltage E C1 applied to G1 of this image pickup tube,
Alternatively, even if the current is, for example, substantially constant, if a large amount of beam current continues to flow for a long time, the beam current Ib of the image pickup tube decreases due to thermal deformation of the components of the image pickup tube. Therefore, for example, the characteristic shown by the solid line in FIG. 4 changes to the characteristic shown by the dotted line, and the beam current further decreases. Further, when a small amount of beam current continues to flow, this time the beam current decreases, and the decreasing tendency of the beam current due to factors such as the above thermal deformation disappears, and the beam current gradually recovers and increases, The characteristics are as shown by the solid line in FIG. Therefore, this fluctuation is repeated depending on the degree of the dynamic change of the beam current. It should be noted that this variation in beam characteristics is generally called beam drift.

【0005】また、一般に、低電力含浸カソード撮像管
は、ビーム径がビーム電流値にほぼ比例する関係にある
ので、撮像管の高解像度化のためビーム径を細くしたい
場合には、なるべく少ないビーム電流にて使用されるこ
とが望まれるものである。
In general, the low power impregnated cathode image pickup tube has a relationship that the beam diameter is substantially proportional to the beam current value. Therefore, when it is desired to reduce the beam diameter in order to increase the resolution of the image pickup tube, the number of beams should be as small as possible. It is what is desired to be used with electric current.

【0006】上述の低電力含浸カソード撮像管の特性を
踏まえ、従来、撮像管を用いた撮像装置に大光量が連続
的に入射されて撮像する場合の上記ドリフト特性を改良
するための技術としては、以下に述べる撮像管の電子ビ
ーム制御方法(自動電子ビーム最適制御方法:以下、A
BOと称す)が知られている(例えば、特公昭53−3
0564号公報)。これは、遮光時またはごく低光量の
光が入射時に、定格信号に対応する信号電流の約2倍の
電流量の電子ビーム(以下、ベースビームと称す)を撮
像管に流すように撮像装置を設定しておく。そして定格
信号を超える光量の入射時、G1の電圧を、撮像管の信
号電流に応じて非線形に制御するもので、この時の電子
ビーム量は、ベースビーム量にこの時の信号電流に応じ
た電流量を上乗せしたものとなる。これにより、定格信
号に対応する光量の約8〜16倍の入射光量であって
も、その光量時に対応する電子ビームを撮像管の信号電
流よりも多く保つことが可能となる。
Based on the characteristics of the low-power-impregnated cathode image pickup tube described above, a conventional technique for improving the drift characteristic when a large amount of light is continuously incident on an image pickup apparatus using an image pickup tube to perform image pickup is described. , The electron beam control method of the image pickup tube described below (the automatic electron beam optimum control method: hereinafter, A
Known as BO (for example, Japanese Patent Publication No. Sho 53-3)
0564). This is because the image pickup device is designed so that an electron beam (hereinafter, referred to as a base beam) having a current amount about twice the signal current corresponding to the rated signal is made to flow through the image pickup tube when light is shielded or when a very low amount of light is incident. Set it. When the amount of light exceeding the rated signal is incident, the voltage of G1 is non-linearly controlled according to the signal current of the image pickup tube. The electron beam amount at this time corresponds to the base beam amount according to the signal current at this time. It will be the sum of the amount of current. As a result, even when the amount of incident light is about 8 to 16 times the amount of light corresponding to the rated signal, the electron beam corresponding to the amount of light can be kept larger than the signal current of the image pickup tube.

【0007】この様なABO制御においては、撮像管の
信号電流に応じて、撮像管のG1に印加される電圧を非
線形に制御するための負帰還回路を構成するABO回路
の増幅器の増幅度を大きくとれば、電子ビームの不足は
起きにくくなるが、撮像管の信号電流が入射光量と無関
係に変動する現象(以下ABO発振と称す)であって、
上記増幅度が大きいことにより、上記負帰還系が正帰還
となることにより発生する発振(ハンチング)が起き易
くなり、問題となる。このため、上記増幅度はあまり大
きくとることはできない。
In such ABO control, the amplification degree of the amplifier of the ABO circuit which constitutes a negative feedback circuit for nonlinearly controlling the voltage applied to G1 of the image pickup tube according to the signal current of the image pickup tube is set. If it is large, the shortage of the electron beam is hard to occur, but it is a phenomenon (hereinafter referred to as ABO oscillation) in which the signal current of the image pickup tube changes independently of the incident light amount.
Due to the large amplification degree, oscillation (hunting) that occurs when the negative feedback system becomes positive feedback easily occurs, which is a problem. For this reason, the above-mentioned amplification degree cannot be made very large.

