JPH06105223A - Beam current control circuit for image pickup tube - Google Patents

Beam current control circuit for image pickup tube

Info

Publication number
JPH06105223A
JPH06105223A JP4276568A JP27656892A JPH06105223A JP H06105223 A JPH06105223 A JP H06105223A JP 4276568 A JP4276568 A JP 4276568A JP 27656892 A JP27656892 A JP 27656892A JP H06105223 A JPH06105223 A JP H06105223A
Authority
JP
Japan
Prior art keywords
circuit
waveform
signal
image pickup
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4276568A
Other languages
Japanese (ja)
Inventor
Masanori Honbo
正典 本坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP4276568A priority Critical patent/JPH06105223A/en
Publication of JPH06105223A publication Critical patent/JPH06105223A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the more suitable system for a beam current optimizing circuit of an image pickup tube of a television camera by providing a low pass filter and a non-additive mixing circuit(NAM circuit) mixing signals before and after the low pass filter. CONSTITUTION:A low pass filter 10 and a NAM circuit 11 are newly provided between a nonlinear processing circuit 7 and a signal amplifier circuit 8. An output signal waveform Vs1 of the nonlinear processing circuit 7 is inputted to one input terminal of the NAM circuit 11 and inputted also to the low pass filter 10. A signal waveform Vs2 after the low pass filter 10 is inputted to other input terminal of the NAM circuit 11. The Vs1, Vs2 are mixed in the NAM circuit 11, from which a signal waveform V's is obtained. The V's is amplified to a level of several tens Vp-p by the signal amplifier circuit 8 and fed to a 1st grid of an image pickup tube. Since a tail end of the signal input waveform V's is smoothed, occurrence of waveform distortion and a false signal due to undershoot of the 1st grid voltage waveform EC1 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は撮像管を用いたテレビジ
ョンカメラにおいて,特に被写体の照度に応じて撮像管
の電子ビームの電流量を制御する回路の改良に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a television camera using an image pickup tube, and more particularly to an improvement of a circuit for controlling a current amount of an electron beam of the image pickup tube according to an illuminance of an object.

【0002】[0002]

【従来の技術】テレビジョンカメラに用いられる,いわ
ゆる光導電型撮像管の概略を図3に示す。同図に示すよ
うに,光導電型撮像管1においては,光導電ターゲット
2の表面に,同ターゲット裏面に結像させた被写体光学
像12の像強度に応じた電荷パターン13を発生させ,
同電荷パターンをカソード4より発する電子ビーム3で
走査することにより順次放電し,この放電に対応した充
電電流Isを映像信号電流として外部に取り出してい
る。したがって,撮像管1より取り出せる信号電流Is
の最大値は電子ビーム3のビーム電流Ibにより制限さ
れ, Is ≦ Ib ・・・(1) となる。ここでIbが不足するとIsのレベルが頭打ち
となるばかりか,コメットテールと呼ばれる偽信号を生
じ,画質を著しく劣化させることとなる。
2. Description of the Related Art FIG. 3 schematically shows a so-called photoconductive type image pickup tube used in a television camera. As shown in the figure, in the photoconductive image pickup tube 1, a charge pattern 13 is generated on the surface of the photoconductive target 2 in accordance with the image intensity of the subject optical image 12 formed on the back surface of the target.
The same charge pattern is sequentially scanned by scanning with the electron beam 3 emitted from the cathode 4, and the charging current Is corresponding to this discharge is taken out as a video signal current to the outside. Therefore, the signal current Is that can be taken out from the image pickup tube 1
The maximum value of is limited by the beam current Ib of the electron beam 3, and Is ≦ Ib (1). If Ib is insufficient, the level of Is will reach a peak, and a false signal called a comet tail will be generated, which will significantly deteriorate the image quality.

