JPH08253363A - Baceo3-based ionically conductive ceramics and its production - Google Patents

Baceo3-based ionically conductive ceramics and its production

Info

Publication number
JPH08253363A
JPH08253363A JP7079324A JP7932495A JPH08253363A JP H08253363 A JPH08253363 A JP H08253363A JP 7079324 A JP7079324 A JP 7079324A JP 7932495 A JP7932495 A JP 7932495A JP H08253363 A JPH08253363 A JP H08253363A
Authority
JP
Japan
Prior art keywords
powder
ceramics
per unit
unit formula
conductive ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7079324A
Other languages
Japanese (ja)
Other versions
JP3607352B2 (en
Inventor
Satoru Suzuki
了 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP07932495A priority Critical patent/JP3607352B2/en
Publication of JPH08253363A publication Critical patent/JPH08253363A/en
Application granted granted Critical
Publication of JP3607352B2 publication Critical patent/JP3607352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: To improve a ceramics strength without substantially spoiling ionic conductivity by bringing the ceramics to develop a BaAl2 O4 spinel phase by adding Al2 O3 to the Ba-Ce-Gd-O-based ceramics. CONSTITUTION: This BaCeO3 -based ionically conductive ceramics has a constitution prepared by adding Al2 O3 to (1) powder of Ba1+x Ce1-y Gdy O3-a [0<=(x)<=0.2, 0<(y)<0.3; (a) is a defective number of oxygen per unit formula and 0.5>(a)>0] or BaAl2 O4 to (2) powdery BaCe1-y Gdy O3-a [0<(y)<0.3; (a) is a defective number of oxygen per unit formula and 0.5>(a)>0], then baking the mixture after mixing. This ionically conductive ceramics has a baked constitution in which BaAl2 O4 spinel phases are dispersed in the mother body of BaCe1-y Gdy O3-a [(y) and (a) have the same meaning as above].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池、水素・水蒸
気センサー、水素分離のための固体電解質などの電気化
学デバイスに用いることができるBaCeO3 系イオン
伝導性セラミックスに関するものであり、特には強度を
改善したBaCe1-X Gdx3-a 酸素・プロトン混合
イオン伝導性セラミックス及びその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to BaCeO 3 -based ion conductive ceramics that can be used in electrochemical devices such as fuel cells, hydrogen / water vapor sensors, and solid electrolytes for hydrogen separation. The present invention relates to BaCe 1-x Gd x O 3 -a oxygen / proton mixed ion conductive ceramics having improved strength and a method for producing the same.

【0002】[0002]

【従来の技術】イオン伝導体としては、溶液系、溶融塩
系及び固体系があり、電池等の電気化学デバイスにはイ
オン伝導度が大きい溶液系、溶融塩系が用いられている
が、これらデバイスでは漏液、蒸発といった問題があ
り、固体系のイオン伝導電気化学デバイスを開発するこ
とに大きな期待が寄せられている。しかしながら、多数
の複合酸化物イオン伝導体が報告されてきたが、そのイ
オン伝導度は低く、化学的安定性も悪い。
2. Description of the Related Art As an ionic conductor, there are a solution type, a molten salt type and a solid type, and an electrochemical device such as a battery uses a solution type and a molten salt type having a high ionic conductivity. There are problems such as liquid leakage and evaporation in the device, and there are great expectations for developing a solid-type ion-conducting electrochemical device. However, many complex oxide ion conductors have been reported, but their ionic conductivity is low and their chemical stability is poor.