【0008】[0008]

【発明が解決しようとする課題】図3は前述の従来の技
術の、撮像管の出力の映像信号電圧Viと、G1に印加
される電圧EC1および、ビーム電流Ibとを関係付けて
表した波形図である。
FIG. 3 is a diagram showing the video signal voltage Vi of the output of the image pickup tube, the voltage E C1 applied to G1, and the beam current Ib in the above-mentioned conventional technique in association with each other. It is a waveform diagram.

【0009】前述の従来の技術では、ABO回路の増幅
器の増幅度をあまり大きくとれないため、図3に示した
波形の様に大光量が大面積に入射するような映像を撮像
時に、その入射光量が持続すると、ビームドリフトによ
りビーム量が低下し、大光量入射時の電子ビームの不足
によって映像信号出力がクリップされる等の不具合、例
えば、図3のVi波形の点線で示した部分のレベルが、
実線のように低下してしまう現象が生じることとなる。
In the above-mentioned prior art, since the amplification degree of the amplifier of the ABO circuit cannot be set so large, when the image is picked up such that a large amount of light is incident on a large area like the waveform shown in FIG. When the light quantity continues, the beam quantity decreases due to the beam drift, and the video signal output is clipped due to the lack of the electron beam when a large quantity of light is incident, for example, the level of the portion indicated by the dotted line of the Vi waveform in FIG. But,
As shown by the solid line, the phenomenon of deterioration occurs.

【0010】さらに、ハイビジョンカメラでは高解像度
を優先するためベースビーム量を少なめにしなければな
らない上、ビームドリフトによって、EC1に対するビー
ム量が変動してもABO発振を起こさないように、AB
O回路の増幅度を小さくしなければならず、電子ビーム
不足となり易い。
Further, in a high-definition camera, the amount of base beam must be made small in order to give priority to high resolution, and the beam drift prevents the ABO oscillation even if the beam amount with respect to E C1 changes.
The amplification degree of the O circuit must be reduced, and the electron beam tends to be insufficient.

【0011】すなわち、前述の従来技術では、大光量入
射時でも電子ビームを撮像管の信号電流よりも多くする
ために、ベースビーム量および上記増幅度を大きめに設
定すると、ABO発振を起こし易くなり、小さめに設定
するとビーム不足となる。これによりベースビーム量や
ABOの調整作業を困難なものとし、それらの調整に時
間がかかる結果を招いていた。
That is, in the above-mentioned prior art, in order to make the electron beam larger than the signal current of the image pickup tube even when a large amount of light is incident, if the base beam amount and the amplification degree are set to be large, ABO oscillation easily occurs. , If you set it small, the beam will be insufficient. This makes the adjustment work of the base beam amount and ABO difficult, resulting in a time-consuming adjustment.

【0012】そのため、従来は撮像管の特性、例えば制
御電極(抑制電極とも称す)の電圧または電流と電子ビ
ームの特性(以下、ドライブ特性と称す)や大光量入射
時の光電変換特性等の許容できる範囲が狭くなり、その
ため撮像管の歩留まりが低下し、撮像装置の原価が上昇
する等の問題があった。
Therefore, conventionally, the characteristics of the image pickup tube, for example, the voltage or current of the control electrode (also referred to as a suppression electrode) and the characteristic of the electron beam (hereinafter, referred to as drive characteristic), the photoelectric conversion characteristic when a large amount of light is incident, etc. are allowed. There is a problem that the range that can be formed is narrowed, so that the yield of the image pickup tube is lowered and the cost of the image pickup apparatus is increased.

【0013】本発明は、これらの欠点を除去し、含浸カ
ソードを細径化して消費電力を低減させた層流ダイオー
ドガン型撮像管の歩留まりの向上と、ベースビーム量の
低減やABO回路の調整時間の短縮を可能とすることを
目的とする。
The present invention eliminates these drawbacks, improves the yield of a laminar flow diode gun type image pickup tube in which the diameter of the impregnated cathode is reduced to reduce the power consumption, and the base beam amount is reduced and the ABO circuit is adjusted. The purpose is to reduce the time.