【0003】ビーム電流Ibは,通常カソード4に対し
て正電圧を与えられた第一グリッド5により制御され
る。この第1グリッド電圧Ec1とビーム電流Ibの関係
(Ib−Ec1特性)を図4に示す。図4に示すように,
一般にビーム電流Ibは第1グリッド電圧Ec1が高くな
るにつれて増加する。ところで,上記(1)式によれ
ば,例えば,高輝度の被写体を撮像した場合等に,それ
に応じた高レベルの信号電流Isを得ようとすると,ビ
ーム電流Ibを十分に大きくとる必要がある。しかしな
がら,一般的に,ビーム電流Ibを大きくすると,信号
電流Isのダイナミックレンジは広がるが,反面,ビー
ムの拡散により,ターゲット2を走査する実効的な電子
ビーム径が大きくなり,解像度が劣化してしまう。そこ
で,最近のテレビジョンカメラにおいては,ビーム電流
Ibを通常撮像管の定格出力信号電流(Isj)の2倍程
度の比較的低レベルに保ち,それ以上の信号電流が必要
な場合に限り,その信号電流Isに応じてビーム電流I
bを動的に制御し最適化する回路を設けている。これを
一般にビーム電流最適化回路と呼び,従来より様々な方
式が提案されている。
The beam current Ib is controlled by a first grid 5 which is normally given a positive voltage on the cathode 4. FIG. 4 shows the relationship between the first grid voltage Ec 1 and the beam current Ib (Ib-Ec 1 characteristic). As shown in Figure 4,
Generally, the beam current Ib increases as the first grid voltage Ec 1 increases. By the way, according to the equation (1), for example, when an image of a high-brightness object is picked up, in order to obtain a high level signal current Is, the beam current Ib needs to be sufficiently large. . However, generally, when the beam current Ib is increased, the dynamic range of the signal current Is is widened, but on the other hand, the effective electron beam diameter for scanning the target 2 is increased due to the beam diffusion, and the resolution is deteriorated. I will end up. Therefore, in a recent television camera, the beam current Ib is kept at a relatively low level which is about twice the rated output signal current (Isj) of the normal image pickup tube, and only when a signal current higher than that is required, Beam current I according to signal current Is
A circuit for dynamically controlling and optimizing b is provided. This is generally called a beam current optimization circuit, and various methods have been proposed in the past.

【0004】上記ビーム電流最適化回路の一例を図5に
示す。図5の回路において,撮像管1の第1グリッド電
圧Ec1は,同撮像管の出力信号電流Isが図4に示した
Ib−Ec1特性図上のIb0以下の低レベルにある間
は,定電圧源9によりビーム電流Ib0を与える直流電
圧E0となる。ここで,Ib0は一般に撮像管の定格出力
電流Isjの2倍,すなわち, Ib0 = 2×Isj ・・・(2) に設定される。Isが上記Ib0を越える場合は,その
時得られるIsをもとに,プリアンプ6,非線形処理回
路7,信号増幅回路8の一連の回路により所要のIb
(=Is)を与える電圧波形E(Is)が作られ,これが上
記直流電圧E0に重畳され,第1グリッド5に印加され
る。つまり,信号電流Isは,プリアンプ6において図
6に示すような電圧波形Vsに変換され,次段の非線形
処理回路7に入力される。非線形処理回路7において
は,図6に示すVsの波形の上記Ib0に対応するレベ
ルV0以下の黒側部分をクリップして除去するととも
に,図4のIb−Ec1特性のカーブに合わせてVsの振
幅方向に非線形補正を施し,さらに,図4の特性図上に
示した制御限界Ib’に対応するレベルV’以上の白側
部分をクリップして除去し,その結果,図6に示す波形
Vs’を得る。このVs’を次段の信号増幅回路8に入
力し,図4の特性の絶対値に見合うレベルまで増幅す
る。以上の処理により得られた信号電圧波形E(Is)
を上記直流電圧E0に重畳し,図7に示すような波形を
得る。これをEc1として第1グリッド5に印加し,ビー
ム電流Ibを制御する。
An example of the beam current optimization circuit is shown in FIG. In the circuit of FIG. 5, the first grid voltage Ec 1 of the image pickup tube 1 is maintained while the output signal current Is of the image pickup tube is at a low level below Ib 0 on the Ib-Ec 1 characteristic diagram shown in FIG. , A DC voltage E 0 that gives a beam current Ib 0 by the constant voltage source 9. Here, Ib 0 is generally set to twice the rated output current Isj of the image pickup tube, that is, Ib 0 = 2 × Isj (2). If Is exceeds the above Ib 0 , the required Ib is obtained by a series of circuits including the preamplifier 6, the non-linear processing circuit 7, and the signal amplification circuit 8 based on the Is obtained at that time.
A voltage waveform E (Is) giving (= Is) is created, which is superimposed on the DC voltage E 0 and applied to the first grid 5. That is, the signal current Is is converted into the voltage waveform Vs as shown in FIG. 6 in the preamplifier 6 and input to the non-linear processing circuit 7 in the next stage. In the non-linear processing circuit 7, the black side portion of the waveform of Vs shown in FIG. 6 corresponding to the above Ib 0 and below the level V 0 is clipped and removed, and in accordance with the curve of the Ib-Ec 1 characteristic of FIG. Non-linear correction is performed in the amplitude direction of Vs, and the white side portion of level V ′ or higher corresponding to the control limit Ib ′ shown on the characteristic diagram of FIG. 4 is clipped and removed. As a result, shown in FIG. Obtain the waveform Vs'. This Vs' is input to the signal amplification circuit 8 at the next stage and amplified to a level commensurate with the absolute value of the characteristic of FIG. Signal voltage waveform E (Is) obtained by the above processing
Is superimposed on the DC voltage E 0 to obtain a waveform as shown in FIG. This is applied as Ec 1 to the first grid 5 to control the beam current Ib.

