JPH08255726A - Manufacture of magnet array and light source using the same - Google Patents

Manufacture of magnet array and light source using the same

Info

Publication number
JPH08255726A
JPH08255726A JP5737195A JP5737195A JPH08255726A JP H08255726 A JPH08255726 A JP H08255726A JP 5737195 A JP5737195 A JP 5737195A JP 5737195 A JP5737195 A JP 5737195A JP H08255726 A JPH08255726 A JP H08255726A
Authority
JP
Japan
Prior art keywords
magnet
light source
magnetic field
plate
magnet array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5737195A
Other languages
Japanese (ja)
Inventor
Shuichi Okuda
修一 奥田
Takeshi Ohashi
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP5737195A priority Critical patent/JPH08255726A/en
Publication of JPH08255726A publication Critical patent/JPH08255726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE: To miniaturize a light source by periodically radiating a rare earth element magnet plate spatially at a predetermined interval with a radioactive ray to demagnetize while applying a reverse magnetic field to the magnet plate unidirectionally magnetized in a thickness direction, and simultaneously applying the reverse magnetic field to invert the magnetization. CONSTITUTION: A permanent magnet magnetic circuit for applying a reverse magnetic field made of a permanent magnet 2 and a yoke 3 is manufactured, and a magnetized rare earth element permanent magnet plate 1 is inserted into an air gap 6. An electron beam 4 is radiated from an upper direction, and radiated to the plate 1 from a gap 5. Thus, a reverse magnetic field is generated in the plate 1 unidirectionally magnetized in the thickness direction, and the magnetization of the radiated site is inverted. Thus, the short period length of the magnet array in which the magnets periodically inverted in the magnetizing direction of the magnets can be realized without forming a thin plate magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁石列の製造方法及び該
磁石列を用いてなる挿入光源に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnet array and an insertion light source using the magnet array.

【0002】[0002]

【従来の技術】永久磁石または永久磁石と磁性材(鉄や
鉄コバルト合金)で構成される挿入光源は、電子加速器
(または電子蓄積リング)の直線部分に真空チャンバー
を挟む形で挿入され、磁石列間の空隙中にサイン状の周
期磁場を発生する(図1参照)。加速器中を回る高速電
子は、該周期磁場により蛇行運動を行い、各蛇行点から
放射光を生じる(Halbach, Nuclear Instruments and M
ethod 187,(1981),109)。
2. Description of the Related Art An insertion light source composed of a permanent magnet or a permanent magnet and a magnetic material (iron or iron-cobalt alloy) is inserted into a linear portion of an electron accelerator (or an electron storage ring) with a vacuum chamber sandwiched between the magnet and the magnet. A sinusoidal periodic magnetic field is generated in the gap between the rows (see FIG. 1). High-speed electrons traveling in the accelerator make a meandering motion by the periodic magnetic field and generate synchrotron radiation from each meandering point (Halbach, Nuclear Instruments and M
ethod 187, (1981), 109).

【0003】蛇行の程度によりウィグラーモードとアン
ジュレーターモードがある。ウィグラーモードでは各蛇
行点から発生する放射光が重畳され、偏向電磁石よりの
放射光より10倍〜 1,000倍高いパワーの放射光が得られ
る。これに対してアンジュレーターモードでは、各蛇行
運動より発生する放射光は干渉し、基本波とその高次光
ではウィグラー光の更に10〜 1,000倍程度強力な光が得
られる。ウィグラーモードかアンジュレーターモードか
は、K値と呼ばれるパラメーターにより分類できる。K
値が1前後かそれ以下の場合はアンジュレーターとな
り、それ以上のK値ではウィグラーとなる。
There are a wiggler mode and an undulator mode depending on the degree of meandering. In the Wiggler mode, the emitted light from each meandering point is superimposed, and the emitted light with a power 10 to 1,000 times higher than that emitted from the deflecting electromagnet is obtained. On the other hand, in the undulator mode, the synchrotron radiation generated by each meandering motion interferes with each other, and the fundamental wave and its higher-order light are 10 to 1,000 times stronger than the Wiggler light. Wiggler mode or undulator mode can be classified by a parameter called K value. K
When the value is around 1 or less, it becomes an undulator, and when it is more than K value, it becomes a wiggler.

【0004】挿入光源による放射光パワーは、磁石周期
数に比例するためできるだけ周期数の大きな挿入光源が
望ましく、そのためには、挿入光源を設置する電子加速
器の直線部を長くする必要があるため、加速器を大きく
する必要があるので、技術面やコスト面で限界がある。
Since the emitted light power from the insertion light source is proportional to the number of magnet cycles, it is desirable to use an insertion light source with as many cycles as possible. For that purpose, it is necessary to lengthen the linear portion of the electron accelerator in which the insertion light source is installed. Since it is necessary to make the accelerator large, there is a limit in terms of technology and cost.