【0003】そうした中で、BaCeO3 を母体とした
ペロブスカイト型酸化物焼結体、特にCeの一部を稀土
類元素、代表的にGdで置換したBaCe1-X Gdx
3-a(0<x<0.3、aは単位式量当りの酸素欠損数
であり、1.5>a>0、以下BCGと略す)は、化学
的に安定であり、比較的イオン伝導度が高く、水素源と
酸素源のある雰囲気では酸素イオンとプロトンの両者が
伝導に携わる混合イオン伝導体としての挙動を示すこと
が知られている。例えば特開平5−28820号は、そ
れまで化学的に安定でありかつ高い伝導度特性を有する
イオン伝導体が合成されていなかったことに鑑み、最終
焼成前の粉末粒径の管理や最終焼成前の非水溶媒による
粉末処理及び脱水真空乾燥の実施、焼成温度の選択など
を通して、好ましくは上述の式においてxが0.16か
ら0.23、より好ましくは0.2であるBCGペロブ
スカイト型酸化物焼結体合成法を記載している。また、
セラミックス27(1992)No.2、112〜11
6頁には、「高温型プロトン電導性セラミックスとその
応用」と題して、幾種かのプロトン伝導性固体の紹介、
ペロブスカイト型プロトン伝導性酸化物の伝導特性とし
てSrCeO3 及びBaCeO3 のCeの一部を稀土類
元素で置換した各種の合成セラミックスの水素中での導
電率を測定結果を示している。その応用例として、高温
水素及び水蒸気センサー、燃料電池等が紹介されてい
る。
Among these, a perovskite type oxide sintered body having BaCeO 3 as a base material, particularly BaCe 1-X Gd x O in which a part of Ce is replaced with a rare earth element, typically Gd
3-a (0 <x <0.3, a is the number of oxygen vacancies per unit formula amount, 1.5>a> 0, hereinafter abbreviated as BCG) is chemically stable and relatively ionic. It is known that, in an atmosphere with high conductivity and a hydrogen source and an oxygen source, both oxygen ions and protons behave as a mixed ionic conductor involved in conduction. For example, in JP-A-5-28820, in view of the fact that an ionic conductor that is chemically stable and has high conductivity characteristics has not been synthesized until then, control of the powder particle size before final firing or before final firing is performed. BCG perovskite-type oxide in which x is 0.16 to 0.23, more preferably 0.2 in the above formula, through powder treatment with a non-aqueous solvent, performing dehydration vacuum drying, and selecting the firing temperature. The method of synthesizing a sintered body is described. Also,
Ceramics 27 (1992) No. 2, 112-11
On page 6, an introduction of some types of proton-conducting solids, entitled "High Temperature Proton-Conducting Ceramics and Their Applications",
As the conduction characteristics of the perovskite-type proton-conductive oxide, the measurement results of the electrical conductivity in hydrogen of various synthetic ceramics in which a part of Ce of SrCeO 3 and BaCeO 3 is replaced with a rare earth element are shown. As examples of its application, high-temperature hydrogen and water vapor sensors, fuel cells, etc. have been introduced.

【0004】[0004]

【発明が解決しようとする課題】このBCG高温型プロ
トン伝導体は、現在使用されている安定化ジルコニア系
酸素イオン伝導体に比較して、1000℃以下の温度で
高いイオン伝導性を示すことから安定化ジルコニア系酸
素イオン伝導体よりも低温で使用できる電気化学デバイ
スへの応用が期待できること及び高温にすることにより
電極反応を円滑に行わせることができることといった利
点を有し、これら利点を生かした多くの電気化学デバイ
スへの応用が期待されているが、問題点は強度が弱いこ
とである。本発明者の測定では、焼結体密度99.4%
の焼結体で3点曲げ(抗折力)強度は75MPaに過ぎ
ない。どのような形態で使用されるにせよ、機械的強度
の信頼性を得るには、少なくとも100MPaの3点曲
げ(抗折力)強度は必要である。
This BCG high temperature type proton conductor exhibits high ionic conductivity at a temperature of 1000 ° C. or less as compared with the currently used stabilized zirconia-based oxygen ion conductor. It has the advantages that it can be expected to be applied to electrochemical devices that can be used at lower temperatures than stabilized zirconia-based oxygen ion conductors, and that electrode reactions can be carried out smoothly by raising the temperature, and these advantages were utilized. Although it is expected to be applied to many electrochemical devices, the problem is that the strength is weak. According to the measurement by the present inventor, the sintered body density is 99.4%.
The three-point bending (flexural strength) strength of the sintered body of No. 3 is only 75 MPa. Whatever form is used, a three-point bending (flexural strength) strength of at least 100 MPa is required to obtain reliable mechanical strength.