【0005】以上述べたことをまとめると,本ビーム電
流最適化回路によれば,第1グリッド電圧Ec1の波形
は,撮像管の出力信号電流Isが定格信号電流Isjの2
倍以下となる通常の使用域においてはビーム電流Ib0
=2×Isjを与える直流電圧E0の一定値となり,これ
により解像度劣化のない安定した画質が得られる。ま
た,高輝度の被写体を撮像し,Isが2×Isj以上にな
ると,Isの2×Isjを越えた部分の波形に対応した信
号成分E(Is)がE0に重畳して現われ,Isの変化に
応じてE0と制御限界レベルE’の間を変化し,これに
より常に所要のビーム電流Ibが過不足なく供給され,
信号電流Is,すなわち,得られる画像のダイナミック
レンジが広がることになる。
In summary of the above, according to the present beam current optimization circuit, the waveform of the first grid voltage Ec 1 is 2 when the output signal current Is of the image pickup tube is the rated signal current Isj.
In the normal use range where the beam current Ib 0 is doubled or less
= 2 × Isj, which is a constant value of the DC voltage E 0 , whereby stable image quality without deterioration of resolution can be obtained. When a high-luminance object is imaged and Is becomes 2 × Isj or more, a signal component E (Is) corresponding to the waveform of the portion of Is exceeding 2 × Isj appears on E 0 and appears. A change is made between E 0 and the control limit level E ′ according to the change, so that the required beam current Ib is always supplied without excess or deficiency.
The signal current Is, that is, the dynamic range of the obtained image is widened.

【0006】[0006]

