JP2580370B2 - Periodic magnetic field generator - Google Patents

Periodic magnetic field generator

Info

Publication number
JP2580370B2
JP2580370B2 JP2187512A JP18751290A JP2580370B2 JP 2580370 B2 JP2580370 B2 JP 2580370B2 JP 2187512 A JP2187512 A JP 2187512A JP 18751290 A JP18751290 A JP 18751290A JP 2580370 B2 JP2580370 B2 JP 2580370B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
electron beam
field generator
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2187512A
Other languages
Japanese (ja)
Other versions
JPH0473989A (en
Inventor
義彦 栗山
慶司 坂本
直 前原
泰明 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2187512A priority Critical patent/JP2580370B2/en
Publication of JPH0473989A publication Critical patent/JPH0473989A/en
Application granted granted Critical
Publication of JP2580370B2 publication Critical patent/JP2580370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子ビームを使用した放射光発生系におい
て,放射光を発生するために使用する周期磁場発生装置
に関し,特に電子ビームの拡散を防止し,放射光の発生
を向上させるように改良したウィグラ,アンジュレータ
等の周期磁場発生装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a periodic magnetic field generating device used for generating radiation in a radiation generating system using an electron beam, and in particular, to prevent diffusion of an electron beam. Further, the present invention relates to a periodic magnetic field generator such as a wiggler, an undulator, etc., which has been improved to improve the generation of emitted light.

〔従来の技術〕[Conventional technology]

ウィグラは自由電子レーザ用として使用される粒子線
加速器により加速された粒子線からシンクロトン放射光
を生成する装置を構成し,電子ビームに対して周期的磁
場を付与する装置である。この装置においては電子ビー
ムを挟んで複数個の永久磁石列を対向配置すると共に,
交互にN,S磁極が電子ビームに対向するように形成して
あり,上記永久磁石列には数十対の永久磁石を使用する
のが通常である。
Wiggler is a device that generates a synchrotron radiation from a particle beam accelerated by a particle beam accelerator used for a free electron laser, and is a device that applies a periodic magnetic field to an electron beam. In this device, a plurality of permanent magnet rows are arranged opposite to each other with the electron beam interposed,
The N and S magnetic poles are formed so as to face the electron beam alternately, and it is usual to use several tens of pairs of permanent magnets in the permanent magnet array.

第3図(a)は従来のウィグラ用磁石装置の例を示す
要部正面図,第3図(b)は第3図(a)におけるA−
A線断面図である。両図において1は永久磁石であり,
N,S磁極が磁気空隙2を介して相対的にずれることなく
対向し,かつ電子ビーム3の流れ方向に隣接して異なる
磁極が現われるように複数対(例えば100〜150対)を配
設する。4はヨークであり,例えば軟鉄のような磁性材
料により帯板状に形成して永久磁石1の背面側を支持す
る。なお電子ビーム3の流れ方向の中心軸をz軸とし,z
軸と直交する永久磁石1のNS磁極中心線をy軸とし,更
にz軸とy軸と直交する軸をx軸とする。
FIG. 3 (a) is a front view of an essential part showing an example of a conventional wiggler magnet device, and FIG. 3 (b) is a view taken along line A- in FIG. 3 (a).
FIG. 3 is a sectional view taken along line A. In both figures, 1 is a permanent magnet,
A plurality of pairs (for example, 100 to 150 pairs) are arranged so that the N and S magnetic poles are opposed to each other via the magnetic gap 2 without being relatively displaced, and different magnetic poles appear adjacent to the flow direction of the electron beam 3. . Reference numeral 4 denotes a yoke, which is formed in a strip shape from a magnetic material such as soft iron, and supports the back side of the permanent magnet 1. The center axis in the flow direction of the electron beam 3 is the z axis, and z
The center line of the NS magnetic pole of the permanent magnet 1 orthogonal to the axis is defined as the y-axis, and the axis orthogonal to the z-axis and the y-axis is defined as the x-axis.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記構成のウィグラ用磁石装置によりz軸方向の電子
ビーム3に周期的磁場を付与し,磁気空隙2に放射光を
発生するのであるが,ウィグラの入口において電子ビー
ム3が拡散されるという問題点がある。このように電子
ビーム3が拡散されると,シンクロトン放射光の生成に
悪影響を及ぼすため好ましくない。上記のように電子ビ
ーム3に拡散が発生することは,入口近傍における永久
磁石1の磁気空隙2の構成に起因するものと認められ
る。
A periodic magnetic field is applied to the electron beam 3 in the z-axis direction by the wiggler magnet device having the above-described configuration, and emitted light is generated in the magnetic gap 2. However, the electron beam 3 is diffused at the entrance of the wiggler. There is. If the electron beam 3 is diffused in this way, it is not preferable because it adversely affects the generation of synchrotron radiation. It is recognized that the diffusion of the electron beam 3 as described above is caused by the configuration of the magnetic gap 2 of the permanent magnet 1 near the entrance.

