JPH08252823A - Manufacture of nonflammable biodegradable plastic - Google Patents

Manufacture of nonflammable biodegradable plastic

Info

Publication number
JPH08252823A
JPH08252823A JP5864995A JP5864995A JPH08252823A JP H08252823 A JPH08252823 A JP H08252823A JP 5864995 A JP5864995 A JP 5864995A JP 5864995 A JP5864995 A JP 5864995A JP H08252823 A JPH08252823 A JP H08252823A
Authority
JP
Japan
Prior art keywords
plastic
oh
nonflammability
powder
biodegradability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5864995A
Other languages
Japanese (ja)
Inventor
Takafumi Hataya
隆文 端谷
Original Assignee
Fujitsu Ltd
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, 富士通株式会社 filed Critical Fujitsu Ltd
Priority to JP5864995A priority Critical patent/JPH08252823A/en
Publication of JPH08252823A publication Critical patent/JPH08252823A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE: To realize the giving of nonflammability to a plastic by a method wherein molding is carried out under the condition that at least either one of an aluminum hydroxide powder and a magnesium hydroxide powder is added to pellets made of a biodegradable plastic stock.
CONSTITUTION: As a means for making a plastic nonflammable, Al(OH)3 or Mg(OH)2 is mixed with stock so as to absorb the heat developing at the burning of the plastic, resulting in resolving and, at the same time, generating water and showing nonflammability due to its heat absorbing action and the generation of water. However, since nonflammability, biodegradability, mechanical properties and the like have mutually contradictory relationships and added hydroxide molecules are coordinated so as to surround the spherulitic structures of the biodegradable plastic, the biodegradability lowers. As a result, by carrying out the molding of the plastic under the condition that the mixing percentage of at least either one of an Al(OH)3 powder and a Mg(OH)2 powder is set to be 30-50wt.%, the physical properties and nonflammability necessary for the plastic can be maintained.
COPYRIGHT: (C)1996,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は難燃性を付与した生分解性プラスチックスの製造方法に関する。 The present invention relates to a process for the production of biodegradable plastics that impart flame retardancy. プラスチックスは土中に埋めても腐らず、焼くと高熱や有害なガスを発生することから、この処理は地球環境の維持の面から大きな問題となっている。 Plastics not rot even if buried in the ground, since it generates high heat or harmful gases when burning, the process is a major problem in terms of maintaining the global environment. そして、この打開策として生分解性プラスチックスが着目され、今まで日用雑貨品、衛生用品、遊戯用品など主として使い捨て用品に対して実用化が進められている。 Then, biodegradable plastics as this breakthrough is attention, daily commodities until now, hygiene products, is put to practical use primarily for disposable products such as play equipment has been promoted.

【0002】一方、電機製品についても筐体などを生分解性プラスチックスで形成し、回収後の処理を容易にしたいと云う希望はあるものゝ、電機製品として使用する場合には日本工業規格(JIS)やUL(Under-writer [0002] On the other hand, and the housing is formed by a biodegradable plastics for electric products, would like to facilitate the treatment after collecting the referred desired Some ゝ, when used as electrical goods Japanese Industrial Standards ( JIS) and UL (Under-writer
Laboratory)規格に決められている難燃性規格を満たす必要があり、現在の生分解性プラスチックスでは対応できない。 Laboratory) must meet the flame retardancy standard that is determined in standard, it can not cope with the current biodegradable plastics.

【0003】 [0003]

【従来の技術】生分解性プラスチックスは自然界において微生物が関与して低分子化合物に分解されるプラスチックスと定義されており、現在において実用化されている生分解性プラスチックスは次の3種類に大別することができる。 BACKGROUND OF THE INVENTION Biodegradable plastics are defined as plastics which are decomposed into microorganisms involved low molecular compounds in nature, biodegradable plastics have been put into practical use in the current the following three it can be roughly divided into. 微生物産生ポリエステル 化学合成高分子化合物 天然高分子利用物 こゝで、は微生物が合成するポリエステル、例えば、 Microbial production of polyester chemical synthetic polymer compound natural polymer use products this ゝ a, polyesters microorganisms to synthesize, for example,
3-ヒドロキシブチレート( 略称3HB)や3-ヒドロキシバリレート( 略称3HV)などからなるポリエステルを用いるもので、両者のランダム共重合体〔P(3HB− But using 3-hydroxybutyrate (abbreviated 3HB) and 3-hydroxyvalerate (abbreviated 3HV) polyester made of a random copolymer of two [P (3HB-
3HV)〕からなるポリエステルは既に商用化されている。 Polyester consisting 3HV)] have already been commercialized.