【0005】本発明の課題は、イオン伝導性を実質上犠
牲とすることなく、BCG焼結体セラミックスの強度を
改善することである。
An object of the present invention is to improve the strength of BCG sintered ceramics without substantially sacrificing ionic conductivity.

【0006】[0006]

【課題を解決するための手段】本発明者は、研究の結
果、この課題解決には、20モル%以下のAl23
添加によりBaAl24 スピネル相を発現せしめるこ
とが効果的であることを見いだした。BaAl24
添加することもできる。この知見に基づいて、本発明
は、Ba1+X Ce1-y Gdy3-a (0≦x≦0.2、
0<y<0.3、aは単位式量当りの酸素欠損数であ
り、1.5>a>0)粉にAl23 をもしくはBaC
1-y Gdy3-a (0<y<0.3、aは単位式量当
りの酸素欠損数であり、1.5>a>0)粉にBaAl
24 を添加・混合させた後焼結させた組織を有するこ
とを特徴とするBaCeO3 系イオン伝導性セラミック
スを提供する。この焼結組織は、BaCe1-y Gdy
3-a (0<y<0.3、aは単位式量当りの酸素欠損数
であり、1.5>a>0)母体にBaAl24 スピネ
ル相を分散させた焼結組織を有することを特徴とする。
本発明はまたBa1+X Ce1-y Gdy3-a (0≦x≦
0.2、0<y<0.3、aは単位式量当りの酸素欠損
数であり、1.5>a>0)粉にAl23 粉もしくは
Al23 ウイスカをもしくはBaCe1-y Gdy
3-a (0<y<0.3、aは単位式量当りの酸素欠損数
であり、1.5>a>0)粉にBaAl24 粉を添加
し、混合後、成形し、その後焼結することを特徴とする
BaCeO3 系イオン伝導性セラミックスの製造方法を
も提供する。
As a result of research, the present inventor has found that it is effective to solve this problem by expressing a BaAl 2 O 4 spinel phase by adding 20 mol% or less of Al 2 O 3. I found something. BaAl 2 O 4 can also be added. Based on this finding, the present invention provides Ba 1 + X Ce 1-y Gd y O 3-a (0 ≦ x ≦ 0.2,
0 <y <0.3, a is the number of oxygen vacancies per unit formula amount, 1.5>a> 0) Al 2 O 3 in powder or BaC
e 1-y Gd y O 3-a (0 <y <0.3, a is the number of oxygen vacancies per unit formula amount, 1.5>a> 0) Powder with BaAl
Disclosed is a BaCeO 3 -based ion conductive ceramic having a structure in which 2 O 4 is added and mixed and then sintered. This sintered structure is BaCe 1-y Gd y O
3-a (0 <y <0.3, a is the number of oxygen vacancies per unit formula amount, 1.5>a> 0) has a sintered structure in which a BaAl 2 O 4 spinel phase is dispersed in the matrix. It is characterized by
The present invention also relates to Ba 1 + X Ce 1-y Gd y O 3-a (0 ≦ x ≦
0.2, 0 <y <0.3, a is the number of oxygen vacancies per unit formula amount, and 1.5>a> 0) powder to Al 2 O 3 powder or Al 2 O 3 whiskers or BaCe 1 -y Gd y O
3-a (0 <y <0.3, a is the number of oxygen vacancies per unit formula amount, 1.5>a> 0) BaAl 2 O 4 powder was added to the powder, mixed and molded, Also provided is a method for producing a BaCeO 3 -based ion conductive ceramics, which is characterized by sintering thereafter.