【0014】[0014]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、撮像管の電子ビーム量を信号電流に応じ
て非線形に制御する撮像装置において、撮像管の制御電
極(G1)に、所定の放電特性を有する積分回路でもっ
て積分された、撮像管の信号電流の積分値を直流重畳す
るものである。
In order to achieve the above-mentioned object, the present invention provides a control electrode (G1) of an image pickup tube in an image pickup apparatus which nonlinearly controls the electron beam amount of the image pickup tube according to a signal current. The direct current is superimposed on the integrated value of the signal current of the image pickup tube, which has been integrated by an integrating circuit having a predetermined discharge characteristic.

【0015】また、本発明は、ABO回路の増幅度を、
所定の放電特性を有する積分回路でもって積分された、
撮像管の信号電流の積分値に比例させて制御するもので
ある。
The present invention also provides the amplification degree of the ABO circuit,
Integrated by an integrating circuit having a predetermined discharge characteristic,
The control is performed in proportion to the integral value of the signal current of the image pickup tube.

【0016】[0016]

【作用】その結果、含浸カソードを細径化して消費電力
を低減させた層流ダイオードガン型撮像管を用いたハイ
ビジョンカメラにおいて、大光量の連続入射時、電子ビ
ーム量は信号電流の積分値に比例して制御されるため、
遮光時のベースビームに対し、大光量の連続入射時のベ
ースビームが等価的に増加することとなる。あるいは、
遮光時のABO増幅度に対し、大光量連続入射時のAB
O増幅度が増加することとなる。
As a result, in a high-definition camera using a laminar flow diode gun type image pickup tube in which the diameter of the impregnated cathode is reduced to reduce power consumption, the electron beam amount becomes the integral value of the signal current when a large amount of light is continuously incident. Controlled proportionally,
The base beam when a large amount of light is continuously incident is equivalently increased with respect to the base beam when shielded. Alternatively,
AB when the large amount of light is continuously incident, compared to the ABO amplification when the light is blocked
O amplification degree will increase.

【0017】そのため、小光量の入射光時に、ABO発
振もビーム不足も起こさない様に撮像装置を調整してお
けば、ビームドリフトによって大光量入射時にビーム量
が多少低下しても、ビーム不足には到らない。また、撮
像管の特性(ドライブ特性や大光量入射時の光電変換特
性)に多少個体差があるとしても、ABO特性は改善さ
れ、ABO発振もビーム不足も起こしにくくなる。
Therefore, if the image pickup device is adjusted so that neither ABO oscillation nor beam shortage occurs when a small amount of light is incident, the beam becomes insufficient even if the beam amount slightly decreases due to beam drift when the large amount of light is incident. Does not arrive. Further, even if there are some individual differences in the characteristics of the image pickup tube (drive characteristics and photoelectric conversion characteristics when a large amount of light is incident), the ABO characteristics are improved, and ABO oscillation and beam shortage hardly occur.

【0018】したがって、撮像管の歩留まりが向上し、
ベースビーム量やABOの調整時間も短縮する。
Therefore, the yield of the image pickup tube is improved,
The base beam amount and ABO adjustment time are also shortened.

【0019】[0019]

【実施例】図1は、本発明の全体構成例を示すブロック
図である。図1において、入射光Linは、レンズ11に
より、撮像管1のターゲットに結像し、映像信号電流I
sjに変換される。映像信号電流Isjは、前置増幅器A1
と帰還抵抗R2により、映像信号電圧Viに変換され
る。ここで、Vi=Isj×R2である。
1 is a block diagram showing an example of the overall configuration of the present invention. In FIG. 1, the incident light Lin is imaged on the target of the image pickup tube 1 by the lens 11, and the image signal current I
converted to sj. The video signal current Isj is equal to the preamplifier A1.
And the feedback resistor R2 converts it into a video signal voltage Vi. Here, Vi = Isj × R2.

【0020】一般に、映像信号電圧Viは、信号処理回
路A4により黒レベルと白レベルとガンマとが揃えられ
て、映像信号出力Voとなるが、この動作は従来から周
知であり、また本発明に直接関係する部分ではないの
で、説明を省略する。
In general, the video signal voltage Vi becomes the video signal output Vo by adjusting the black level, the white level and the gamma by the signal processing circuit A4. This operation is well known in the prior art, and the present invention is also applicable. Since it is not a directly related part, its explanation is omitted.