【0004】また、はポリエステルとポリ乳酸とに二分することができ、前者はジカルボン酸と二価アルコールとを縮合してできるポリエステルを使用するものであり、後者はグルコースを乳酸醗酵させて乳酸を、次に、 [0004] can be divided into a polyester and polylactic acid, the former is intended to use a polyester that is produced by condensation of a dicarboxylic acid and a dihydric alcohol, the latter is lactic fermenting glucose to lactate ,next,
乳酸を環化反応させてラクチドを、次に、ラクチドを開環重合させてポリ乳酸として製品化したものである。 The was allowed to cyclization reaction lactide lactate, then lactide by ring-opening polymerization is obtained by the product as a polylactic acid.

【0005】また、は澱粉や変性ポリビニルアルコールなどの天然高分子を原料とし、植物油などを可塑剤として樹脂化して使用するものである。 Further, the natural polymers such as starch and modified polyvinyl alcohol as the raw material, is to use a resin of the vegetable oils as a plasticizer. そして、これらのプラスチックスは土壌中に埋没しておくと、土壌中に生息する放線菌やアルカリゲネス族などの微生物の作用により低分子量の化合物に分解され、最終的には炭酸ガス(CO 2 )、アンモニア(NH 3 )および水(H 2 O) When these plastics is left buried in the soil, are decomposed into low molecular weight compounds by the action of microorganisms such as actinomycetes or Alcaligenes group that live in the soil, ultimately to carbon dioxide gas (CO 2) , ammonia (NH 3) and water (H 2 O)
になって植物の肥料となる。 The fertilizer plant is in.

【0006】然しながら、現在、実用化されているかゝる生分解性プラスチックスは何れも難燃性を備えていない。 [0006] However, currently, practically used are either in ゝ Ru biodegradable plastics either does not have a flame retardant.

【0007】 [0007]

【発明が解決しようとする課題】現在、実用化されている生分解性プラスチックスは難燃性を備えていない。 [SUMMARY OF THE INVENTION Currently, biodegradable plastics in practical use are not equipped with a flame retardant. そこで難燃性を付与して用途を電機製品にまで拡大させることが課題である。 So be expanded applications to impart flame retardancy to the electric appliances is an issue.

【0008】 [0008]

【課題を解決するための手段】上記の課題は生分解性プラスチックス原料よりなるペレットに水酸化アルミニウム〔Al(OH) 3 〕粉末または水酸化マグネシウム〔Mg Above problems SUMMARY OF THE INVENTION The aluminum hydroxide pellets made of biodegradable plastics material [Al (OH) 3] powder or magnesium hydroxide [Mg
(OH) 2 〕粉末の少なくとも一方を添加し成形することにより解決することができる。 (OH) 2] can be solved by adding shaping at least one of the powder.

【0009】 [0009]

【作用】プラスチックスを難燃性にする手段として、一般にハロゲン原子を有する難燃剤、例えば、ハロゲン化無水フタール酸,臭素化ポリオールなどを原料中に加えておき、プラスチックスが燃焼する際に発生する熱により難燃剤が分解し、その際に生ずるハロゲンガスが酸素(O 2 )の供給を遮断する方法がとられている。 [Action] The plastics as a means of flame retardancy, generally the flame retardant having a halogen atom, for example, in advance in addition halogenated phthalic anhydride, and the like brominated polyol in the feed, occurs when the plastic is burnt heat by the flame retardant is decomposed to a method of halogen gas to shut off the supply of oxygen (O 2) is taken to occur at that time. 然し、 However,
ハロゲンガスは人体に有害なことから好ましい方法とは言えない。 Halogen gas is not a preferred method because it harmful to the human body.