【0005】加速器を小さくするためには、挿入光源の
周期長を短くする事が有効である。しかし、周期長を短
くする場合、空隙長を同時に短くしなければならない。
空隙長が大きい場合、図2に示すようにある磁極から出
た磁束は、対向磁極方向(図2の点線)に向かわず、隣
接磁極の方(図2の実線)に流れてしまうためである。
周期長と空隙長の1つの目安は、周期長=空隙長であ
る。したがって、周期長が5mm以下の場合、空隙長も5
mm以下程度にする必要がある。挿入光源の空隙間に入れ
る真空チャンバーをこのように狭くすると、インピーダ
ンスが高くなり、必要真空度が達成できなくなったり、
真空引きに長時間かかったりするようになる。
In order to reduce the size of the accelerator, it is effective to shorten the cycle length of the inserted light source. However, when shortening the cycle length, the void length must be shortened at the same time.
This is because when the air gap length is large, the magnetic flux emitted from a certain magnetic pole as shown in FIG. 2 does not go to the opposing magnetic pole direction (dotted line in FIG. 2) but flows toward the adjacent magnetic pole (solid line in FIG. 2). .
One measure of the period length and the void length is period length = void length. Therefore, when the cycle length is 5 mm or less, the void length is also 5
It should be less than mm. If the vacuum chamber inserted between the gaps of the insertion light source is narrowed in this way, the impedance becomes high and the required degree of vacuum cannot be achieved,
It takes a long time to evacuate.

【0006】短周期長の挿入光源を実現するため、真空
封止型挿入光源が考案されている(Kitamura ; Review
of Scientific Instrument 63(1),(1992),400 )。真空
封止型では、1対の磁石列は真空チャンバー内に設置さ
れるため、真空度達成の制約はなくなり、磁石空隙長を
短くする事が可能となる。真空封止型の場合でも、幾ら
でも空隙長を短くできる訳ではない。阻害要因として
は、電子のビーム径、真空系のインピーダンス、磁石磁
気特性のばつらき、磁場計測方法や調整方法などが挙げ
られるが、特に永久磁石の磁気特性に関係する要因は重
要である。
In order to realize an insertion light source with a short cycle length, a vacuum sealed insertion light source has been devised (Kitamura; Review
of Scientific Instrument 63 (1), (1992), 400). In the vacuum-sealed type, since the pair of magnet rows is installed in the vacuum chamber, there is no restriction on achieving the degree of vacuum, and the magnet gap length can be shortened. Even in the case of the vacuum-sealed type, it is not possible to shorten the void length to some extent. The obstructing factors include the beam diameter of electrons, the impedance of the vacuum system, the fluttering of the magnetic properties of the magnet, the magnetic field measuring method and the adjusting method, and the factors particularly related to the magnetic properties of the permanent magnet are important.

【0007】[0007]

【発明が解決しようとする課題】挿入光源には、希土類
磁石の焼結 NdFeB磁石が多く用いられ、このタイプの磁
石は磁気特性が高く、着磁が容易である。したがって、
空隙中に高磁場を発生するのに都合がよく、着磁による
磁石間の特性のばらつきが少ないため、精密な磁場分布
を実現するのに適している。このため挿入光源に一般的
に使用されているが、短周期の挿入光源を実現する場
合、問題が生じる。例えば、5mm以下の周期長の挿入光
源を実現するためには、1mm前後の厚みを有する NdFeB
磁石が必要である。
For the insertion light source, a sintered NdFeB magnet of rare earth magnet is often used, and this type of magnet has high magnetic characteristics and is easily magnetized. Therefore,
It is convenient for generating a high magnetic field in the air gap, and since there is little variation in the characteristics between magnets due to magnetization, it is suitable for realizing a precise magnetic field distribution. Therefore, it is generally used as an insertion light source, but a problem arises when an insertion light source with a short period is realized. For example, to realize an insertion light source with a cycle length of 5 mm or less, NdFeB having a thickness of about 1 mm is used.
You need a magnet.

【0008】NdFeB磁石では、薄肉の磁石の作製は、研
磨加工や切断加工により実現されるが、加工により特性
劣化を生じる。mmオーダー以上の肉厚の磁石では、面積
/体積比が小さいため、加工劣化は殆ど問題にならない
が、1mm以下の磁石では面積/体積比が大きくなり、相
対的に表面積が大きくなるため、加工劣化が無視できな
くなる。
With NdFeB magnets, the manufacture of thin-walled magnets is realized by polishing or cutting, but the processing causes characteristic deterioration. Since the area / volume ratio is small for magnets with a thickness of mm order or more, there is almost no problem of processing deterioration, but the area / volume ratio is large for magnets with a thickness of 1 mm or less, and the surface area is relatively large. The deterioration cannot be ignored.