【0021】また、映像信号電圧Viは、ABO処理回
路A2の非線形増幅回路A3で非線形に増幅され撮像管
の制御電極G1の電圧EC1となり、定格信号の約8〜1
6倍の入射光量でも、電子ビームを撮像管の信号電流よ
りも多く保つ公知のABO制御が行なわれる。この一般
的なABO制御については、公知のことなので、非線形
増幅回路A3の動作の説明は省略する。
Further, the video signal voltage Vi is non-linearly amplified by the non-linear amplification circuit A3 of the ABO processing circuit A2 and becomes the voltage E C1 of the control electrode G1 of the image pickup tube, which is about 8 to 1 of the rated signal.
A known ABO control is performed to keep the electron beam above the signal current of the image pickup tube even when the incident light amount is 6 times. Since this general ABO control is known, the description of the operation of the non-linear amplifier circuit A3 is omitted.

【0022】映像信号電圧Viは、積分回路A5で積分
された信号Vdとなり、直流混合回路A6で上記のAB
O信号電圧Vaに直流重畳される。あるいは、図示はし
ていないが、積分信号Vdを増幅度可変回路A7に入力
し、ABO信号電圧Vaの増幅度を制御するとしてもよ
い。それらの結果、大光量の光が連続入射時は、G1に
印加されるG1電圧EC1のうち、上述した遮光時または
低光量光の入射時の電子ビームであるベースビームに相
当する無信号期間(入射光が光電変換されてできた信号
の期間の間に挟まれた期間)の電圧値が増加し、それに
つれてベースビーム量も増加することとなる。
The video signal voltage Vi becomes a signal Vd integrated by the integrating circuit A5, and the above-mentioned AB signal is output by the DC mixing circuit A6.
DC is superimposed on the O signal voltage Va. Alternatively, although not shown, the integrated signal Vd may be input to the amplification degree variable circuit A7 to control the amplification degree of the ABO signal voltage Va. As a result, when a large amount of light is continuously incident, in the G1 voltage E C1 applied to G1, there is no signal period corresponding to the base beam which is the electron beam at the time of the above-mentioned light blocking or the incidence of a low amount of light. The voltage value of (the period sandwiched between the periods of the signals generated by photoelectric conversion of the incident light) increases, and the base beam amount also increases accordingly.

【0023】なお、本発明において、図1のABO処理
回路A2における非線形増幅回路A3と直流混合回路A
6と増幅度可変回路A7との接続順は、上述の図1に示
した順番に係わらず、適宜順番を替えても本発明を損ね
るものではない。
In the present invention, the non-linear amplifier circuit A3 and the DC mixing circuit A in the ABO processing circuit A2 of FIG. 1 are used.
The order of connecting 6 and the amplification degree variable circuit A7 does not impair the present invention regardless of the order shown in FIG.

【0024】以下、本発明のABO処理回路A2内の積
分回路A5と直流混合回路A6と増幅度可変回路A7の
一実施例を、図5と図6と図7により説明する。また、
本発明による撮像管の出力の映像信号電圧Viと、G1
に印加される電圧EC1および、ビーム電流Ibとの関係
の一例を表した波形図である図2を用いてその動作を説
明する。
An embodiment of the integrating circuit A5, the DC mixing circuit A6 and the amplification variable circuit A7 in the ABO processing circuit A2 of the present invention will be described below with reference to FIGS. 5, 6 and 7. Also,
The video signal voltage Vi of the output of the image pickup tube according to the present invention and G1
The operation will be described with reference to FIG. 2, which is a waveform diagram showing an example of the relationship between the voltage E C1 applied to the beam and the beam current Ib.

【0025】図5は本発明に用いる積分回路A5の一実
施例であり、図6は直流混合回路A6の一実施例であ
り、図7は増幅度可変回路A7の一実施例である。ここ
で、図5(a)および(b)の積分回路は、周知の技術
であるダイオード検波と演算増幅器を用いた低周波通過
型増幅回路であり、図6(a)の回路は周知のトランジ
スタ増幅回路であり、図6(b)の直流再生回路は周知
の容量結合とトランジスタクランプ回路であり、図7
(a)および(b)の回路は周知のトランジスタ増幅回
路とFETを用いた可変抵抗との組合せであるため、詳
細な説明は省略し、以下、回路の動作について簡単に説
明する。
FIG. 5 shows an embodiment of an integrating circuit A5 used in the present invention, FIG. 6 shows an embodiment of a DC mixing circuit A6, and FIG. 7 shows an embodiment of an amplification variable circuit A7. Here, the integrator circuit of FIGS. 5A and 5B is a low-frequency pass amplifier circuit using a well-known technique of diode detection and an operational amplifier, and the circuit of FIG. 6A is a well-known transistor. 6B is a well-known capacitive coupling and transistor clamp circuit.
Since the circuits (a) and (b) are a combination of a well-known transistor amplifier circuit and a variable resistor using an FET, detailed description thereof will be omitted, and the operation of the circuit will be briefly described below.