【0010】発明者はプラスチックスを難燃性にする手段としてAl(OH) 3やMg(OH) 2を原料中に配合しておく方法に着目した。 [0010] The inventors have focused on how to keep blended Al (OH) 3 and Mg (OH) 2 as a means for the plastics flame retardant in the raw material. (例えば、特開昭63-183960 、特開昭63-198212 ) この方法は、プラスチックスが燃焼する際に発生する熱をこれらの材料が吸熱して分解すると共に水(H 2 O) (E.g., JP 63-183960, JP 63-198212) The method, the heat generated when the plastic is combusted with these materials are decomposed by the endothermic water (H 2 O)
を生じ、吸熱作用と水の発生により難燃性を示すものである。 The resulting shows the flame retardancy due to the generation of heat absorption and water.

【0011】 2Al(OH) 3 → Al 23 + 3H 2 O − 73 kcal ・・・(1) 然し、このような難燃剤を添加する場合の問題点は、添加量に比例して難燃性は顕著になるものゝ、生分解性や機械的性質などの物性が低下し、相反の関係にあることである。 [0011] 2Al (OH) 3 → Al 2 O 3 + 3H 2 O - 73 kcal ··· (1) However, the problem in the case of adding such a flame retardant, in proportion to the amount the flame retardant sex made remarkable ゝ, reduces the physical properties such as biodegradability and mechanical properties, is that a relationship of reciprocal.

【0012】すなわち、添加した水酸化物分子は生分解性プラスチックスの球晶構造を取り巻くように配位する結果、生分解性を低下させると思われる。 Namely, the hydroxide molecules added coordinating results so as to surround the spherulite structure of the biodegradable plastics, it seems to reduce the biodegradability. そこで、本発明はAl(OH) 3粉末またはMg(OH) 2粉末の少なくとも一方をプラスチックスが必要とする物性と難燃性を維持する範囲に添加して成形するもので、実験の結果は混合率を30%程度とすることにより好結果を得ることができた。 The present invention is intended for molding by adding a range to maintain the Al (OH) 3 powder or Mg (OH) Properties and flame retardancy plastics at least one of the two powders is required, the results of the experiment it was possible to obtain good results by the mixing ratio of about 30%.

【0013】次に、樹脂の成形には射出成形法(Injecti [0013] Next, an injection molding method for molding a resin (injecti
on-mold)が使われることが多いが、生分解性プラスチックスは一般に融点が低く、分解し易いことから生分解性を損なわないためにはプラスチックスの融点近傍の温度でなるべく短時間で処理を行うのが好ましく、実験によれば、混練機でのシリンダ内の滞留時間を3秒以内とし、射出成形機のシリンダ内の滞留時間を7秒以内とし、溶融温度をプラスチックスの溶融温度より+30℃以内に保つことにより好結果を得ることができた。 While the on-mold) are used often, biodegradable plastics are generally low melting point, as much as possible in a short time at a temperature near the melting point of the plastic in order not to impair the biodegradability since it is easy to decompose It is preferably carried out, and according to the experiments, the residence time in the cylinder of a kneading machine and within 3 seconds, the residence time in the cylinder of the injection molding machine and within 7 seconds, the melting temperature of the plastics melt temperature it was possible to obtain good results by keeping within + 30 ° C..

【0014】 [0014]

【実施例】 【Example】

実施例1:生分解性プラスチックスとして化学合成高分子化合物に属する脂肪族ポリエステル(品名ビオノーレ,品番#1020, 昭和高分子) のペレットを用い、また、Al(OH) 3としては純度99.8%で粒径が5〜10μm Example 1: aliphatic polyesters belonging to the chemical synthetic polymer compound as biodegradable plastics (product name Bionolle, part number # 1020, Showa High Polymer) The pellets of, and in 99.8% purity as Al (OH) 3 the particle size is 5~10μm
のものを使用し、両者の混合率としては90:10〜50:50 Using those, the mixing ratio of both 90: 10-50: 50
の5段階に変えた。 It was changed to five-step.