【0009】特に、挿入光源のように個々の磁石の磁気
特性の均一性が必要な場合では、通常の磁気特性のばら
つきに加えて、加工劣化による特性のばらつきが重畳さ
れるため、深刻な問題である。薄肉 NdFeB磁石の加工劣
化を緩和するため、磁石の熱処理や希土類金属被覆を磁
石に施した後に熱処理を行う事が報告されているが、あ
まり有効ではない。
In particular, in the case where the uniformity of the magnetic characteristics of individual magnets is required as in the insertion light source, in addition to the usual variations in the magnetic characteristics, the variations in the characteristics due to processing deterioration are superposed, which is a serious problem. Is. It has been reported that the heat treatment of the thin NdFeB magnet and the heat treatment of the magnet after the rare earth metal coating are applied to the magnet in order to mitigate the process deterioration, but it is not so effective.

【0010】[0010]

【課題を解決するための手段】本発明は短周期長の挿入
光源を実現するため、 NdFeB磁石の薄肉加工を行う事な
く、着磁方法の改善により短周期長の磁石列を製造する
ものであり、これは、個々の磁石の磁化方向が周期的に
反転する磁石を配列してなる磁石列の製造方法におい
て、厚み方向に一方向磁化された希土類永久磁石板に逆
方向磁場を印加しつつ、該磁石板に放射線を空間的に一
定間隔で周期的に照射し該磁石板の照射部位を減磁し、
同時に逆磁場を印加し磁化反転させることを特徴とする
磁石列の製造方法及び、個々の磁石の磁化方向が周期的
に反転する磁石を配列してなる磁石列の一対を対向して
配置し、該磁石列間に粒子線の通過のための空隙を設け
てなる挿入光源において、該磁石列を用いてなることを
特徴とする挿入光源を要旨とするものである。
In order to realize an insertion light source with a short cycle length, the present invention is to manufacture a magnet array with a short cycle length by improving the magnetizing method without thinning the NdFeB magnet. This is because, in a method of manufacturing a magnet array in which magnets in which the magnetization directions of the individual magnets are periodically reversed are arranged, a reverse magnetic field is applied to a rare earth permanent magnet plate unidirectionally magnetized in the thickness direction. , Periodically irradiating the magnet plate with radiation spatially at regular intervals to demagnetize the irradiation part of the magnet plate,
At the same time, a method of manufacturing a magnet array characterized by applying a reverse magnetic field and reversing the magnetization, and a pair of magnet rows in which magnets in which the magnetization directions of the individual magnets are periodically reversed are arranged to face each other, An insertion light source, in which a gap for passing a particle beam is provided between the magnet rows, is characterized by using the magnet row.

【0011】すなわち、厚み方向に一方向着磁された希
土類永久磁石板を逆磁場を発生する磁気回路中に挿入
し、これに放射線を照射することにより、照射部位の磁
化を反転させる事ができるので、薄板磁石加工をするこ
となく個々の磁石の磁化方向を周期的に反転させた磁石
を配列してなる磁石列の短周期長のものを実現する事が
できることを見いだし、これにより、比較的短い長さで
高周期数の挿入光源を作製でき、小型電子加速器に該挿
入光源を用いる事により、強力な放射光を発生できるこ
とが判明し、種々検討して本発明を完成させた。
That is, by inserting a rare earth permanent magnet plate unidirectionally magnetized in the thickness direction into a magnetic circuit for generating a reverse magnetic field and irradiating it with radiation, the magnetization of the irradiation site can be reversed. Therefore, it has been found that it is possible to realize a magnet array having a short cycle length in which magnets in which the magnetization directions of the individual magnets are periodically inverted are arranged without machining a thin plate magnet. It was found that an insertion light source with a short period and a high number of cycles can be produced, and by using the insertion light source in a small electron accelerator, strong synchrotron radiation can be generated, and various studies were conducted to complete the present invention.