【0007】[0007]

【作用】BCG粉へAl23 粉を添加混合した後成形
体を焼結することにより次の反応が起こるものと考えら
れる: Ba1+x Ce1-y Gdy3-a (0≦x≦0.2、0<
y<0.3、1.5>a>0)+xAl23 →BaA
24 +BaCe1-y Gdy3-a 強度向上のメカニズムは、強度の大きなBaAl24
スピネル相の分散強化機構であると考えられる。
It is considered that the following reaction occurs by adding Al 2 O 3 powder to BCG powder and mixing it and then sintering the compact: Ba 1 + x Ce 1-y Gd y O 3-a (0 ≦ x ≦ 0.2, 0 <
y <0.3, 1.5>a> 0) + xAl 2 O 3 → BaA
l 2 O 4 + BaCe 1-y Gd y O 3-a The mechanism for improving the strength is BaAl 2 O 4 having a large strength.
It is considered to be a dispersion strengthening mechanism of the spinel phase.

【0008】Al23 の添加量は、20モル%以下、
好ましくは2〜18モル%、より好ましくは4〜11モ
ル%である。Al23 添加量が20モル%を超える
と、焼結性が悪くなり、焼結体密度が低下する。20モ
ル%以下なら、添加量に応じて相応の添加効果を示す
が、意味のある強度改善効果を得るには少なくとも2モ
ル%添加することが好ましい。Al23 の代わりにB
aAl24 を相応量添加してもよい。
The amount of Al 2 O 3 added is 20 mol% or less,
It is preferably 2 to 18 mol%, more preferably 4 to 11 mol%. If the amount of Al 2 O 3 added exceeds 20 mol%, the sinterability deteriorates and the sintered body density decreases. If the amount is 20 mol% or less, a corresponding addition effect is exhibited depending on the addition amount, but it is preferable to add at least 2 mol% in order to obtain a meaningful strength improving effect. B instead of Al 2 O 3
A suitable amount of aAl 2 O 4 may be added.

【0009】BCG粉は、各元素の酸化物、炭酸塩、酢
酸塩などの所定の割合の混合粉を原料として通常の焼結
法で作ることができる。例えば、出発粉として、炭酸バ
リウム(BaCO3 )、酸化セリウム(CeO2 )、酸
化ガドリニウム(Gd23)粉末を用いて固相反応法
で合成することができる。これら出発粉末を所定の比率
で十分に混合し、成形物を例えば1300℃で10時間
程度焼成し、それを粉砕することによりBCG粉が得ら
れる。
The BCG powder can be produced by a usual sintering method using a mixed powder of oxides, carbonates, acetates, etc. of respective elements in a predetermined ratio. For example, barium carbonate (BaCO 3 ), cerium oxide (CeO 2 ), and gadolinium oxide (Gd 2 O 3 ) powder can be used as the starting powder to synthesize by a solid-phase reaction method. BCG powder is obtained by sufficiently mixing these starting powders in a predetermined ratio, firing the molded product at, for example, 1300 ° C. for about 10 hours, and pulverizing the product.

【0010】BCG粉に例えば粒状もしくはウイスカ状
Al23 を添加し、ボールミルで十分に混合後、CI
Pにより成形を行い、1450〜1650℃で5〜15
時間焼結がなされる。焼結は酸素雰囲気中で実施するこ
とが好ましい。
For example, granular or whisker-like Al 2 O 3 was added to the BCG powder and thoroughly mixed with a ball mill, and then CI was added.
Molded with P, 5 to 15 at 1450 to 1650 ° C
Sintering is done for a time. Sintering is preferably carried out in an oxygen atmosphere.

【0011】こうして、BCGにAl23 もしくはB
aAl24 を添加・反応させた焼結組織を有すること
により強度を改善したBaCeO3 系イオン伝導性セラ
ミックスが得られる。これは、強度の大きなBaAl2
4 スピネル相が母体に分散することにより強度を改善
したものと考えられる。
In this way, BCG is Al 2 O 3 or B
A BaCeO 3 based ion conductive ceramics having improved strength by having a sintered structure in which aAl 2 O 4 is added and reacted is obtained. This is due to the high strength of BaAl 2
It is considered that the strength was improved by dispersing the O 4 spinel phase in the matrix.