【0026】図6(a)の直流混合回路A6と図7
(a)の増幅度可変回路A7はABO出力回路である。
図6(a)と図7(a)において、撮像管のベースビー
ム量は負電源VEEと負荷抵抗R10に流れるアイドリン
グ電流でもって定まる。また、ベースビーム放射時の制
御電極の電圧EC10は、ベースビーム量と制御電極G1
のインピーダンスでもって定まる。
The DC mixing circuit A6 of FIG. 6A and FIG.
The amplification degree variable circuit A7 in (a) is an ABO output circuit.
6A and 7A, the base beam amount of the image pickup tube is determined by the idling current flowing through the negative power source V EE and the load resistor R10. Further, the voltage E C1 0 of the control electrode at the time of emitting the base beam is determined by the base beam amount and the control electrode G1
It is determined by the impedance of.

【0027】図6(a)では、トランジスタQ1は、ベ
ースに入力されたABO信号電圧Vaと抵抗R11を介
して入力された積分信号Vdに比例し、エミッタ抵抗R
9と抵抗R11に反比例した値を足し合わせた、下記の
式(1)で表わされるコレクタ電流IC1を出力する。 IC1=(Va+VBE)/R9+(Va+VBE+Vd)/R11・・・(1) また、図6(b)では、トランジスタQ5のエッミタに
抵抗R5を介して積分信号Vdを入力し、ABO信号電
圧の基準電位に積分信号Vdを混合する。
In FIG. 6A, the transistor Q1 is proportional to the ABO signal voltage Va input to the base and the integrated signal Vd input via the resistor R11, and the emitter resistor R1
9 and a value inversely proportional to the resistance R11 are added to output a collector current I C1 represented by the following equation (1). I C1 = (Va + V BE ) / R9 + (Va + V BE + Vd) / R11 (1) Further, in FIG. 6B, the integral signal Vd is input to the emitter of the transistor Q5 via the resistor R5, and the ABO signal is input. The integral signal Vd is mixed with the reference potential of the voltage.

【0028】その結果、大光量入射時に信号電流Isjの
波形の変動はなく同じ信号波形が繰り返されるとした場
合、上述した従来の技術では波形図3に示すように、G
1電圧EC1は一定の波形の繰り返しとなり、そのピーク
値は増大しないが、本発明では波形図2に示すように、
G1電圧EC1は増大していく。
As a result, assuming that the waveform of the signal current Isj does not fluctuate when a large amount of light is incident and the same signal waveform is repeated, as shown in FIG.
1 voltage E C1 has a constant waveform repetition and its peak value does not increase. However, in the present invention, as shown in FIG.
The G1 voltage E C1 increases.

【0029】そのため、図2のビーム電流Ibの波形図
の実線で示された波形のように、ベースビームに相当す
る底の部分の電流値が、信号電流Isjの積分成分の値に
基づいて増大していくため、上述の図3のごとくにビー
ム電流Ibの信号期間のピーク値が減少していくもの
を、図2のように、ビーム電流Ibのピーク値を、破線
で示したような所定レベル以上に保持することができ
る。
Therefore, as shown by the solid line in the waveform diagram of the beam current Ib in FIG. 2, the current value of the bottom portion corresponding to the base beam increases based on the value of the integral component of the signal current Isj. Therefore, as shown in FIG. 3, the peak value of the beam current Ib decreasing during the signal period is changed to a predetermined value as shown by a broken line in FIG. Can be held above the level.

【0030】これにより、ABO回路の増幅器の増幅度
をあまり大きくしなくても、ビーム電流Ibは不足せ
ず、上述の波形図3で、ビーム不足により映像信号電圧
Viの波形がクリップされた波形となるのに対し、図2
では、映像信号電圧Viはクリップされない。
As a result, the beam current Ib does not become insufficient even if the amplification degree of the amplifier of the ABO circuit is not increased so much, and the waveform of the video signal voltage Vi is clipped due to the beam shortage in the waveform diagram 3 described above. On the other hand, as shown in FIG.
Then, the video signal voltage Vi is not clipped.

【0031】なお、前述の実施例では、トランジスタ回
路のエミッタに撮像管の信号電流の積分値を混合した
が、本発明はこれに限定されず、例えば、演算増幅器で
電流混合等してもよいことは言うまでもない。
In the above embodiment, the integrated value of the signal current of the image pickup tube is mixed with the emitter of the transistor circuit, but the present invention is not limited to this, and the current may be mixed with an operational amplifier, for example. Needless to say.