【0012】本発明は希土類永久磁石をmm単位以下の厚
みに加工し、従来と同じように組み合わせて挿入光源を
構成するのでなく、数周期分以上に相当する大きな磁石
板を作製して、減磁、逆磁場着磁により周期的に磁化反
転を形成する事により磁化方向を周期的に反転した小さ
な磁石を多数配列した磁石列を形成することができ、こ
れを用いて挿入光源を作製するのが本発明の要点であ
る。本発明の短周期長を有する挿入光源の実現のための
技術の要点は2つあり、1つは一方向に一様に着磁した
希土類永久磁石板を、放射線照射により一定間隔で周期
的に減磁する点であり、もう1つは減磁した部所に逆磁
場を印加して、磁化反転させる点である。
According to the present invention, a rare earth permanent magnet is processed into a thickness of mm or less, and the insertion light source is not formed by combining the magnets in the same manner as in the prior art. Instead, a large magnet plate corresponding to several cycles or more is produced and reduced. By forming magnetization reversal periodically by magnetizing and reverse magnetic field magnetization, it is possible to form a magnet array in which a large number of small magnets whose magnetization directions are periodically reversed are arranged. Is the main point of the present invention. There are two main points of the technique for realizing the insertion light source having a short cycle length of the present invention. One is a rare earth permanent magnet plate uniformly magnetized in one direction and periodically irradiated with radiation at regular intervals. This is the point of demagnetization, and the other is the point of reversing the magnetization by applying a reverse magnetic field to the demagnetized portion.

【0013】まず放射線照射による減磁について説明す
ると、希土類磁石は、ある種の放射線照射により減磁す
ることが知られている。特に焼結 NdFeB磁石や焼結1−
5型SmCo磁石のような、核発生成長型の保磁力機構を有
する希土類磁石は、焼結2−17型SmCo磁石に比較して、
放射線照射により減磁しやすい事が知られている。この
希土類磁石の減磁はどんな種類の放射線によっても起き
るわけではなく、陽子、電子、中性子などの粒子線によ
り起き易く、γ線やX線ではほとんど起きない。例えば
本発明者らは、相対論的な高速電子線照射により生じる
NdFeB磁石の減磁について報告した[日本放射光学会
(1993年)で発表]。
First, the demagnetization by irradiation of radiation will be described. It is known that a rare earth magnet is demagnetized by irradiation of some kind of radiation. Especially sintered NdFeB magnets and sintered 1-
Rare earth magnets having a nucleation and growth type coercive force mechanism, such as the 5 type SmCo magnet, are
It is known that it is easy to demagnetize by irradiation with radiation. Demagnetization of this rare earth magnet does not occur by any kind of radiation, it easily occurs by particle beams of protons, electrons, neutrons, etc., and hardly occurs by γ rays or X rays. For example, the present inventors cause by relativistic fast electron beam irradiation.
We reported on the demagnetization of NdFeB magnets [announced at the Japan Radiation Optics Society (1993)].

【0014】電子線照射による減磁効果については、磁
石の組織変化を伴うものではなく、また温度上昇による
熱減磁でもないことは明らかとなっているが、減磁の機
構は明らかではない。定性的には図3(a)に示す消磁
モデルが考えられる。すなわち、一定方向に磁化された
磁石に電子線を照射するとその照射部位は図3(b)
(拡大図)に示すように互いに異なる方向に磁化されて
おり、これが互いに打消し合って消磁されることが考え
られる。このように磁石は電子線照射により組織変化な
どの永久劣化を起こしていないので、再着磁すれば元の
磁束値まで回復する。
Regarding the demagnetization effect by electron beam irradiation, it has been clarified that it does not involve a change in the structure of the magnet and is not thermal demagnetization due to temperature rise, but the demagnetization mechanism is not clear. Qualitatively, the demagnetization model shown in FIG. That is, when a magnet magnetized in a certain direction is irradiated with an electron beam, the irradiation site is shown in FIG.
As shown in (enlarged view), they are magnetized in different directions, and it is considered that they are demagnetized by canceling each other. As described above, since the magnet does not undergo permanent deterioration such as tissue change due to electron beam irradiation, the original magnetic flux value is restored by re-magnetization.