第4図は第3図(a)(b)に示す装置の入口近傍に
おける軸方向位置と空隙磁束密度との関係を示す図であ
る。第4図においてz軸すなわち軸方向位置の原点は周
期磁場発生装置の入口であり,空隙磁束密度は前記第3
図(b)におけるy軸方向の値である。なお空隙磁束度
の最大値Bg(絶対値)は,第3図(a)における永久磁
石1の例えばN極の位置に現れる。従来の周期磁場発生
装置においては,第4図に示すように入口から中間部に
至るまで空隙磁束密度の最大値Bgが何れも等しく,かつ
その値も大である(例えば3000〜5000G)。従って加速
器(図示せず)の磁界によってz軸方向の直進的な力を
受けながら加速されていた電子は,周期磁場発生装置に
進入する際に,その入口において進行方向(z軸方向)
に対して垂直な方向(y軸方向,第3図(b)参照)の
磁界による力を急激に受けることとなり,z軸方向に直進
していた電子が拡散するという問題がある。
FIG. 4 is a diagram showing the relationship between the axial position near the entrance of the device shown in FIGS. 3 (a) and 3 (b) and the air gap magnetic flux density. In FIG. 4, the origin of the z-axis, that is, the axial position is the entrance of the periodic magnetic field generator, and the air gap magnetic flux density is
This is a value in the y-axis direction in FIG. Note that the maximum value Bg (absolute value) of the air gap magnetic flux degree appears at the position of, for example, the N pole of the permanent magnet 1 in FIG. In the conventional periodic magnetic field generator, as shown in FIG. 4, the maximum value Bg of the air gap magnetic flux density is equal from the entrance to the intermediate portion, and the maximum value is large (for example, 3000 to 5000 G). Therefore, the electrons accelerated while receiving a linear force in the z-axis direction by the magnetic field of the accelerator (not shown) enter the periodic magnetic field generator at the entrance thereof (the z-axis direction).
(See the y-axis direction, see FIG. 3 (b)). Therefore, there is a problem that electrons which have been traveling straight in the z-axis direction are diffused.

本発明は上記従来技術に存在する問題点を解決し,電
子ビームの拡散を防止し,収束機能を向上させた周期磁
場発生装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the problems existing in the prior art and to provide a periodic magnetic field generator that prevents the diffusion of an electron beam and has an improved convergence function.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため,本発明においては,NS磁極
が磁気空隙を介して対向し,かつ電子ビームの流れ方向
に隣接して異なる磁極が現われるように複数対の永久磁
石を配設してなる周期磁場発生装置において,磁気空隙
と対向する磁極間距離を,入口近傍において中間部にお
けるものより大に,かつ電子ビームの進行方向に沿って
漸減するように形成する,という技術的手段を採用し
た。
In order to achieve the above object, in the present invention, a plurality of pairs of permanent magnets are arranged so that NS magnetic poles face each other via a magnetic gap and different magnetic poles appear adjacent to the flow direction of the electron beam. In the periodic magnetic field generator, a technical measure was adopted in which the distance between the magnetic poles facing the magnetic gap was made larger near the entrance than in the middle and gradually decreased along the direction of electron beam travel. .

なお本発明において,入口近傍における空隙磁束密度
の極大値を結ぶ包絡線がコサインカーブとなるように形
成すると好ましい。
In the present invention, it is preferable that the envelope connecting the maximum values of the air gap magnetic flux density in the vicinity of the entrance is formed to have a cosine curve.