【0015】また、混練条件としては、混練機としてラボプラストミル(東洋精機)を使用し、ノズル温度を11 [0015] As the kneading conditions, using a Laboplastomill (manufactured by Toyo Seiki) as the kneader, the nozzle temperature 11
5 〜120 ℃, トルクを4〜6kg,滞留時間を3秒以内とし、射出条件としては、成形機として射出成形機(品名 5 to 120 ° C., the torque 4~6Kg, residence time within 3 seconds, the injection condition, the injection molding machine as a molding machine (product name
JC-25SS,日本製鋼所) を使用し、射出温度を134 〜144 JC-25SS, using Japan Steel Works, Ltd.), the injection temperature 134 to 144
℃, 射出時間7秒,冷却温度20〜40℃, 冷却時間15〜20 ° C., an injection time of 7 seconds, cooling temperature 20 to 40 ° C., cooling time 15-20
秒, 射出圧力300 〜450 kgf/cm 2の条件で行い、60×20 Sec, performed under conditions of injection pressure 300 ~450 kgf / cm 2, 60 × 20
×2 mm の試験片を作った。 × made a test piece of 2 mm.

【0016】そして、試験片を使用して機械的性質と難燃性(JIS A1321準拠)を測定した。 [0016] Then, to measure the mechanical properties and flame retardancy (JIS A1321 compliant) using a test piece. その方法は、試験片を垂直に保持すると共に試験片の下側305 mm の位置にガーゼを置き、試験片の下端をカスバーナで10秒間加熱して着火せしめ、その後に燃焼を続けるか、また、燃焼して溶けた滴下物がガーゼに落ちた後にガーゼが燃えるか否かを調べるものである。 The method a test piece placed gauze at the position of the lower 305 mm of the test piece while held vertically, the lower end of the specimen ignited by heating 10 seconds at Kasubana, or thereafter to continue combustion, also, it is intended to examine whether the gauze burns after the dropping was melted by burning fell gauze. 1. 1. 機械的な物性 Al(OH) 3の含有率 引張り降伏応力(kgf/mm 2 ) 規定曲げ強さ(kgf/mm 2 ) 0 % 2.9 2.1 10 % 2.8 2.2 20 % 2.5 2.3 30 % 2.4 2.8 40 % 2.2 3.0 50 % 2.2 2.8 この結果から、難燃剤の含有率が増すに従って引張り降伏応力は次第に下がり、また曲げ強さは次第に増して飽和するのが判る。 Mechanical properties Al (OH) 3 content rate tensile yield stress (kgf / mm 2) defining bending strength (kgf / mm 2) 0% 2.9 2.1 10% 2.8 2.2 20% 2.5 2.3 30% 2.4 2.8 40% 2.2 from 3.0 to 50% 2.2 2.8 As a result, the yield tensile stress in accordance with increasing the content of the flame retardant is lowered gradually, also bending strength gradually increases with seen from saturating. 2. 2. 難燃性試験 Al(OH) 3の含有率 炎分離後の状況 ガーゼへの着火の状況 0 % 燃え続ける 着火する 10 % 燃え続ける 着火する 20 % 燃え続ける 着火する 30 % 消える 着火しない 40 % 消える 着火しない 50 % 消える 着火しない この結果から難燃性を持たせるにはAl(OH) 3を少なくとも30 %含有させる必要があることが判る。 Flame retardancy test Al (OH) 3 30% ignition continues to burn 20% ignites continues to burn 10% igniting situation continues to burn 0% ignition of status gauze after content flame separation disappear ignited without 40% disappear ignition from 50% disappears ignition does not result not to impart flame retardancy it can be seen that it is necessary to include at least 30% Al (OH) 3. 3. 3. 混練温度と射出成形温度の生分解性に及ぼす影響 上記の脂肪族ポリエステル(品名ビオノーレ,品番#10 Kneading temperature and biodegradability Effect the aliphatic polyester of the injection molding temperature (product name Bionolle, Part # 10
20, 昭和高分子) にAl(OH) 3を30 %含有させ、混練温度と射出成形温度を変えて試験片を作り、この試験片を土壌中に100 日間に亙って埋没して生分解性を測定した。 20, Showa Kobunshi) to be contained Al (OH) 3 30%, making the test piece by changing the compounding temperature and the injection molding temperature, buried by biodegradation over the specimen 100 days in soil It was measured sex. なお、ビオノーレ#1020の溶融温度は114 ℃である。 Incidentally, the melting temperature of BIONOLLE # 1020 is 114 ° C.. 処理温度が低い条件(混練温度115 〜120 ℃, 射出温度134 〜144 ℃) ・・・・・・・・・・・・・・・・・・・・重量10%減少 処理温度が高い条件(混練温度125 〜140 ℃, 射出温度160 〜170 ℃) ・・・・・・・・・・・・・・・・・・・・重量2%減少 この結果から、生分解性を損なわないためには成形温度をなるべく低く保つ必要があることが判る。 Treatment temperature is low condition (kneading temperature 115 to 120 ° C., injection temperature 134 to 144 ° C.) ···················· weight 10% reduction treatment temperature is high condition ( kneading temperature 125 to 140 ° C., from the injection temperature 160 to 170 ° C.) ···················· wt 2% reduction this result, in order not to impair the biodegradability it can be seen that have a need to keep the molding temperature as low as possible.