【0015】着磁された磁石板を部分的に減磁しようと
する場合、熱印加による熱減磁では熱の拡散や熱膨張率
の異方性による熱歪みのため、減磁領域の境界線がぼや
けてしまったり、熱歪みによる割れのため、ある厚み以
下の磁石板しか部分減磁できなかった。これに対して、
放射線とりわけ電子線照射の場合、減磁は非熱的過程で
起きるため、減磁領域と非減磁領域の境界は明瞭で、所
望の領域のみ減磁することが可能である。もちろん、電
子線照射によりある程度の温度上昇はあるが、照射量や
磁石板の磁気特性、とりわけ保磁力を調整すれば、電子
線照射領域のみ減磁させる事ができることが分かった。
何故なら、高速電子は磁石内部まで浸透し、熱も表面か
ら拡散するのではなく、照射部位では一様に発熱する事
と、電子線照射は短時間パルスの繰り返し照射で与えら
れるので、実質的な照射時間は短く、温度上昇も80℃を
越えることはないためである。電子線の位置制御は、磁
場により精密に行えるので、短周期長の挿入光源で必要
な1mm程度の間隔で電子線照射を行う事は容易である。
When attempting to partially demagnetize a magnetized magnet plate, thermal demagnetization due to application of heat causes diffusion of heat and thermal distortion due to anisotropy of the coefficient of thermal expansion. However, due to the blurring and cracking due to thermal strain, only a magnet plate with a certain thickness or less could be partially demagnetized. On the contrary,
In the case of radiation, especially electron beam irradiation, since demagnetization occurs in a non-thermal process, the boundary between the demagnetized region and the non-demagnetized region is clear, and only the desired region can be demagnetized. Of course, although the temperature rises to some extent by electron beam irradiation, it has been found that only the electron beam irradiation region can be demagnetized by adjusting the irradiation amount and the magnetic characteristics of the magnet plate, especially the coercive force.
This is because the high-speed electrons penetrate into the magnet and the heat does not diffuse from the surface, but heat is generated uniformly at the irradiation site, and the electron beam irradiation is given by repeated irradiation of short-time pulses. This is because the irradiation time is short and the temperature rise does not exceed 80 ° C. Since the position of the electron beam can be precisely controlled by the magnetic field, it is easy to irradiate the electron beam at an interval of about 1 mm required by the insertion light source having a short cycle length.

【0016】このように磁石の減磁を起こすに必要な電
子線のエネルギー強度は1MeV以上であればよく、好
ましくは5〜20MeVである。これが20MeVを超える
と磁石材料の放射化の問題がある。
As described above, the energy intensity of the electron beam required to cause the demagnetization of the magnet may be 1 MeV or more, and preferably 5 to 20 MeV. If this exceeds 20 MeV, there is a problem of activation of the magnet material.

【0017】逆磁場印加は、電磁石、空心コイルによる
パルス磁場や永久磁石を用いた磁気回路で出来るが、全
体をコンパクトにできる NdFeB系永久磁石磁気回路が望
ましい。例えば図4に示すように永久磁石2とヨーク3
より成る逆磁場印加のための永久磁石磁気回路を作製
し、空隙6に着磁希土類永久磁石板1を挿入する。上部
方向より電子線4を照射し、隙間5より電子線4を該磁
石板1に照射する。該磁石板か永久磁石磁気回路のどち
らかを移動することにより、逆磁場印加の下で電子線照
射を一定間隔で行う事が出来る。逆磁場を印加する永久
磁石磁気回路において、空隙6に発生する磁場強度は、
1テスラ以上がよい。該磁石板1は一定間隔で逆方向に
磁化され一定周期長の磁石列が得られる。電子線照射時
には、減磁と温度上昇が同時に起こるので、このとき該
磁石板の保磁力が逆磁場を下回り、逆磁場による着磁が
起るものとみられる。
The application of the reverse magnetic field can be performed by a pulsed magnetic field by an electromagnet or an air-core coil or a magnetic circuit using a permanent magnet, but an NdFeB system permanent magnet magnetic circuit that can make the whole compact is desirable. For example, as shown in FIG. 4, the permanent magnet 2 and the yoke 3
A permanent magnet magnetic circuit for applying a reverse magnetic field is manufactured, and the magnetized rare earth permanent magnet plate 1 is inserted into the gap 6. The electron beam 4 is emitted from the upper direction, and the electron beam 4 is emitted to the magnet plate 1 through the gap 5. By moving either the magnet plate or the permanent magnet magnetic circuit, electron beam irradiation can be performed at regular intervals under application of a reverse magnetic field. In a permanent magnet magnetic circuit that applies a reverse magnetic field, the magnetic field strength generated in the air gap 6 is
1 Tesla or more is good. The magnet plate 1 is magnetized in the opposite direction at regular intervals to obtain a magnet array having a constant cycle length. Since demagnetization and temperature rise occur simultaneously during electron beam irradiation, it is considered that the coercive force of the magnet plate falls below the reverse magnetic field at this time and the reverse magnetic field causes magnetization.