【発明が解決しようとする課題】前述の第1グリッド電
圧波形Ec1の所要レベルは,撮像管によっては数10V
p−pにも及ぶ大振幅となる。この大振幅の信号を得る
ために,図5に示した従来のビーム電流最適化回路にお
いては,信号増幅回路8に大きな利得が求められるが,
そのために十分な周波数応答性能がとれずに,図8
(a)に示すように,Ec1の波形の後縁部に図8(a)
に示すようなアンダーシュートを生じやすかった。そし
て,このアンダーシュートを生じた画像部分が局所的に
ビーム電流不足となり,それにより撮像管出力信号Is
に波形歪みを生じたり,あるいは,本来画像とは無関係
のアンダーシュート成分が,撮像管の電極間の容量結合
を介してIsに混入し偽信号を生じるといった画質劣化
を引き起こす結果となっていた。上記のアンダーシュー
トを防止する方策として,図8(a)の波形を低域通過
フィルタを通して図8(b)の波形Bのように平滑化す
る方法が考えられる。しかしこの波形Bは,Ec1として
本来必要とされる同図波形Aの部分が欠除し,撮像管出
力信号Isに比較して必然的に波形のなまりと遅延を生
じ,その結果,同図に斜線で示した信号の前縁部におい
てビーム電流不足を生じることになる。本発明は上記従
来方式の欠点を除去し,テレビジョンカメラにおける撮
像管のビーム電流最適化回路として,より好適な方式を
提供することを目的とする。
The required level of the above-mentioned first grid voltage waveform Ec 1 is several tens V depending on the image pickup tube.
The amplitude is as large as pp. In order to obtain this large amplitude signal, in the conventional beam current optimization circuit shown in FIG. 5, a large gain is required for the signal amplification circuit 8, but
Therefore, sufficient frequency response performance cannot be obtained, and
(A), the 8 to the rear edge of the waveform of Ec 1 (a)
Undershoot was likely to occur as shown in. Then, the beam current is locally insufficient in the image portion in which the undershoot occurs, which causes the image pickup tube output signal Is.
Waveform distortion, or an undershoot component originally unrelated to the image is mixed into Is through capacitive coupling between the electrodes of the image pickup tube to cause a false signal, resulting in image quality deterioration. As a measure to prevent the above-mentioned undershoot, a method of smoothing the waveform of FIG. 8A through a low-pass filter as a waveform B of FIG. 8B can be considered. However, this waveform B lacks the portion of the waveform A that is originally required as Ec 1 and inevitably causes rounding and delay of the waveform as compared with the image pickup tube output signal Is. The beam current becomes insufficient at the leading edge of the signal indicated by the diagonal line in FIG. An object of the present invention is to eliminate the above-mentioned drawbacks of the conventional method and to provide a more suitable method as a beam current optimizing circuit for an image pickup tube in a television camera.

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために,従来のビーム電流最適化回路における非線
形処理回路の入力から信号増幅回路の出力に至る信号波
形処理過程のいずれかに,信号波形を平滑化し,かつ,
遅延させるための低域通過フィルタと,この低域通過フ
ィルタ通過後の信号波形と同フィルタ通過前の信号波形
とを混合する非加算混合回路(NAM回路:non-additiv
e mixing circuit)とを新たに設け,これらの回路によ
る信号の波形整形処理機能を追加したことを特徴とする
ものである。
In order to achieve the above object, the present invention provides any one of the signal waveform processing steps from the input of the nonlinear processing circuit to the output of the signal amplification circuit in the conventional beam current optimization circuit, Smooth the signal waveform, and
A low-pass filter for delaying and a non-adding mixing circuit (NAM circuit: non-additiv) for mixing a signal waveform after passing through this low-pass filter and a signal waveform before passing through the same low-pass filter.
e mixing circuit) is newly added, and the waveform shaping processing function of the signal by these circuits is added.

【0008】[0008]

【作用】上記のように,低域通過フィルタ通過前・後の
2つの信号波形をNAM回路で混合することにより,同
NAM回路の出力信号波形の前縁部には波形のなまりや
遅延のない上記フィルタ通過前の信号波形が現われ,他
方,その後縁部には同フィルタ通過後の平滑化された信
号波形が現われる。つまり,上記回路により信号波形の
後縁部のみを平滑化できることになる。したがって,撮
像管のビーム電流最適化回路の非線形処理回路と信号増
幅回路からなる信号波形処理過程のいずれかに本発明の
低域通過フィルタとNAM回路からなる波形整形処理回
路を用いることにより,撮像管の第1グリッド電圧波形
Ec1として,その前縁部にビーム電流不足を生じるよう
な波形のなまりや遅延を生じることなく,同後縁部のみ
が平滑化され,前述の従来回路の欠点となっていたアン
ダーシュートのない波形を供給することができる。これ
により,撮像管出力信号Isに波形歪みや偽信号を生じ
ない良好なビーム電流最適化回路が実現できる。
As described above, by mixing the two signal waveforms before and after passing through the low-pass filter in the NAM circuit, there is no waveform rounding or delay at the leading edge of the output signal waveform of the NAM circuit. The signal waveform before passing through the filter appears, while the smoothed signal waveform after passing through the filter appears at the trailing edge. That is, only the trailing edge of the signal waveform can be smoothed by the above circuit. Therefore, by using the waveform shaping processing circuit including the low-pass filter and the NAM circuit of the present invention in any of the signal waveform processing processes including the nonlinear processing circuit and the signal amplification circuit of the beam current optimization circuit of the image pickup tube, As the first grid voltage waveform Ec 1 of the tube, only the trailing edge of the tube is smoothed without causing the waveform to be blunted or delayed such that the beam current becomes insufficient at the leading edge thereof. It is possible to supply a waveform without undershoot. As a result, it is possible to realize a good beam current optimization circuit that does not cause waveform distortion or spurious signals in the image pickup tube output signal Is.