本発明における永久磁石はR(Nd,Pr,Dy等の希土類元
素の1種以上)−Fe−B系材料によって形成するのが好
ましい。またR−Fe−B系材料中の希土類元素Rの含有
量は10〜30原子%の範囲が望ましい。Rが10原子%より
少ないと磁気特性(特に保磁力)が低下し,一方,30原
子%より多いとRリッチは非磁性相が多くなり,残留磁
束密度が低下するため好ましくない。この場合希土類元
素Rとしては,通常Nd,Prのような希土類元素が使用さ
れるが,特に資源的に豊富に存在し,比較的安価なNdが
最も一般的である。また保磁力を向上させるために,Rの
一部(1〜30%程度)をDy,Ho,Tbのような重希土類元素
で置換することができる。更にRはLa,Ce,Sm,Gd,Er,Eu,
Tm,Tb,Yのうち少なくとも1種を含むことができる。
The permanent magnet in the present invention is preferably formed of R (at least one of rare earth elements such as Nd, Pr, Dy) -Fe-B-based material. The content of the rare earth element R in the R-Fe-B-based material is preferably in the range of 10 to 30 atomic%. If R is less than 10 at%, the magnetic properties (particularly the coercive force) decrease, while if it is more than 30 at%, R-rich is not preferable because the non-magnetic phase increases and the residual magnetic flux density decreases. In this case, rare earth elements such as Nd and Pr are usually used as the rare earth element R, but Nd, which is abundant in resources and relatively inexpensive, is most common. In order to improve the coercive force, a part (about 1 to 30%) of R can be replaced with a heavy rare earth element such as Dy, Ho, or Tb. Further, R is La, Ce, Sm, Gd, Er, Eu,
At least one of Tm, Tb, and Y can be included.

Feの含有量は65〜85原子%の範囲が望ましい。Feが65
原子%より少ないと残留磁束密度が低下し,85原子%よ
り多いと保磁力が低下するため好ましくない。
The content of Fe is desirably in the range of 65 to 85 atomic%. Fe is 65
If it is less than atomic%, the residual magnetic flux density decreases, and if it is more than 85 atomic%, the coercive force decreases, which is not preferable.

Bの含有量は2〜28原子%の範囲が望ましい。Bが2
原子%より少ないと保磁力が低下し,一方28原子%より
多いとBリッチな非磁性相が多くなり,残留磁束密度が
低下するため好ましくない。
The content of B is desirably in the range of 2 to 28 atomic%. B is 2
If it is less than atomic%, the coercive force decreases, while if it is more than 28 atomic%, the B-rich nonmagnetic phase increases and the residual magnetic flux density decreases, which is not preferable.

なお上記必須成分の他,製造上不可避の不純物(例え
ばO2)が含まれる場合もある。またR−Fe−B系材料に
おいて公知の添加元素(例えばCo,Al,Ti等)を含有する
こともできる。このような添加元素は,例えば特開昭60
−162754号,同61−87825号公報に開示されている。
In addition, in addition to the above essential components, impurities inevitably produced (for example, O 2 ) may be included in some cases. Further, a known additive element (for example, Co, Al, Ti, or the like) may be contained in the R-Fe-B-based material. Such additional elements are described in, for example,
Nos. 162754 and 61-87825.

本発明における永久磁石は,例えば次のようにして作
製することができる。まずR−Fe−B系合金を通常の方
法でAr中若しくは真空中で溶解するが,Bはフェロボロン
として添加してもよい。希土類元素は最後に投入するの
が好ましい。溶解後のインゴットの粉砕は粗粉砕および
微粉砕されるが,粗粉砕はスタンプミル,ジョークラッ
シャー,ブラウンミル,ディスクミル等により,また微
粉砕はジェットミル,振動ミル,ボールミル等によって
行う。何れも酸化防止のために,非酸化性雰囲気中にお
いて行い,このため有機溶媒や不活性ガスを使用するの
が好ましい。粉砕後の粒径は2〜5μm(F.S.S.)とす
るのがよい。上記のようにして作製した磁粉を磁場中成
形装置によって所定の形状の成形体とする。この成形体
を次に焼結するのであるが、焼結はAr,He等の不活性ガ
ス中若しくは真空中または水素中において950〜1150℃
の温度で20分ないし2時間行う。焼結後,必要に応じて
不活性ガス雰囲気中において熱処理を施す。好ましい熱
処理条件は500〜700℃において30分ないし3時間であ
る。最後に磁粉の配向方向(この場合は高さ若しくはy
軸方向)と揃えて着磁を行う。着磁磁場強度は20〜30kO
eの範囲がよい。
The permanent magnet according to the present invention can be manufactured, for example, as follows. First, the R-Fe-B-based alloy is dissolved in Ar or in a vacuum by a usual method, but B may be added as ferroboron. Preferably, the rare earth element is charged last. The ingot after melting is coarsely and finely pulverized. The coarse pulverization is performed by a stamp mill, a jaw crusher, a brown mill, a disk mill, or the like, and the fine pulverization is performed by a jet mill, a vibration mill, a ball mill, or the like. Both are performed in a non-oxidizing atmosphere to prevent oxidation, and it is therefore preferable to use an organic solvent or an inert gas. The particle size after pulverization is preferably 2 to 5 μm (FSS). The magnetic powder produced as described above is formed into a molded body of a predetermined shape by a molding apparatus in a magnetic field. This compact is then sintered, and the sintering is performed at 950 to 1150 ° C. in an inert gas such as Ar or He or in a vacuum or in hydrogen.
For 20 minutes to 2 hours. After sintering, heat treatment is performed in an inert gas atmosphere as necessary. Preferred heat treatment conditions are at 500 to 700 ° C. for 30 minutes to 3 hours. Finally, the orientation direction of the magnetic powder (in this case, height or y
(Axial direction) and magnetize. Magnetizing field strength is 20-30kO
The range of e is good.