【0018】一方向着磁した該磁石板は逆磁場印加され
ているので、電子線照射による減磁とそれに伴う温度上
昇により、容易に磁化反転を起こし、逆方向に着磁され
る。これを一定間隔で繰り返すことにより、短周期で磁
化方向が交互に反転着磁された磁石列を作製する事が出
来る。電子線照射による希土類永久磁石の組織変化がな
いので、反転領域の磁気特性の変化も無く問題はない。
このようにして作製された磁石列を複数個組み合わせる
事により、短周期長の挿入光源を作製する事が出来る。
Since the reverse magnetic field is applied to the magnet plate magnetized in one direction, magnetization reversal easily occurs due to demagnetization due to electron beam irradiation and accompanying temperature rise, and it is magnetized in the opposite direction. By repeating this at regular intervals, it is possible to manufacture a magnet array in which the magnetization directions are alternately reversed and magnetized in a short period. Since there is no change in the structure of the rare earth permanent magnet due to electron beam irradiation, there is no change in the magnetic characteristics in the inversion region, and there is no problem.
By combining a plurality of magnet arrays manufactured in this way, an insertion light source with a short cycle length can be manufactured.

【0019】本発明に用いられる希土類永久磁石板は、
式 R(FeCo)BTで表わされ、ここにRはYを含むLa、C
e、Pr、Nd、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Yb及びLuから選択される1種また
は2種以上の希土類元素であり、TはAl、Si、T
i、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、
Nb、Mo、Sn、Hf、Ta、Wのうちから選択され
た NdFeBを主体とする焼結磁石である。
The rare earth permanent magnet plate used in the present invention is
It is represented by the formula R (FeCo) BT, where R is Y containing La, C
e, Pr, Nd, Sm, Eu, Gd, Tb, Dy, H
One or more rare earth elements selected from o, Er, Tm, Yb and Lu, where T is Al, Si, T
i, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr,
The sintered magnet is mainly composed of NdFeB selected from Nb, Mo, Sn, Hf, Ta and W.

【0020】本発明の挿入光源は、上述の方法により作
製された磁石列を複数個用い、図1に示すように磁化面
を相対して配置し、該磁石列間に粒子線が通過するため
の空隙を設けて成るものである。この挿入光源の直線部
分の長さは磁石列の反転周期長によって定まるが、本発
明の磁石列の場合はこの周期長を5mm以下のものとする
ことが出来るので、挿入光源を小型化することが出来る
ため、これを真空下に配置した真空封止型挿入光源とす
ることが出来る。
Since the insertion light source of the present invention uses a plurality of magnet arrays produced by the above-mentioned method and has magnetized faces arranged as shown in FIG. 1, particle beams pass between the magnet arrays. It is provided with a void. The length of the straight line portion of this insertion light source is determined by the reversal cycle length of the magnet array, but in the case of the magnet array of the present invention, this cycle length can be set to 5 mm or less, so the insertion light source should be miniaturized. Therefore, it can be used as a vacuum-sealed insertion light source arranged under vacuum.

【0021】[0021]

【作用】本発明は個々の磁石の磁化方向が周期的に反転
する磁石を配列してなる磁石列の製造方法において、厚
み方向に一方向磁化された希土類永久磁石板に逆方向磁
場を印加しつつ、該磁石板に放射線を空間的に一定間隔
で周期的に照射し該磁石板の照射部位を減磁し、同時に
逆磁場を印加し磁化反転させることよりなる磁石列の製
造方法、及び該磁石列を用いてなる挿入光源を要旨とす
るもので、本発明によると挿入光源を小型化出来るとす
るものである。
According to the present invention, in a method for manufacturing a magnet array in which magnets whose magnetizing directions are periodically reversed are arranged, a reverse magnetic field is applied to a rare earth permanent magnet plate unidirectionally magnetized in the thickness direction. Meanwhile, a method of manufacturing a magnet array, which comprises periodically irradiating the magnet plate with radiation spatially at regular intervals to demagnetize the irradiation portion of the magnet plate, and at the same time applying a reverse magnetic field to reverse the magnetization, and The gist of the invention is an insertion light source using a magnet array, and according to the present invention, the insertion light source can be miniaturized.

【0022】[0022]

【実施例】以下実施例について本発明を述べる。 実施例1 粉末焼結法により作製した50mm巾の NdFeB系磁石を着磁
した。この NdFeB焼結磁石の磁気特性は、Br=12.5kG 、
iHc=18kOe 、(BH)max=37.2MGOeであった。次いで、この
着磁磁石を図4に示す磁場が11kGの逆磁場印加用永久
磁石磁気回路に磁場の磁界方向と逆にセットし、1mm巾
の照射穴よりエネルギーが10MeVの電子線を60分間2
mm間隔で、着磁部に照射したところ図5に示すような磁
化パターンを有する、周期長が2mmの磁石を得ることが
できた。
EXAMPLES The present invention will be described below with reference to examples. Example 1 A 50 mm wide NdFeB magnet manufactured by the powder sintering method was magnetized. The magnetic characteristics of this NdFeB sintered magnet are Br = 12.5kG,
iHc = 18 kOe and (BH) max = 37.2 MGOe. Next, this magnetized magnet is set in a magnetic circuit for applying a reverse magnetic field having a magnetic field of 11 kG shown in FIG. 4 in the magnetic circuit direction opposite to the magnetic field direction of the magnetic field, and an electron beam with an energy of 10 MeV is emitted from a 1 mm wide irradiation hole for 60 minutes.
When the magnetized portion was irradiated at an interval of mm, a magnet having a magnetization pattern as shown in FIG. 5 and a period length of 2 mm could be obtained.