【0017】 [0017]

【発明の効果】本発明の実施により生分解性プラスチックスに難燃性を付与することができるが、そのためにはAl(OH) 3粉末またはMg(OH) 2粉末を30重量%程度加える必要があり、また、成形はプラスチックスの溶融温度になるべく近い温度で行うことが必要である。 Although flame retardancy to the biodegradable plastics by practice of the invention according to the present invention can be applied, in order that the added Al (OH) 3 powder or Mg (OH) about 2 powder 30 wt% required There are, also, molding is required to be carried out at a temperature as close as possible to the melting temperature of the plastics.

フロントページの続き (51)Int.Cl. 6識別記号 庁内整理番号 FI 技術表示箇所 C08K 3/20 KJR C08K 3/20 KJR 3/26 KAD 3/26 KAD // C08L 67/04 LPM C08L 67/04 LPM Front page continued (51) Int.Cl. 6 in identification symbol Agency Docket No. FI art display portion C08K 3/20 KJR C08K 3/20 KJR 3/26 KAD 3/26 KAD // C08L 67/04 LPM C08L 67 / 04 LPM

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 生分解性プラスチックス原料よりなるペレットに水酸化アルミニウム粉末または水酸化マグネシウム粉末の少なくとも一方を添加し成形することを特徴とする難燃性生分解プラスチックスの製造方法。 1. A method for producing a flame-retardant biodegradable plastics, which comprises adding molding at least one biodegradable plastics material consisting of pellets of aluminum hydroxide powder or magnesium hydroxide powder.
  2. 【請求項2】 前記水酸化アルミニウム粉末または水酸化マグネシウム粉末の含有量が30〜50重量%であることを特徴とする請求項1記載の難燃性生分解プラスチックスの製造方法。 2. A method for producing a flame-retardant biodegradable plastics according to claim 1, wherein the content of the aluminum hydroxide powder or magnesium hydroxide powder is 30 to 50 wt%.
JP5864995A 1995-03-17 1995-03-17 Manufacture of nonflammable biodegradable plastic Pending JPH08252823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5864995A JPH08252823A (en) 1995-03-17 1995-03-17 Manufacture of nonflammable biodegradable plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5864995A JPH08252823A (en) 1995-03-17 1995-03-17 Manufacture of nonflammable biodegradable plastic

Publications (1)

Publication Number Publication Date
JPH08252823A true JPH08252823A (en) 1996-10-01

Family

ID=13090438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5864995A Pending JPH08252823A (en) 1995-03-17 1995-03-17 Manufacture of nonflammable biodegradable plastic

Country Status (1)