【0009】[0009]

【実施例】以下,本発明について一実施例を用いて説明
する。図1に本発明を適用した撮像管のビーム電流最適
化回路の一実施例を示す。図1の回路の基本的な方式及
び動作は図5に示した従来回路と同じである。相違点
は,図1の回路において,非線形処理回路7と信号増幅
回路8の間に,新たに低域通過フィルタ10とNAM回
路11とを設けた点であり,これが本発明の主眼点でも
ある。図1の回路において,非線形処理回路7の出力信
号波形Vs1は,NAM回路11の一方の入力端へ入力さ
れると同時に低域通過フィルタ10に入力される。低域
通過フィルタ10通過後の信号波形Vs2は,NAM回路
11のもう一方の入力端に入力される。これらVs1とV
s2はNAM回路11において混合され,信号波形Vs’
を得る。
EXAMPLES The present invention will be described below with reference to examples. FIG. 1 shows an embodiment of a beam current optimization circuit for an image pickup tube to which the present invention is applied. The basic method and operation of the circuit of FIG. 1 are the same as those of the conventional circuit shown in FIG. The difference is that, in the circuit of FIG. 1, a low pass filter 10 and a NAM circuit 11 are newly provided between the nonlinear processing circuit 7 and the signal amplification circuit 8, and this is also the main point of the present invention. . In the circuit of FIG. 1, the output signal waveform Vs 1 of the non-linear processing circuit 7 is input to one input terminal of the NAM circuit 11 and at the same time is input to the low pass filter 10. The signal waveform Vs 2 after passing through the low-pass filter 10 is input to the other input terminal of the NAM circuit 11. These Vs 1 and V
s 2 is mixed in the NAM circuit 11, and the signal waveform Vs ′
To get