〔作 用〕(Operation)

上記の構成により,周期磁場発生装置の入口近傍にお
ける磁界による力の作用を緩和することができ,電子ビ
ームの拡散を防止でき,放射光の発生を向上させ得るの
である。
With the above configuration, the action of the force due to the magnetic field near the entrance of the periodic magnetic field generator can be reduced, the diffusion of the electron beam can be prevented, and the generation of emitted light can be improved.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す要部正面図,第2図は
第1図に示す装置の入口近傍における軸方向位置と空隙
磁束密度との関係を示す図であり,両図の軸方向位置は
各々対応させて示してある。なお第1図において同一部
分は前記第3図(a)(b)と同一の参照符号で示す。
まず第1図において永久磁石1の磁気空隙2と対向する
NS磁極間の距離lを,入口近傍において中間部における
距離Lよりも大に,かつ電子ビーム3の進行方向に沿っ
て漸減するように形成する。この結果第2図に示すよう
に空隙磁束密度の極大値は,電子ビーム3(第1図参
照)の進行方向,即ちz軸方向に沿って緩やかに増大
し,中間部において所定の値Bgに到達する。
FIG. 1 is a front view of an essential part showing an embodiment of the present invention, and FIG. 2 is a diagram showing a relationship between an axial position and an air gap magnetic flux density near an inlet of the apparatus shown in FIG. The directional positions are shown correspondingly. In FIG. 1, the same parts are indicated by the same reference numerals as in FIGS. 3 (a) and 3 (b).
First, in FIG. 1, it faces the magnetic gap 2 of the permanent magnet 1.
The distance 1 between the NS magnetic poles is formed so as to be larger than the distance L at the intermediate portion near the entrance and to gradually decrease along the traveling direction of the electron beam 3. As a result, as shown in FIG. 2, the maximum value of the air gap magnetic flux density gradually increases along the traveling direction of the electron beam 3 (see FIG. 1), that is, in the z-axis direction, and reaches a predetermined value Bg in the middle part. To reach.

上記の構成により,第1図に示す電子ビーム3に対す
る急激な磁界作用を緩和することができ,直進する電子
の拡散を防止することができる。
With the above configuration, the sudden magnetic field effect on the electron beam 3 shown in FIG. 1 can be reduced, and the diffusion of electrons traveling straight can be prevented.

なお第2図に破線で示すように,入口近傍における空
隙磁束密度の極大値を結ぶ包絡線が,コサインカーブと
なるように形成すると,より好ましい結果を得ることが
できる。
As shown by the broken line in FIG. 2, more preferable results can be obtained if the envelope connecting the maximum values of the air gap magnetic flux density near the entrance is formed to have a cosine curve.

〔発明の効果〕〔The invention's effect〕

本発明は以上記述のような構成および作用であるか
ら,入口近傍における磁界の作用を緩和させることによ
り,電子ビームの拡散を防止し,最終的にシンクロトン
放射光を効率良く生成させ得るという効果がある。
Since the present invention has the configuration and operation as described above, by relaxing the effect of the magnetic field near the entrance, it is possible to prevent the diffusion of the electron beam and to eventually generate the synchrotron radiation efficiently. There is.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す要部正面図,第2図は第
1図に示す装置の入口近傍における軸方向位置と空隙磁
束密度との関係を示す図,第3図(a)は従来のウィグ
ラ用磁石装置の例を示す要部正面図,第3図(b)は第
3図(a)におけるA−A線断面図,第4図は第3図
(a)(b)に示す装置の入口近傍における軸方向位置
と空隙磁束密度との関係を示す図である。 1:永久磁石,2:磁気空隙,3:電子ビーム。
FIG. 1 is a front view of an essential part showing an embodiment of the present invention, FIG. 2 is a diagram showing a relationship between an axial position and an air gap magnetic flux density near an inlet of the apparatus shown in FIG. 1, and FIG. FIG. 3 is a front view of a main part showing an example of a conventional wiggler magnet device, FIG. 3 (b) is a sectional view taken along line AA in FIG. 3 (a), and FIG. 4 is FIGS. 3 (a) and 3 (b). FIG. 6 is a diagram showing a relationship between an axial position near an inlet of the device shown in FIG. 1: permanent magnet, 2: magnetic air gap, 3: electron beam.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前原 直 茨城県那珂郡那珂町向山字中原801番地 の1 日本原子力研究所那珂研究所内 (72)発明者 岸本 泰明 茨城県那珂郡那珂町向山字中原801番地 の1 日本原子力研究所那珂研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nao Maehara 801 Nakahara, Naka-machi, Naka-machi, Naka-gun, Ibaraki Pref. Inside the Japan Atomic Energy Research Institute Naka Laboratory (72) Inventor Yasuaki Kishimoto Naka-hara, Naka-machi, Naka-machi, Naka-gun, Ibaraki 801-1 Inside the Japan Atomic Energy Research Institute Naka Research Laboratory

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】NS磁極が磁気空隙を介して対向し,かつ電
子ビームの流れ方向に隣接して異なる磁極が現われるよ
うに複数対の永久磁石を配設してなる周期磁場発生装置
において、磁気空隙と対向する磁極間距離を,入口近傍
において中間部におけるものより大に,かつ電子ビーム
の進行方向に沿って漸減するように形成したことを特徴
とする周期磁場発生装置。
A periodic magnetic field generator comprising a plurality of pairs of permanent magnets arranged so that NS magnetic poles face each other via a magnetic air gap and different magnetic poles appear adjacent to each other in the electron beam flow direction. A periodic magnetic field generator, wherein a distance between magnetic poles facing an air gap is formed so as to be larger in the vicinity of an entrance than in an intermediate portion and to be gradually reduced along a traveling direction of an electron beam.
【請求項2】入口近傍における空隙磁束密度の極大値を
結ぶ包絡線がコサインカーブとなるように形成した請求
項(1)記載の周期磁場発生装置。
2. The periodic magnetic field generator according to claim 1, wherein the envelope connecting the maximum values of the air gap magnetic flux density in the vicinity of the entrance is formed as a cosine curve.
JP2187512A 1990-07-16 1990-07-16 Periodic magnetic field generator Expired - Lifetime JP2580370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2187512A JP2580370B2 (en) 1990-07-16 1990-07-16 Periodic magnetic field generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2187512A JP2580370B2 (en) 1990-07-16 1990-07-16 Periodic magnetic field generator

Publications (2)

Publication Number Publication Date
JPH0473989A JPH0473989A (en) 1992-03-09
JP2580370B2 true JP2580370B2 (en) 1997-02-12

Family

ID=16207368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2187512A Expired - Lifetime JP2580370B2 (en) 1990-07-16 1990-07-16 Periodic magnetic field generator

Country Status (1)

Country Link
JP (1) JP2580370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337332A (en) * 2012-11-28 2013-10-02 中国科学院上海应用物理研究所 Undulator

Also Published As

Publication number Publication date
JPH0473989A (en) 1992-03-09

Similar Documents

Publication Publication Date Title
Strnat Modern permanent magnets for applications in electro-technology
JP6380652B2 (en) Method for producing RTB-based sintered magnet
EP1308970B1 (en) Radial anisotropic sintered magnet production method
JPH01117303A (en) Permanent magnet
TW290697B (en)
Kaneko Highest performance of Nd-Fe-B magnet over 55 MGOe
JP6030222B2 (en) Permanent magnet, motor and generator using the same, and automobile
JP2018160642A (en) R-T-B based sintered magnet
JP4697961B2 (en) Permanent magnet and magnetic field generator for particle beam accelerator
JP2007039794A (en) Method for producing nanoparticle of hard magnetic alloy, and method for producing nanocomposite magnet
US5292380A (en) Permanent magnet for accelerating corpuscular beam
JP2580370B2 (en) Periodic magnetic field generator
JPH07122413A (en) Rare earth permanent magnet and manufacture thereof
JP4274480B2 (en) R-T-B sintered magnet
JP2011210838A (en) Rare-earth sintered magnet, method of manufacturing the same, and rotary machine
JPH04230899A (en) Generation of periodic magnetic field
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
JP2935082B2 (en) Normal conducting magnet type electron storage ring
JP3247460B2 (en) Production method of raw material powder for rare earth magnet
KR930008824B1 (en) Rhenium meterials of permanent magnet and making method thereof
JP2535636B2 (en) Voice coil type linear motor
Dasari Mischmetal substitution in Nd2Fe14B sintered permanent magnets
JPS61266551A (en) Permanent magnet alloy
JPH06251920A (en) Rare earth element permanent magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14