【0023】実施例2 実施例1で得られた磁石列を8個用いて、該磁石を4ヶ
づつ対向させ直線部分が20cmで、周期長2mm、周期数 1
00の挿入光源を作製した。なお、従来の大気中配置の挿
入光源では、周期数 100を実現するには 200〜300cm の
長さが必要であったので挿入光源の直射部分を従来の1/
10以下とすることが出来た。
Example 2 Using eight magnet rows obtained in Example 1, four magnets were made to face each other and the linear portion was 20 cm, the period length was 2 mm, and the period number was 1
00 insertion light source was prepared. It should be noted that with the conventional insertion light source arranged in the atmosphere, a length of 200 to 300 cm was required to realize the number of cycles of 100, so the direct irradiation part of the insertion light source should be
It was possible to make it 10 or less.

【0024】[0024]

【発明の効果】本発明の方法により磁化パターンの反転
周期が5mm以下とする磁石列が得られるため、これを用
いて小型の挿入光源が作製出来る。
According to the method of the present invention, a magnet array having a magnetization pattern reversal period of 5 mm or less can be obtained, so that a small insertion light source can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】挿入光源の一例を示す図。FIG. 1 is a diagram showing an example of an insertion light source.

【図2】挿入光源で空隙長の長い場合の磁束の流れを示
した図。
FIG. 2 is a diagram showing a flow of magnetic flux when an insertion light source has a long air gap length.

【図3】(a)は電子線照射による消磁機構を示すモデ
ル図。(b)は電子線照射部位の拡大図。
FIG. 3A is a model diagram showing a demagnetization mechanism by electron beam irradiation. (B) is an enlarged view of an electron beam irradiation site.

【図4】逆磁場印加永久磁石磁気回路による磁石列の製
造方法を示すモデル図。
FIG. 4 is a model diagram showing a method of manufacturing a magnet array by a reverse magnetic field applying permanent magnet magnetic circuit.

【図5】本発明の方法により作製された磁石列の磁化パ
ターンの一例を示す図。
FIG. 5 is a diagram showing an example of a magnetization pattern of a magnet array manufactured by the method of the present invention.

【符号の説明】[Explanation of symbols]

1…希土類永久磁石板 2…永久磁石 3…ヨーク 4…電子線 5…隙間 6…空隙 7…着磁方向 8…逆磁場の方向 1 ... Rare earth permanent magnet plate 2 ... Permanent magnet 3 ... Yoke 4 ... Electron beam 5 ... Gap 6 ... Void 7 ... Magnetization direction 8 ... Direction of reverse magnetic field

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 個々の磁石の磁化方向が周期的に反転す
る磁石を配列してなる磁石列の製造方法において、厚み
方向に一方向磁化された希土類永久磁石板に逆方向磁場
を印加しつつ、該磁石板に放射線を空間的に一定間隔で
周期的に照射し該磁石板の照射部位を減磁し、同時に逆
磁場を印加し磁化反転させることを特徴とする磁石列の
製造方法。
1. A method of manufacturing a magnet array in which magnets in which the magnetization directions of individual magnets are periodically reversed are arranged, in which a reverse magnetic field is applied to a rare earth permanent magnet plate unidirectionally magnetized in a thickness direction. A method for manufacturing a magnet array, characterized in that the magnet plate is periodically irradiated with radiation at regular intervals to demagnetize an irradiation portion of the magnet plate, and at the same time, a reverse magnetic field is applied to reverse the magnetization.
【請求項2】 放射線が電子線である請求項1に記載の
磁石列の製造方法。
2. The method for manufacturing a magnet array according to claim 1, wherein the radiation is an electron beam.
【請求項3】 逆方向磁場の印加が NdFeB磁石を用いて
1テスラ以上で行う請求項1又は2のいずれかに記載の
磁石列の製造方法。
3. The method for producing a magnet array according to claim 1, wherein the reverse magnetic field is applied at 1 tesla or more using an NdFeB magnet.
【請求項4】 個々の磁石の磁化方向が周期的に反転す
る磁石を配列してなる磁石列を対向して配置し、該磁石
列間に粒子線の通過のための空隙を設けてなる挿入光源
において、請求項1〜3のいずれかの方法で製造された
磁石列を用いてなることを特徴とする挿入光源。
4. An insertion method in which magnet rows in which magnets whose magnetizing directions are periodically reversed are arranged are opposed to each other, and a gap for passing a particle beam is provided between the magnet rows. An insertion light source, comprising a magnet array manufactured by the method according to claim 1 in the light source.
【請求項5】 磁石列の磁化方向の反転の周期長が5mm
以下である請求項4に記載の挿入光源。
5. The cycle length of reversal of the magnetization direction of the magnet array is 5 mm.
The insertion light source according to claim 4, which is as follows.
【請求項6】 該磁石列が真空下に配置されてなる請求
項4又は5のいずれかに記載の挿入光源。
6. The insertion light source according to claim 4, wherein the magnet array is arranged under vacuum.
JP5737195A 1995-03-16 1995-03-16 Manufacture of magnet array and light source using the same Pending JPH08255726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5737195A JPH08255726A (en) 1995-03-16 1995-03-16 Manufacture of magnet array and light source using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5737195A JPH08255726A (en) 1995-03-16 1995-03-16 Manufacture of magnet array and light source using the same