【0032】図7(a)および(b)では、FETのQ
2、あるいはQ4の各ドレインソース抵抗Rdsは、それ
ぞれゲートに入力された積分信号Vdに反比例する。し
たがって、それらの増幅度は積分信号Vdに比例する。
In FIGS. 7A and 7B, the Q of the FET is
The drain source resistance Rds of 2 or Q4 is inversely proportional to the integrated signal Vd input to the gate. Therefore, their amplification degree is proportional to the integrated signal Vd.

【0033】図7(a)では、コレクタ電流IC2は、IC2
=(Va+VBE)/(R9×Rds/(R9+Rds))となり、
図7(b)では、コレクタ電流IC3は、IC3=(Va−
BE)/(R7×Rds/(R7+Rds))となる。
In FIG. 7A, the collector current I C2 is I C2
= (Va + V BE ) / (R9 × Rds / (R9 + Rds)),
In FIG. 7B, the collector current I C3 is I C3 = (Va−
V BE ) / (R7 × Rds / (R7 + Rds)).

【0034】なお、前述の実施例では、トランジスタ回
路のエミッタに接続されたFETのゲートに入力撮像管
の信号電流の積分値を混合したが、本発明はこれに限定
されず、例えば、アナログ処理を用いた掛け算器で利得
を可変する等としてもよいことは言うまでもない。
In the above embodiment, the integrated value of the signal current of the input image pickup tube is mixed with the gate of the FET connected to the emitter of the transistor circuit. However, the present invention is not limited to this, and analog processing, for example, may be used. Needless to say, the gain may be changed by a multiplier using the.

【0035】[0035]

【発明の効果】本発明によれば、撮像管の信号電流の積
分値の来歴を管理するような、特殊な(例えば、デジタ
ル処理を用いた)ABOプロセス回路を新たに追加する
ことなく、既存のABOの回路を工夫したアナログ方式
による小規模な回路でもって、安定なABO特性を得る
事が可能である。そのため、超高解像度ではあるが、大
光量が大面積に入射して時間が経過するとビーム量が低
下する含浸カソード撮像管のカソード部を細径化して、
消費電力を低減させた層流ダイオードガン型撮像管を用
いて、同一画面内の輝度の範囲が広い条件であっても良
好な映像が撮影可能な、小形のハイビジョンカメラが実
現できる。
According to the present invention, there is no need to add a special (for example, digital processing) ABO process circuit that manages the history of the integrated value of the signal current of the image pickup tube, without existing. It is possible to obtain stable ABO characteristics with a small-scale analog system circuit devised from the ABO circuit. Therefore, although it is an ultra-high resolution, the beam amount decreases when a large amount of light enters a large area and the time elapses.
By using a laminar flow diode gun type image pickup tube with reduced power consumption, it is possible to realize a compact high-definition camera capable of taking good images even under the condition that the range of brightness in the same screen is wide.

【0036】また、高価な低電力含浸カソード撮像管の
特性のバラツキを吸収できるため、撮像管の選別基準を
ゆるめ、低電力含浸カソード撮像管の歩留まりを下げる
ことなく、ハイビジョンカメラの低価格化が実現でき
る。
Further, since the variation in the characteristics of the expensive low power impregnated cathode image pickup tube can be absorbed, the selection standard of the image pickup tube is loosened, and the low cost of the high power impregnated cathode image pickup tube can be achieved without lowering the yield. realizable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全体構成例を示すブロック図。FIG. 1 is a block diagram showing an example of the overall configuration of the present invention.

【図2】本発明による動作の一例を表わす波形図。FIG. 2 is a waveform chart showing an example of an operation according to the present invention.

【図3】従来の技術の動作の一例を表わす波形図。FIG. 3 is a waveform chart showing an example of an operation of a conventional technique.

【図4】低電力含浸カソード撮像管のビーム特性図。FIG. 4 is a beam characteristic diagram of a low power impregnated cathode image pickup tube.

【図5】本発明に用いる積分回路の一実施例を示す回路
図。
FIG. 5 is a circuit diagram showing an embodiment of an integrating circuit used in the present invention.

【図6】本発明に用いる直流重畳回路の一実施例を示す
回路図。
FIG. 6 is a circuit diagram showing an embodiment of a DC superimposing circuit used in the present invention.