【0010】上記Vs1,Vs2,Vs’の各波形を図2に
示す。図2(a)に示したVs1に対して,同図(b)に
示したVs2は,低域通過フィルタ通過により信号全体が
遅延し,波形の前縁部と後縁部が平滑化されている。こ
れらVs1とVs2をNAM回路11にて混合すると,両波
形の各部を比較してレベルの大きい方が出力されるの
で,その出力信号波形Vs’においては,図2(c)に
示すように,その前縁部には波形の遅延やなまりのない
Vs1が現われ,後縁部には平滑化されたVs2が現われ
る。つまり,Vs’はVs1の後縁部のみを平滑化した波
形とみなせる。図1の回路において,Vs’は信号増幅
回路8により数10Vp−pのレベルに増幅され,撮像
管の第1グリッドに印加される。このとき大信号動作と
なる信号増幅回路8の周波数応答特性が多少悪くても,
その入力信号波形Vs’の後縁部が平滑化されているた
めに,同回路の出力信号波形E(Is),ひいては第1
グリッド電圧波形Ec1の後縁部にはアンダーシュートを
生じにくくなる。これにより前述の従来回路の欠点であ
った第1グリッド電圧波形Ec1のアンダーシュートに起
因する撮像管出力信号Isにおける波形歪みや偽信号の
発生を防ぐことができ,ビーム電流最適化回路として良
好な性能が得られる。なお,本発明による低域通過フィ
ルタ10とNAM回路11とで構成された波形整形回路
は,図1に示した位置に限らず,非線形処理回路7の入
力から信号増幅回路8の出力に至る信号波形処理過程の
どこに配置してもよいことは言うまでもない。
The waveforms of Vs 1 , Vs 2 and Vs' are shown in FIG. Respect Vs 1 shown in FIG. 2 (a), Vs 2 shown in FIG. (B), the entire signal by passing the low-pass filter is delayed, leading and trailing edges are smoothed waveform Has been done. When these Vs 1 and Vs 2 are mixed in the NAM circuit 11, the respective parts of both waveforms are compared and the one with the higher level is output. Therefore, in the output signal waveform Vs ′, as shown in FIG. At the leading edge, Vs 1 without waveform delay and rounding appears, and at the trailing edge, smoothed Vs 2 appears. That is, Vs' can be regarded as a waveform in which only the trailing edge of Vs 1 is smoothed. In the circuit of FIG. 1, Vs' is amplified to a level of several tens Vp-p by the signal amplifier circuit 8 and applied to the first grid of the image pickup tube. At this time, even if the frequency response characteristic of the signal amplifying circuit 8 which becomes a large signal operation is slightly bad,
Since the trailing edge of the input signal waveform Vs' is smoothed, the output signal waveform E (Is) of the circuit, and by extension the first signal
Undershoot is less likely to occur at the trailing edge of the grid voltage waveform Ec 1 . As a result, it is possible to prevent waveform distortion and spurious signals in the output signal Is of the image pickup tube caused by the undershoot of the first grid voltage waveform Ec 1 , which is a drawback of the above-mentioned conventional circuit, and is favorable as a beam current optimization circuit. Excellent performance. The waveform shaping circuit configured by the low pass filter 10 and the NAM circuit 11 according to the present invention is not limited to the position shown in FIG. It goes without saying that it may be placed anywhere in the waveform processing process.

【0011】[0011]

【発明の効果】本発明によれば,テレビジョンカメラの
撮像管のビーム電流最適化回路において,信号利得を大
きくした場合に生じやすい周波数応答性能の劣化を,極
めて簡便な回路による波形整形処理により補うことがで
き,上記性能劣化に起因する撮像管出力信号の歪みの発
生を防げる。これにより高利得で撮像管のビーム電流を
大きくとれるビーム電流最適化回路が実現でき,よって
撮像管出力信号のダイナミックレンジの広い高性能なテ
レビジョンカメラが提供できる。
According to the present invention, in the beam current optimizing circuit of the image pickup tube of the television camera, the deterioration of the frequency response performance, which is likely to occur when the signal gain is increased, is eliminated by the waveform shaping process by the extremely simple circuit. This can be compensated for, and the occurrence of distortion in the output signal of the image pickup tube due to the above-mentioned performance deterioration can be prevented. As a result, it is possible to realize a beam current optimization circuit with a high gain and a large beam current of the image pickup tube, and thus to provide a high-performance television camera with a wide dynamic range of the image pickup tube output signal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略構成図。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】図1の回路各部の波形概略図。FIG. 2 is a schematic waveform diagram of each part of the circuit of FIG.

【図3】光導電型撮像管の動作原理の概略説明図。FIG. 3 is a schematic explanatory view of an operation principle of a photoconductive type image pickup tube.

【図4】撮像管のビーム電流(Ib)対第1グリッド電
圧(Ec1)の特性図。
FIG. 4 is a characteristic diagram of the beam current (Ib) of the image pickup tube versus the first grid voltage (Ec 1 ).

【図5】従来例を示す概略構成図。FIG. 5 is a schematic configuration diagram showing a conventional example.

【図6】図5の回路各部の波形概略図。6 is a schematic waveform diagram of each part of the circuit of FIG.

【図7】図5の回路各部の波形概略図。7 is a schematic waveform diagram of each part of the circuit of FIG.

【図8】図5の回路各部の波形概略図。8 is a schematic waveform diagram of each part of the circuit of FIG.