Publications (1)

Publication Number Publication Date
JPH08255726A true JPH08255726A (en) 1996-10-01

Family

ID=13053740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5737195A Pending JPH08255726A (en) 1995-03-16 1995-03-16 Manufacture of magnet array and light source using the same

Country Status (1)

Country Link
JP (1) JPH08255726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0877397A2 (en) * 1997-04-14 1998-11-11 Shin-Etsu Chemical Co., Ltd. Magnet block assembly for insertion device
JPWO2004077457A1 (en) * 2003-02-27 2006-06-08 株式会社Neomax Permanent magnet and magnetic field generator for particle beam accelerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0877397A2 (en) * 1997-04-14 1998-11-11 Shin-Etsu Chemical Co., Ltd. Magnet block assembly for insertion device
EP0877397A3 (en) * 1997-04-14 2000-11-08 Shin-Etsu Chemical Co., Ltd. Magnet block assembly for insertion device
JPWO2004077457A1 (en) * 2003-02-27 2006-06-08 株式会社Neomax Permanent magnet and magnetic field generator for particle beam accelerator
US7570142B2 (en) 2003-02-27 2009-08-04 Hitachi Metals, Ltd. Permanent magnet for particle beam accelerator and magnetic field generator
JP4697961B2 (en) * 2003-02-27 2011-06-08 日立金属株式会社 Permanent magnet and magnetic field generator for particle beam accelerator

Similar Documents

Publication Publication Date Title
EP0306966B1 (en) Bending magnet
JP2978873B2 (en) Electromagnet and accelerator, and accelerator system
Tollett et al. Permanent magnet trap for cold atoms
EP1603142B1 (en) Permanent magnet for particle beam accelerator and magnetic field generator
US6556595B2 (en) Hybrid wiggler
CA1318835C (en) Permanent magnet for accelerating corpuscular beam
JPH08255726A (en) Manufacture of magnet array and light source using the same
Yamamoto A novel attempt to develop very short period undulators
Kraus The overview and history of permanent magnet devices in accelerator technology
JP3652927B2 (en) Insertion light source with radiation resistance
JP2006228500A (en) Method and device of generating magnetic field
JP3204920B2 (en) Permanent magnet type bending magnet device and electron storage ring
JPS6153843B2 (en)
Smolyakov Planar microundulator with rectangular grooved poles
JPH04242196A (en) Controlling of magnetic field intensity in magnetic circuit for insertion light source
JPS63224230A (en) X-ray exposure device
JP3090655B2 (en) Accelerator system
JPH04269700A (en) Magnetic field intensity controlling method for magnetism circuit for insertion light source
JP2580370B2 (en) Periodic magnetic field generator
Isogami et al. Fabrication of Multipole Magnets with Enhanced Flux Density Using Anisotropic Bond Magnets for Miniature Optical Pickup Devices
JPH04230899A (en) Generation of periodic magnetic field
Chavanne et al. Magnetic Design Considerations for In-Vacuum Undulators at ESRF “
Pflüger et al. On the thermal stability of the SmCo5 magnet structure for the BESSY undulator
JPH07135100A (en) Method of fine adjustment of magnetic field intensity for periodic magnetic field generating device
Viccaro et al. Magnetic field tolerances for insertion devices on third generation synchrotron light sources