【0012】アルミナを添加することにより注目すべき
現象が判明した。BCGは斜方晶から立方晶への相変化
が原因と考えられる600〜800℃範囲での熱膨張係
数の大きな変化を示す(文献として「Denki Ka
gaku 62(4)(1994)326〜331頁を
参照されたい)。ところが、アルミナを添加することに
より、この600〜800℃範囲での熱膨張係数の大き
な変化を軽減もしくは排除することができる。図1は、
BCG粉焼結体、BCG+5モル%Al23粉焼結体
及びBCG+10モル%Al23 粉焼結体から成る3
種のサンプルを300℃/hrの加熱速度で1000℃
以上に加熱した場合のそれぞれの熱膨張率(%)を測定
した曲線1、2及び3を示すものである。測定はリガク
TAS−200システムの示差熱分析計を使用して行っ
た。曲線1では600〜800℃範囲での熱膨張率の大
きな変化が見られるのに対して、曲線2では熱膨張は軽
減し、そして10%アルミナを添加した曲線3ではそれ
が実質上排除されている。従って、Al23 の添加に
より、加熱時の寸法安定性が向上し、構造材に組み込ま
れた場合の熱応力を軽減もしくは回避することができる
ようになる。
The addition of alumina has revealed a notable phenomenon. BCG shows a large change in the coefficient of thermal expansion in the range of 600 to 800 ° C. which is considered to be caused by the phase change from orthorhombic to cubic (as a reference, “Denki Ka”).
gaku 62 (4) (1994) 326-331). However, by adding alumina, it is possible to reduce or eliminate the large change in the coefficient of thermal expansion in the range of 600 to 800 ° C. Figure 1
3 consisting of a BCG powder sintered body, a BCG + 5 mol% Al 2 O 3 powder sintered body and a BCG + 10 mol% Al 2 O 3 powder sintered body 3
Seed samples at 1000 ° C at a heating rate of 300 ° C / hr
3 shows curves 1, 2 and 3 in which the respective thermal expansion coefficients (%) when heated above are measured. The measurement was performed using the differential thermal analyzer of Rigaku TAS-200 system. Curve 1 shows a large change in the coefficient of thermal expansion in the 600-800 ° C. range, whereas curve 2 reduces the thermal expansion and curve 3 with 10% alumina has substantially eliminated it. There is. Therefore, the addition of Al 2 O 3 improves the dimensional stability during heating and reduces or avoids the thermal stress when incorporated into a structural material.

【0013】[0013]

【実施例】【Example】

(実施例及び比較例)BCG粉(比表面積:12m2
g)に粒状Al23 粉(平均粒径:0.05μm、比
表面積:80m2 /g)またはAl23 ウイスカ(平
均直径:5μm、長さ:100〜200μm)を5モル
%及び10モル%(ウイスカの場合のみ)添加し、ボー
ルミルで混合し、CIP成形後、1500℃で10時間
酸素雰囲気中で焼結した。比較例としてAl23 無添
加のサンプルも用意した。焼結体に、白金ペーストを焼
きつけ、水素中の伝導度を測定した。
(Examples and Comparative Examples) BCG powder (specific surface area: 12 m 2 /
g) granular Al 2 O 3 powder (average particle diameter: 0.05 μm, specific surface area: 80 m 2 / g) or Al 2 O 3 whiskers (average diameter: 5 μm, length: 100 to 200 μm) in 5 mol% and 10 mol% (only for whiskers) was added, mixed by a ball mill, CIP molded, and then sintered at 1500 ° C. for 10 hours in an oxygen atmosphere. A sample without addition of Al 2 O 3 was also prepared as a comparative example. A platinum paste was baked on the sintered body, and the conductivity in hydrogen was measured.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から、イオン伝導性を実質上犠牲とす
ることなく、焼結体セラミックスの強度が約1.7倍向
上し、Al23 を添加することで強度が改善されてい
ることがわかる。
From Table 1, it can be seen that the strength of the sintered ceramics is improved by about 1.7 times without substantially sacrificing the ionic conductivity, and the strength is improved by adding Al 2 O 3 . I understand.