Country Link
JP (1) JPH08252823A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913426A1 (en) * 1997-10-31 1999-05-06 Ticona GmbH Thermoplastic flame retardant molding compositions containing aluminium hydroxide
EP1609820A4 (en) * 2003-04-02 2006-04-12 Mitsubishi Plastics Inc Injection-molded object
WO2006051640A1 (en) 2004-11-15 2006-05-18 Unitika Ltd. Flame-retardant biodegradable polyester resin composition, process for producing the same, and molded object obtained therefrom
US7439283B2 (en) 2002-09-06 2008-10-21 Mitsubishi Plastics, Inc. Flame retardant resin composition and flame-retardant injection-molding
WO2009153934A1 (en) 2008-06-16 2009-12-23 株式会社Adeka Non-halogen flame-retardant synthetic resin composition
WO2010004799A1 (en) * 2008-07-10 2010-01-14 日本電気株式会社 Polylactic acid resin composition and polylactic acid resin molded body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913426A1 (en) * 1997-10-31 1999-05-06 Ticona GmbH Thermoplastic flame retardant molding compositions containing aluminium hydroxide
KR100954924B1 (en) * 2002-09-06 2010-04-27 미쓰비시 쥬시 가부시끼가이샤 Flame-retardant resin composition and flame-retardant injection molding
US7439283B2 (en) 2002-09-06 2008-10-21 Mitsubishi Plastics, Inc. Flame retardant resin composition and flame-retardant injection-molding
KR101156384B1 (en) * 2003-04-02 2012-06-13 미쓰비시 쥬시 가부시끼가이샤 Injection-molded object
US8349935B2 (en) 2003-04-02 2013-01-08 Mitsubishi Plastics, Inc. Polylactic acid resin article comprising grains of metal-hydroxide particles
EP1609820A4 (en) * 2003-04-02 2006-04-12 Mitsubishi Plastics Inc Injection-molded object
JPWO2006051640A1 (en) * 2004-11-15 2008-05-29 ユニチカ株式会社 Flame retardant biodegradable polyester resin composition, method for producing the same, and molded product obtained therefrom
WO2006051640A1 (en) 2004-11-15 2006-05-18 Unitika Ltd. Flame-retardant biodegradable polyester resin composition, process for producing the same, and molded object obtained therefrom
JP5036318B2 (en) * 2004-11-15 2012-09-26 ユニチカ株式会社 Flame retardant polylactic acid resin composition, method for producing the same, and molded product obtained therefrom
WO2009153934A1 (en) 2008-06-16 2009-12-23 株式会社Adeka Non-halogen flame-retardant synthetic resin composition
WO2010004799A1 (en) * 2008-07-10 2010-01-14 日本電気株式会社 Polylactic acid resin composition and polylactic acid resin molded body
JP5747503B2 (en) * 2008-07-10 2015-07-15 日本電気株式会社 Polylactic acid resin composition and polylactic acid resin molded article
US9550876B2 (en) 2008-07-10 2017-01-24 Nec Corporation Polylactic acid resin composition and polylactic acid resin molded body

Similar Documents

Publication Publication Date Title
JP6222745B2 (en) Aliphatic polyester resin composition and method for producing the same
Murariu et al. PLA composites: From production to properties
Pan et al. Fire retardant mechanism analysis between ammonium polyphosphate and triphenyl phosphate in unsaturated polyester resin
JP5647076B2 (en) Flame retardant thermoplastic resin composition
Chen et al. Preparation of intumescent flame retardant poly (butylene succinate) using fumed silica as synergistic agent
Hamad et al. Polylactic acid blends: The future of green, light and tough
JP5736091B2 (en) Thermoplastic starch and biodegradable polyester / starch composites and their preparation
JP5303237B2 (en) Biomass resource-derived polyester and method for producing the same
Wei et al. Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly (lactic acid)
Gallo et al. Flame retardant biocomposites: Synergism between phosphinate and nanometric metal oxides
KR101051708B1 (en) Yellowing inhibited carbodiimide compositions, stabilizers against hydrolysis and thermoplastic resin compositions
Chrissafis et al. Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly (ε-caprolactone) nanocomposites
KR100954924B1 (en) Flame-retardant resin composition and flame-retardant injection molding
JP3980446B2 (en) Biodegradable resin composition, and filler and molded article for biodegradable resin composition
EP1514897B1 (en) A stabilizer against hydrolysis for an ester-group- containing resin and a thermoplastic resin composition
JP4379019B2 (en) Electrical / electronic parts
US6136905A (en) L-lactic acid polymer composition, molded product and film
Murariu et al. New trends in polylactide (PLA)-based materials:“Green” PLA–Calcium sulfate (nano) composites tailored with flame retardant properties
CN1239610C (en) Biodegradable resin materials and production thereof
Tang et al. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite
Gallo et al. Halogen-free flame retarded poly (butylene terephthalate)(PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate
TWI429679B (en) Preparation method of polylactic acid block copolymer
JP4380654B2 (en) Polyester and method for producing the same
US8349935B2 (en) Polylactic acid resin article comprising grains of metal-hydroxide particles
ES2445337T3 (en) Aliphatic polyester composition and method to produce it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040928

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050315

Free format text: JAPANESE INTERMEDIATE CODE: A02