【符号の説明】[Explanation of symbols]

1 撮像管 5 第1グリッド 6 プリアンプ 7 非線形処理回路 8 信号増幅回路 9 定電圧源 10 低域通過フィルタ 11 NAM回路 1 Imaging Tube 5 First Grid 6 Preamplifier 7 Nonlinear Processing Circuit 8 Signal Amplifying Circuit 9 Constant Voltage Source 10 Low-Pass Filter 11 NAM Circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 撮像管を用いたテレビジョンカメラにお
いて,該撮像管の出力信号に非線形の波形整形処理を施
した後,これを該撮像管の電子ビーム制御電極に印加す
ることにより,該撮像管の電子ビームの電流量を動的に
制御する撮像管のビーム電流制御回路において,信号波
形を平滑化し,かつ,遅延させるための低域通過フィル
タと,この低域通過フィルタ通過後の信号波形と該低域
通過フィルタ通過前の信号波形とを混合する非加算混合
回路(NAM回路:non-additivemixing circuit)とを有
し,上記撮像管出力信号の波形整形処理過程において,
上記低域通過フィルタと非加算混合回路からなる波形整
形回路を用い,当該信号の波形整形処理を行なう機能を
有することを特徴とする撮像管のビーム電流制御回路。
1. In a television camera using an image pickup tube, the output signal of the image pickup tube is subjected to a non-linear waveform shaping process and then applied to an electron beam control electrode of the image pickup tube to obtain the image pickup image. A low-pass filter for smoothing and delaying the signal waveform in the beam current control circuit of the imaging tube that dynamically controls the electron beam current of the tube, and the signal waveform after passing through this low-pass filter And a non-additive mixing circuit (NAM circuit: non-additive mixing circuit) for mixing the signal waveform before passing through the low-pass filter, and in the waveform shaping process of the image pickup tube output signal,
A beam current control circuit for an image pickup tube, which has a function of performing a waveform shaping process of the signal using a waveform shaping circuit including the low pass filter and a non-adding mixing circuit.
JP4276568A 1992-09-21 1992-09-21 Beam current control circuit for image pickup tube Pending JPH06105223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4276568A JPH06105223A (en) 1992-09-21 1992-09-21 Beam current control circuit for image pickup tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4276568A JPH06105223A (en) 1992-09-21 1992-09-21 Beam current control circuit for image pickup tube

Publications (1)

Publication Number Publication Date
JPH06105223A true JPH06105223A (en) 1994-04-15

Family

ID=17571298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4276568A Pending JPH06105223A (en) 1992-09-21 1992-09-21 Beam current control circuit for image pickup tube

Country Status (1)

Country Link
JP (1) JPH06105223A (en)

Similar Documents

Publication Publication Date Title
JP3208814B2 (en) Video signal correction device
JP2005244559A (en) Image signal processor
US5144399A (en) Color image pickup apparatus
US3975657A (en) Method of and apparatus for controlling amount of electron beam in image pickup tube
JPS6248945B2 (en)
JPH06105223A (en) Beam current control circuit for image pickup tube
JP2000324363A (en) Gradation correction device
JPH07118780B2 (en) Image quality compensation device
JP3199410B2 (en) Gradation correction circuit
US4652910A (en) Automatic beam current control with an envelope detector for a color television camera tube with a stripe filter
JP3407677B2 (en) Speed modulation circuit
JP3934363B2 (en) Gamma correction circuit
JP2789498B2 (en) Video camera
JP3196423B2 (en) High chroma image detail compensation circuit
JP3531015B2 (en) Video display device
US4638363A (en) Automatic beam current control system for television camera
JPH10304394A (en) Beam current monitor circuit for color picture tube
JP2003348378A (en) Video signal processing circuit
KR930002151Y1 (en) Apparatus for strengthen outlines of images of tv
JPH11122512A (en) Image quality compensation device
JPH0662278A (en) Video signal processor
JPS6248891A (en) Automatic adjusting circuit for white balance
JPH08256287A (en) Electron beam control method in image pickup tube
JPS61269482A (en) Automatic black level setting device for television camera
JPS61134185A (en) Level dependent noise reducer