【0016】[0016]

【発明の効果】高温でのイオン伝導性を実質上犠牲とす
ることなく、BCG焼結体セラミックスの強度が改善
し、加えて加熱時の寸法安定性を向上する。
The strength of the BCG sintered ceramics is improved without substantially sacrificing the ion conductivity at high temperatures, and the dimensional stability during heating is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】BCG粉焼結体(曲線1)、BCG+5モル%
Al23 粉焼結体(曲線2)及びBCG+10モル%
Al23 粉焼結体(曲線3)から成る3種のサンプル
の加熱時の熱膨張率(%)の測定結果を示すグラフであ
る。
FIG. 1 BCG powder sintered body (curve 1), BCG + 5 mol%
Al 2 O 3 powder sintered body (curve 2) and BCG + 10 mol%
It is a graph which shows the measurement result of the coefficient of thermal expansion (%) at the time of heating of 3 types of samples which consist of Al 2 O 3 powder sintered body (curve 3).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Ba1+X Ce1-y Gdy3-a (0≦x
≦0.2、0<y<0.3、aは単位式量当りの酸素欠
損数であり、1.5>a>0)粉にAl23 をもしく
はBaCe1-y Gdy3-a (0<y<0.3、aは単
位式量当りの酸素欠損数であり、1.5>a>0)粉に
BaAl24 を添加・混合させた後焼結させた組織を
有することを特徴とするBaCeO3 系イオン伝導性セ
ラミックス。
1. Ba 1 + X Ce 1-y Gd y O 3-a (0 ≦ x
≦ 0.2, 0 <y <0.3, a is the number of oxygen vacancies per unit formula amount, 1.5>a> 0) Al 2 O 3 in powder or BaCe 1-y Gd y O 3 -a (0 <y <0.3, a is the number of oxygen vacancies per unit formula amount, 1.5>a> 0) A structure in which BaAl 2 O 4 was added to and mixed with the powder and then sintered. BaCeO 3 based ion conductive ceramics characterized by having
【請求項2】 BaCe1-y Gdy3-a (0<y<
0.3、aは単位式量当りの酸素欠損数であり、1.5
>a>0)母体にBaAl24 スピネル相を分散させ
た焼結組織を有することを特徴とするBaCeO3 系イ
オン伝導性セラミックス。
2. BaCe 1-y Gd y O 3-a (0 <y <
0.3, a is the number of oxygen vacancies per unit formula amount, 1.5
>A> 0) BaCeO 3 based ion conductive ceramics having a sintered structure in which a BaAl 2 O 4 spinel phase is dispersed in a matrix.
【請求項3】 Ba1+X Ce1-y Gdy3-a (0≦x
≦0.2、0<y<0.3、aは単位式量当りの酸素欠
損数であり、1.5>a>0)粉にAl23 粉もしく
はAl23 ウイスカを添加し、混合後、成形し、その
後焼結することを特徴とするBaCeO3 系イオン伝導
性セラミックスの製造方法。
3. Ba 1 + X Ce 1-y Gd y O 3-a (0 ≦ x
≦ 0.2, 0 <y <0.3, a is the number of oxygen vacancies per unit formula amount, and 1.5>a> 0) is added with Al 2 O 3 powder or Al 2 O 3 whiskers. A method for producing a BaCeO 3 -based ion conductive ceramics, which comprises mixing, shaping, and then sintering.
【請求項4】 BaCe1-y Gdy3-a (0<y<
0.3、aは単位式量当りの酸素欠損数であり、1.5
>a>0)粉にBaAl24 粉を添加し、混合後、成
形し、その後焼結することを特徴とするBaCeO3
イオン伝導性セラミックスの製造方法。
4. BaCe 1-y Gd y O 3-a (0 <y <
0.3, a is the number of oxygen vacancies per unit formula amount, 1.5
>A> 0) BaAl 2 O 4 powder is added to the powder, mixed, shaped, and then sintered, which is a method for producing a BaCeO 3 based ion conductive ceramics.
JP07932495A 1995-03-13 1995-03-13 BaCeO3-based ion conductive ceramics and method for producing the same Expired - Fee Related JP3607352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07932495A JP3607352B2 (en) 1995-03-13 1995-03-13 BaCeO3-based ion conductive ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07932495A JP3607352B2 (en) 1995-03-13 1995-03-13 BaCeO3-based ion conductive ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08253363A true JPH08253363A (en) 1996-10-01
JP3607352B2 JP3607352B2 (en) 2005-01-05