【図7】本発明に用いる増幅度可変回路の一実施例を示
す回路図。
FIG. 7 is a circuit diagram showing an embodiment of an amplification variable circuit used in the present invention.

【符号の説明】[Explanation of symbols]

1:撮像管、A1:前置増幅器、A2:ABO処理回
路、A3:非線形増幅回路、A4:映像信号処理回路、
A5:積分回路 A6:直流混合回路、A7:増幅度可変回路 G1:第1グリッド(制御)電極 VCC:正電源、VEE:負電源、Vref:基準電源
1: image pickup tube, A1: preamplifier, A2: ABO processing circuit, A3: non-linear amplification circuit, A4: video signal processing circuit,
A5: Integration circuit A6: DC mixing circuit, A7: Variable amplification circuit G1: First grid (control) electrode V CC : Positive power supply, V EE : Negative power supply, Vref: Reference power supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 撮像管を用い、該撮像管の制御電極に撮
像管の信号電流値に対応する電流を印加するテレビジョ
ンカメラにおいて、所定の放電特性を有する積分回路で
もって撮像管の信号電流を積分した積分値に対応する電
流を上記信号電流に対応する電流に重畳して得た電流、
あるいは、撮像管の信号電流の平均値に対応する電流を
同じく上記信号電流に対応する電流に重畳して得た電流
を、上記撮像管の制御電極に印加することを特徴とする
撮像管の電子ビーム制御方法。
1. In a television camera using an image pickup tube and applying a current corresponding to a signal current value of the image pickup tube to a control electrode of the image pickup tube, a signal current of the image pickup tube is provided by an integrating circuit having a predetermined discharge characteristic. Current obtained by superimposing the current corresponding to the integrated value obtained by superimposing on the current corresponding to the signal current,
Alternatively, the current corresponding to the average value of the signal current of the image pickup tube is also superimposed on the current corresponding to the signal current, and the obtained current is applied to the control electrode of the image pickup tube. Beam control method.
【請求項2】 撮像管を用い、該撮像管の制御電極に印
加される電圧、または電流を、該撮像管の信号電流に対
して非線形に制御する回路を有するテレビジョンカメラ
の、上記撮像管の制御電極に印加する信号電圧または信
号電流を増幅する回路において、上記撮像管の制御電極
に印加する信号電流または信号電圧に、所定の放電特性
を有する積分回路でもって上記信号電流を積分した積分
値に対応する電流または上記信号電流を積分した積分値
に比例した電圧値を重畳し、上記撮像管の制御電極に対
し上記撮像管の信号電流の積分波形を印加することを特
徴とする撮像管の電子ビーム制御方法。
2. The image pickup tube of a television camera having a circuit for controlling a voltage or a current applied to a control electrode of the image pickup tube in a nonlinear manner with respect to a signal current of the image pickup tube by using the image pickup tube. In a circuit for amplifying a signal voltage or a signal current applied to the control electrode of, the signal current or the signal voltage applied to the control electrode of the image pickup tube is integrated by integrating the signal current by an integrating circuit having a predetermined discharge characteristic. An image pickup tube characterized in that a current value corresponding to the value or a voltage value proportional to an integrated value obtained by integrating the signal current is superimposed, and an integral waveform of the signal current of the image pickup tube is applied to a control electrode of the image pickup tube. Electron beam control method.
【請求項3】 撮像管を用い、該撮像管の制御電極の電
圧、または電流を、該撮像管の信号電流に対して非線形
に制御する回路を有するテレビジョンカメラの、上記撮
像管の制御電極に印加する信号電圧または信号電流を増
幅する回路において、該増幅回路の直流再生の基準電位
を、所定の放電特性を有する積分回路でもって上記撮像
管の信号電流を積分した積分値に対応して、変化させる
ことにより、上記撮像管の制御電極に対し上記撮像管の
信号電流の積分波形を印加することを特徴とする撮像管
の電子ビーム制御方法。
3. A control electrode for a pickup tube of a television camera having a circuit for controlling the voltage or current of the control electrode of the pickup tube in a non-linear manner with respect to the signal current of the pickup tube. In a circuit that amplifies a signal voltage or a signal current applied to, the reference potential of the direct current reproduction of the amplifier circuit corresponds to an integrated value obtained by integrating the signal current of the image pickup tube with an integrating circuit having a predetermined discharge characteristic. An electron beam control method for an image pickup tube, characterized in that an integral waveform of a signal current of the image pickup tube is applied to the control electrode of the image pickup tube by changing.
【請求項4】 撮像管を用い、該撮像管の制御電極の電
圧、または電流を、該撮像管の信号電流に対して、非線
形に制御する回路を有するテレビジョンカメラの、上記
撮像管の制御電極に印加する信号電圧または信号電流を
増幅する回路において、該増幅回路の増幅度を、所定の
放電特性を有する積分回路でもって上記撮像管の信号電
流を積分した積分値に対応して、変化させることによ
り、上記撮像管の制御電極に対し上記撮像管の信号電流
の積分波形を印加することを特徴とする撮像管の電子ビ
ーム制御方法。
4. A control of the image pickup tube of a television camera having a circuit for controlling a voltage or a current of a control electrode of the image pickup tube in a nonlinear manner with respect to a signal current of the image pickup tube using the image pickup tube. In a circuit for amplifying a signal voltage or a signal current applied to an electrode, the amplification degree of the amplifier circuit is changed in accordance with an integrated value obtained by integrating the signal current of the image pickup tube with an integrating circuit having a predetermined discharge characteristic. By so doing, an integral waveform of the signal current of the image pickup tube is applied to the control electrode of the image pickup tube.
【請求項5】 撮像管を用い、該撮像管の制御電極の電
圧、または電流を、該撮像管の信号電流に対して、非線
形に制御する回路を有するテレビジョンカメラの、上記
撮像管の制御電極に印加する信号電圧または信号電流を
増幅する回路において、掛け算器又は可変増幅器に、所
定の放電特性を有する積分回路でもって上記撮像管の信
号電流を積分した積分値を入力させることにより、上記
撮像管の制御電極に対し上記撮像管の信号電流の積分波
形を印加することを特徴とする撮像管の電子ビーム制御
方法。
5. A control of the image pickup tube of a television camera having a circuit for nonlinearly controlling a voltage or a current of a control electrode of the image pickup tube with respect to a signal current of the image pickup tube using the image pickup tube. In a circuit for amplifying a signal voltage or a signal current applied to an electrode, a multiplier or a variable amplifier inputs the integrated value obtained by integrating the signal current of the image pickup tube with an integrating circuit having a predetermined discharge characteristic. An electron beam control method for an image pickup tube, comprising applying an integral waveform of a signal current of the image pickup tube to a control electrode of the image pickup tube.
JP7059411A 1995-03-17 1995-03-17 Electron beam control method in image pickup tube Pending JPH08256287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7059411A JPH08256287A (en) 1995-03-17 1995-03-17 Electron beam control method in image pickup tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7059411A JPH08256287A (en) 1995-03-17 1995-03-17 Electron beam control method in image pickup tube

Publications (1)

Publication Number Publication Date
JPH08256287A true JPH08256287A (en) 1996-10-01

Family

ID=13112517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7059411A Pending JPH08256287A (en) 1995-03-17 1995-03-17 Electron beam control method in image pickup tube

Country Status (1)

Country Link
JP (1) JPH08256287A (en)

Similar Documents

Publication Publication Date Title
US4651210A (en) Adjustable gamma controller
US3975657A (en) Method of and apparatus for controlling amount of electron beam in image pickup tube
JPH0851558A (en) Cathode-ray tube driving device
JPH08256287A (en) Electron beam control method in image pickup tube
JPS5824068B2 (en) video amplification equipment
KR100338232B1 (en) Kinescope drive with gamma correction
JPH0124393B2 (en)
JPH0137909B2 (en)
US3860751A (en) Method and arrangement for compensating for stray light effects in television cameras
US4259691A (en) Beam current control system for image pickup tube
JPH05191673A (en) Automatic gradation correcting circuit and luminance control method
JPH024541Y2 (en)
US4860093A (en) Method and apparatus for driving a plurality of pick-up tubes having their cathodes supplied by a common negative potential
US4441122A (en) Beam current control for television camera
Oliver A rooter for video signals
JP2021176218A (en) Imaging apparatus
JP2501568Y2 (en) Receiver
JPS5837176Y2 (en) Electron beam control circuit
JPH0741257Y2 (en) Luminance signal correction circuit for television receiver
KR820002266B1 (en) Combined kinescope grid and cathode video drive system
JP2701947B2 (en) Video camera
KR900003545Y1 (en) Auto control circuit of brightness
JPH06189171A (en) Electronic beam control method for image pickup tube
JPS6248891A (en) Automatic adjusting circuit for white balance
JPH06105223A (en) Beam current control circuit for image pickup tube