Family

ID=13686709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07932495A Expired - Fee Related JP3607352B2 (en) 1995-03-13 1995-03-13 BaCeO3-based ion conductive ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3607352B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314142A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Oxide-ion mixed conductor, composite structure, oxygen separator, and chemical reactor
JP2007526865A (en) * 2003-06-25 2007-09-20 イーテーエン ナノヴェイション アクチェンゲゼルシャフト Mixed metal oxides and their use in CO2 sensors
JP2015147994A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Water-vapor electrolytic hydrogenation apparatus
JPWO2015008407A1 (en) * 2013-07-16 2017-03-02 パナソニックIpマネジメント株式会社 Proton conductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526865A (en) * 2003-06-25 2007-09-20 イーテーエン ナノヴェイション アクチェンゲゼルシャフト Mixed metal oxides and their use in CO2 sensors
JP4805146B2 (en) * 2003-06-25 2011-11-02 イーテーエン ナノヴェイション アクチェンゲゼルシャフト Method for producing mixed metal oxide for use in carbon dioxide (CO2) sensor
JP2005314142A (en) * 2004-04-27 2005-11-10 Nippon Steel Corp Oxide-ion mixed conductor, composite structure, oxygen separator, and chemical reactor
JPWO2015008407A1 (en) * 2013-07-16 2017-03-02 パナソニックIpマネジメント株式会社 Proton conductor
JP2015147994A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Water-vapor electrolytic hydrogenation apparatus

Also Published As

Publication number Publication date
JP3607352B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
US5387330A (en) Mixed ionic conductors
Shuk et al. Hydrothermal synthesis and properties of mixed conductors based on Ce1− xPrxO2− δ solid solutions
JP5126535B2 (en) Composite type mixed conductor
Fujii et al. Protonic conduction in perovskite-type oxide ceramics based on LnScO 3 (Ln= La, Nd, Sm or Gd) at high temperature
US6517693B2 (en) Ion conductor
JP2001307546A (en) Ionic conductor
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
US5958304A (en) Doped lanthanum chromite material for bipolar interconnects for solid oxide fuel cells
JP3997365B2 (en) Oxide ion conductive single crystal and method for producing the same
JPH08208333A (en) Conductive material for oxygen ion and its production
Fan et al. Barium cerate-zirconate electrolyte powder prepared by carbonate coprecipitation for high performance protonic ceramic fuel cells
Araújo et al. A high-performance oxygen electrode for solid oxide cells: Compositional optimisation of barium cobaltite-based composites
JPH06231611A (en) Mixed ion conductor
Huang et al. Structural and Electrical Characterization of a Novel Mixed Conductor: CeO2‐Sm2 O 3‐ZrO2 Solid Solution
JP3607352B2 (en) BaCeO3-based ion conductive ceramics and method for producing the same
JPH07149522A (en) Zirconia electrolyte powder and its production
Dudek et al. Some observations on the synthesis and electrolytic properties of (BaCa)(MY) O, M= Ce, Zr-based samples modified with calcium
KR101772264B1 (en) High ionic conductive zirconia electrolyte for high efficiency solid oxide fuel cells
JP3300077B2 (en) Ion conductor material
JPH09295866A (en) Mixed ion connector
JP3598956B2 (en) Gallate composite oxide solid electrolyte material and method for producing the same
JP3877809B2 (en) Proton conductive ceramics
EP4398269A1 (en) Oxide ion conductive solid electrolyte
JP3134883B2 (en) Separator for solid oxide fuel cell
Skarmoutsos et al. Titania doped YSZ for SOFC anode Ni-Cermet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees