JPH08252555A - Method for maintaining embedded matter - Google Patents

Method for maintaining embedded matter

Info

Publication number
JPH08252555A
JPH08252555A JP7059235A JP5923595A JPH08252555A JP H08252555 A JPH08252555 A JP H08252555A JP 7059235 A JP7059235 A JP 7059235A JP 5923595 A JP5923595 A JP 5923595A JP H08252555 A JPH08252555 A JP H08252555A
Authority
JP
Japan
Prior art keywords
iron
reducing bacteria
bacteria
buried
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7059235A
Other languages
Japanese (ja)
Other versions
JP3644069B2 (en
Inventor
Sakae Fukunaga
栄 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP05923595A priority Critical patent/JP3644069B2/en
Publication of JPH08252555A publication Critical patent/JPH08252555A/en
Application granted granted Critical
Publication of JP3644069B2 publication Critical patent/JP3644069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: To well maintain a embedded matter embedded underground by spraying tervalent iron compds. around the circumference of the embedded matter, thereby prohibiting or substantially prohibiting the activation of microorganisms, such as sulfuric acid reducing bacteria and methane forming bacteria. CONSTITUTION: The corrosive microorganisms, such as sulfuric acid reducing bacteria, live in some cases on the circumference of the underground embedded matter, i.e., under the ground and the gas generating microorganisms, such as methane forming bacteria, are included in some cases in the embedded matter (including waste). These microorganisms, such as sulfuric acid reducing bacteria and methane forming bacteria are the microorganisms which use org. matter under the ground or in the embedded matter 1 as nutrient sources. The corrosive microorganisms and the gas generating microorganisms are relatively suppressed in some cases if iron reducing bacteria 3 which more preferentially consume the org. matter are preferentially propagated. The iron reducing bacteria 3 can become more dominant than the microorganisms, such as sulfuric acid reducing bacteria and methane forming bacteria, if the tervalent iron compds. which are the nutrient sources exist in a large amt. The tervalent iron compds. 2 are sprayed around the embedded matter to propagate the iron reducing bacteria 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゴミなどの一般廃棄
物,放射性廃棄物等の廃棄物を地中に埋設した廃棄処理
物や地下埋設構造物(ガス管,下水管などの金属配管や
コンクリート管、コンクリート壁等)等の埋設物を保全
する埋設物保全方法に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste product obtained by burying waste such as garbage and radioactive waste in the ground, and underground buried structures (metal pipes such as gas pipes and sewer pipes). Concrete pipes, concrete walls, etc.) related to the method of protecting buried objects

【0002】。[0002]

【従来の技術】ガス管,下水管などの地下埋設構造物は
地中に埋設されている。また、ゴミ等の一般廃棄物は例
えば金属容器、シート等で囲繞され、これが地中に埋設
されて処分されることがあり、このように金属容器、シ
ート等で廃棄物を囲繞しているため廃棄物による地下水
汚染の防止等が図られる。
2. Description of the Related Art Underground buried structures such as gas pipes and sewer pipes are buried underground. Further, general waste such as garbage is surrounded by, for example, a metal container, a sheet, etc., which may be buried in the ground and disposed of. Since the waste is surrounded by such a metal container, a sheet, etc. Prevention of groundwater pollution due to waste, etc. will be achieved.

【0003】放射性廃棄物の場合は、放射性廃棄物をセ
メント等で囲繞して固化し、これを金属容器に入れて地
中に埋設するなど、より慎重な隔離策がとられるものと
予想される。
In the case of radioactive waste, it is expected that more careful isolation measures will be taken, such as surrounding the radioactive waste with cement or the like to solidify it, placing it in a metal container and burying it in the ground. .

【0004】[0004]

【発明が解決しようとする課題】ところで、前述のよう
に廃棄処理物や地下埋設構造物等の埋設物は地中に埋設
されているため、地中の微生物例えば硫酸還元細菌によ
り埋設物が腐食される可能性がある。すなわち、地中に
埋設されている金属はその金属の周囲に生存する硫酸還
元細菌により腐食される。また、その硫酸還元細菌の活
動により発生する硫化水素(H2 S)がその金属の周囲
に生存するイオウ酸化細菌により酸化され、これにより
生成した酸によりコンクリートが腐食される。
By the way, as described above, since the waste products and the buried objects such as underground buried structures are buried in the ground, the buried objects are corroded by microorganisms in the ground, for example, sulfate-reducing bacteria. May be done. That is, the metal buried in the ground is corroded by the sulfate-reducing bacteria living around the metal. Further, hydrogen sulfide (H 2 S) generated by the activity of the sulfate-reducing bacteria is oxidized by the sulfur-oxidizing bacteria living around the metal, and the acid generated by this causes corrosion of concrete.

【0005】さらに、一般廃棄物を地中に埋設して処分
する場合、廃棄物中の有機物から微生物の作用により各
種のガスが発生し、悪影響を及ぼす可能性がある。例え
ばメタン生成細菌によりメタンが発生し、このメタンは
CO2 以上に温室効果が大きく、温暖化の原因となる。
Further, when burying and disposing of general waste in the ground, various gases may be generated from the organic substances in the waste due to the action of microorganisms, which may have an adverse effect. For example, methane is generated by methanogenic bacteria, and this methane has a greater greenhouse effect than CO 2 and causes global warming.

【0006】放射性廃棄物の場合も、前記と同様のメカ
ニズムでガスが発生する可能性があるが、この場合、発
生したガスは地中を動きやすく、放射性核種の移行を早
めたり、ガス自身が放射能を持っていたりして、処分場
の核種閉じこめ性能が低下する。
Even in the case of radioactive waste, gas may be generated by the same mechanism as described above, but in this case, the generated gas easily moves in the ground, accelerating the transfer of radionuclides, and the gas itself. It has radioactivity, which reduces the ability to trap nuclides at the repository.

【0007】このため、微生物の活動を抑えるため等に
殺菌剤を使うことが提案されるが、その殺菌剤が地下水
等に流出して飲料水に混じったりして人の健康への害が
心配されるので採用できない。
For this reason, it is proposed to use a bactericide to suppress the activity of microorganisms, but the bactericide may flow into groundwater or the like and mix with drinking water, which may be harmful to human health. It cannot be adopted because it is done.

【0008】そこで、本発明は、このような事情を考慮
してなされたものであり、その目的は、埋設物を良好に
保全することができる埋設物保全方法を提供することに
ある。
Therefore, the present invention has been made in consideration of such circumstances, and an object thereof is to provide a buried object conservation method capable of satisfactorily maintaining the buried object.

【0009】[0009]

【課題を解決するための手段】本発明の埋設物保全方法
は、地中に埋設した埋設物の周囲に3価の鉄化合物又は
3価の鉄化合物と鉄還元細菌とを散布するものである。
その埋設物に3価の鉄化合物又は3価の鉄化合物と鉄還
元細菌とを混合することが好ましい。その埋設物の周囲
に3価の鉄化合物と3価の鉄還元細菌のいずれか一方又
は両方を混合した緩衝材を配置することが好ましい。
The method for preserving buried objects according to the present invention is to spray a trivalent iron compound or a trivalent iron compound and iron-reducing bacteria around the buried object buried in the ground. .
It is preferable to mix a trivalent iron compound or a trivalent iron compound and an iron-reducing bacterium in the buried object. It is preferable to dispose a buffer material in which one or both of a trivalent iron compound and a trivalent iron-reducing bacterium are mixed around the buried object.

【0010】また、廃棄物を地中に埋設して処分する際
に、廃棄物に3価の鉄化合物又は3価の鉄化合物と鉄還
元細菌とを混合するものである。
When the waste is buried in the ground and disposed of, the waste is mixed with a trivalent iron compound or a trivalent iron compound and an iron-reducing bacterium.

【0011】[0011]

【作用】地中の埋設物の周囲すなわち地中には硫酸還元
細菌等の腐食微生物が生存することがある。また、埋設
物(廃棄物も含む)にはメタン生成細菌等のガス発生微
生物が含まれることがある。それら硫酸還元細菌やメタ
ン生成細菌等の微生物は地中や埋設物中の有機物を基質
(エサ、栄養源)とする微生物で、その有機物をより優
先的に消費する鉄還元細菌を廃棄物処分環境で増殖優先
させれば、腐食微生物やガス発生微生物を相対的に抑え
る(基質を利用できなくする)ことができる。すなわ
ち、硫酸還元細菌やメタン生成細菌等の微生物と鉄還元
細菌とは有機物を奪い合う関係にあり、鉄還元細菌が優
勢となる環境にすればよい。鉄還元細菌は、基質である
3価の鉄化合物が多量にあれば硫酸還元細菌やメタン生
成細菌等の微生物より優勢となる。そこで、3価の鉄化
合物又は鉄還元細菌が不足する場合には鉄還元細菌自体
も混合して、鉄還元細菌を繁殖させ、その結果として硫
酸還元細菌やメタン生成細菌等の微生物の繁殖を抑え
る。つまり、鉄還元細菌という別の微生物により、硫酸
還元細菌やメタン生成細菌等の微生物の栄養である有機
物を消費させ、硫酸還元細菌やメタン生成細菌等の微生
物が栄養不足で繁殖できないようにする。
[Function] Corrosion microorganisms such as sulfate-reducing bacteria may survive around the buried object, that is, in the ground. In addition, buried substances (including wastes) may contain gas-producing microorganisms such as methanogenic bacteria. Microorganisms such as sulfate-reducing bacteria and methanogens are microorganisms that use organic matter in the ground or buried materials as a substrate (feeding and nutrient source), and iron-reducing bacteria that preferentially consume the organic matter are disposed of in a waste disposal environment. If the growth priority is given to, the corrosive microorganisms and the gas generating microorganisms can be relatively suppressed (the substrate cannot be used). That is, microorganisms such as sulfate-reducing bacteria and methanogenic bacteria and iron-reducing bacteria have a relationship of competing for organic substances, and an environment in which iron-reducing bacteria dominate may be set. Iron-reducing bacteria become more dominant than microorganisms such as sulfate-reducing bacteria and methanogenic bacteria when a large amount of trivalent iron compound as a substrate is used. Therefore, when the trivalent iron compound or the iron-reducing bacterium is insufficient, the iron-reducing bacterium itself is also mixed to propagate the iron-reducing bacterium, and as a result, the growth of microorganisms such as sulfate-reducing bacterium and methanogenic bacterium is suppressed. . In other words, another microorganism called an iron-reducing bacterium consumes an organic substance that is a nutrient of a microorganism such as a sulfate-reducing bacterium or a methanogenic bacterium so that the microorganism such as a sulfate-reducing bacterium or a methanogenic bacterium cannot propagate due to insufficient nutrition.

【0012】従って、埋設物の周囲に有機物がある場合
には、埋設物の周囲の地中に3価の鉄化合物又は3価の
鉄化合物と鉄還元細菌とを散布し、またその埋設物に3
価の鉄化合物又は3価の鉄化合物と鉄還元細菌とを混合
し、またその埋設物の周囲に3価の鉄化合物と3価の鉄
還元細菌のいずれか一方又は両方を混合した緩衝材を配
置しかつ、処分する廃棄物に有機物が含まれる場合に
は、廃棄物に3価の鉄化合物又は3価の鉄化合物と鉄還
元細菌とを混合することで、埋設物の周囲、あるいは埋
設物又はその両方が鉄還元細菌の繁殖に有利な環境にな
り、鉄還元細菌が有機物を優先的に消費して、硫酸還元
細菌やメタン生成細菌等の微生物が活動できなく(又は
しにくく)なり、埋設物を良好に保全することが可能と
なる。
Therefore, when there is an organic substance around the buried object, the trivalent iron compound or the trivalent iron compound and the iron-reducing bacteria are scattered in the ground around the buried object, and the buried object is Three
A buffer material in which a trivalent iron compound or a trivalent iron compound is mixed with an iron-reducing bacterium, and the buried material is mixed with either or both of the trivalent iron compound and the trivalent iron-reducing bacterium. If the waste to be disposed and disposed of contains organic matter, the waste may be mixed with a trivalent iron compound or a trivalent iron compound and an iron-reducing bacterium so as to surround the buried object or the buried object. Or both become an environment that is advantageous for the reproduction of iron-reducing bacteria, iron-reducing bacteria preferentially consume organic matter, and microorganisms such as sulfate-reducing bacteria and methanogenic bacteria become inactive (or difficult), It becomes possible to satisfactorily preserve buried objects.

【0013】[0013]

【実施例】以下、本発明の実施例を添付図面に基づいて
詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0014】図1は本発明の第1の実施例を示す図であ
り、(a)は埋設物の周囲の地中に3価の鉄化合物を散
布した例を示す図、(b)は埋設物の周囲の地中に3価
の鉄化合物と鉄還元細菌とを散布した例を示す図、
(c)は埋設物の周囲に3価の鉄化合物を混合した緩衝
材を配置した例を示す図、(d)は埋設物の周囲に3価
の鉄化合物と鉄還元細菌とを混合した緩衝材を配置した
例を示す図である。これらの例はいずれも埋設物の周囲
で硫酸還元細菌等の微生物が活動できなく(又はしにく
く)するものである。
FIG. 1 is a diagram showing a first embodiment of the present invention. (A) is a diagram showing an example in which a trivalent iron compound is dispersed in the ground around the buried object, and (b) is a buried structure. The figure which shows the example which sprayed the trivalent iron compound and the iron reducing bacteria in the ground around the thing,
(C) is a figure which shows the example which arrange | positions the buffer material which mixed the trivalent iron compound around the buried object, (d) is the buffer which mixed the trivalent iron compound and iron reducing bacteria around the buried object It is a figure which shows the example which has arrange | positioned the material. In all of these examples, microorganisms such as sulfate-reducing bacteria are incapable (or difficult) around the buried object.

【0015】図1において、1は埋設物を示し、この埋
設物1は、ゴミなどの一般廃棄物,放射性廃棄物等の廃
棄物を地中に埋設した廃棄処理物や地下埋設構造物(ガ
ス管,下水管などの金属配管やコンクリート管、コンク
リート壁等)等で、具体的には一般廃棄物の場合は金属
容器に入れたり、コンクリートで固めたり、シートを利
用したりして埋設されたもので、放射性廃棄物の場合は
セメント等で固化して金属容器に入れられたものであ
る。
In FIG. 1, reference numeral 1 designates a buried object. This buried object 1 is a waste disposal product obtained by burying general waste such as garbage or waste such as radioactive waste in the ground or an underground buried structure (gas). Metal pipes such as pipes and sewage pipes, concrete pipes, concrete walls, etc., such as metal waste in the case of general waste, solidified with concrete, or sheets, etc. In the case of radioactive waste, it is solidified with cement and placed in a metal container.

【0016】(a)に示す例では埋設物1の周囲の地中
には3価の鉄化合物2が散布されている。3価の鉄化合
物2は、鉄還元細菌の基質(エサ、栄養源)であり、塩
化第二鉄(FeCl3 )や酸化第二鉄(Fe2 3 )な
どがあげられる。また、埋設物1の周囲の地中に、3価
の鉄化合物2と共に鉄還元細菌3を散布してもよい。鉄
還元細菌3は、凍結乾燥処理したものをそのまま使用し
てもよく、また水等に入れて元気な状態にしてから使用
してもよい。鉄還元細菌3を凍結乾燥処理するのは細菌
を保存するためである。
In the example shown in (a), the trivalent iron compound 2 is dispersed in the ground around the buried object 1. The trivalent iron compound 2 is a substrate (feed and nutrient source) for iron-reducing bacteria, and examples thereof include ferric chloride (FeCl 3 ) and ferric oxide (Fe 2 O 3 ). Further, the iron-reducing bacteria 3 may be sprayed together with the trivalent iron compound 2 in the ground around the buried object 1. The iron-reducing bacteria 3 may be used after being freeze-dried as it is, or may be used after being put in water or the like to be in a vigorous state. The reason why the iron-reducing bacteria 3 are freeze-dried is to preserve the bacteria.

【0017】埋設物1の周囲には、地下水の浸入の防止
等を図るためにベントナイトなどの緩衝材を配置するこ
とがある。この場合は、(c)及び(d)に示すよう
に、その緩衝材4,5に3価の鉄化合物2又は3価の鉄
化合物2と鉄還元細菌3とを混合する。
A cushioning material such as bentonite may be arranged around the buried object 1 in order to prevent intrusion of groundwater. In this case, as shown in (c) and (d), the trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacterium 3 are mixed in the buffer materials 4 and 5.

【0018】このように、埋設物1の周囲に3価の鉄化
合物2又は3価の鉄化合物2と鉄還元細菌3とを配する
ことにより、硫酸還元細菌等の腐食微生物(悪影響を及
ぼす微生物)の繁殖を抑制することができる。
By arranging the trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacteria 3 around the buried object 1 in this manner, corrosive microorganisms such as sulfate-reducing bacteria ) Can be suppressed.

【0019】すなわち、地下に埋設された金属はその金
属の回りに硫酸還元細菌が生存するとその細菌により腐
食される。またコンクリートは、その硫酸還元細菌が生
成した硫化水素をイオウ酸化細菌が酸化して生成する酸
により腐食される可能性がある。硫酸還元細菌の基質
(エサ、栄養源)は有機物であり、この有機物をより優
先的に消費するのが鉄還元細菌である。つまり、硫酸還
元細菌と鉄還元細菌とが共存する場合は後者の方が優先
的に有機物を利用する。
That is, the metal buried underground is corroded by the sulfate-reducing bacteria when they survive around the metal. Further, concrete may be corroded by an acid generated by the sulfur-oxidizing bacteria oxidizing hydrogen sulfide generated by the sulfate-reducing bacteria. Substrates of sulfate-reducing bacteria (feed, nutrient source) are organic substances, and iron-reducing bacteria consume these organic substances more preferentially. That is, when sulfate-reducing bacteria and iron-reducing bacteria coexist, the latter preferentially uses the organic matter.

【0020】鉄還元細菌の栄養源は3価の鉄化合物(3
価の鉄)と有機物であり、地中埋設物1の周囲の3価の
鉄濃度が低かったり、あるいは長期間のうちに消費され
て濃度が低くなったりすると鉄還元細菌は繁殖しない。
このため、地中埋設物1の周囲に、3価の鉄化合物2の
み(鉄還元細菌は存在すると仮定)又は3価の鉄化合物
2と鉄還元細菌3を配することで、埋設物1の周囲は鉄
還元細菌3が増殖する環境になり、鉄還元細菌3が3価
の鉄を利用して増殖する。これにより、有機物は鉄還元
細菌3により消費されることになり、硫酸還元細菌の繁
殖が抑えられ、硫酸還元細菌により埋設物1が腐食する
ことが抑制される。
The nutrient source of iron-reducing bacteria is trivalent iron compound (3
Iron) and organic matter. If the concentration of trivalent iron around the underground buried object 1 is low, or if it is consumed over a long period of time and the concentration becomes low, iron-reducing bacteria do not propagate.
Therefore, by arranging only the trivalent iron compound 2 (assuming that iron-reducing bacteria exist) or the trivalent iron compound 2 and the iron-reducing bacteria 3 around the underground buried object 1, The environment becomes an environment in which the iron-reducing bacteria 3 proliferate, and the iron-reducing bacteria 3 proliferate by utilizing trivalent iron. As a result, the organic matter is consumed by the iron-reducing bacteria 3, the growth of the sulfate-reducing bacteria is suppressed, and the buried substance 1 is prevented from corroding by the sulfate-reducing bacteria.

【0021】図2は本発明の第2の実施例を示す図であ
り、この実施例は一般廃棄物(ゴミ)をシートを利用し
て処理する例である。図示するように、シート6を敷い
た上に廃棄物(ゴミ)7を埋め立てていくが、このとき
廃棄物7の層の隙間に3価の鉄化合物2又は3価の鉄化
合物2と鉄還元細菌3との混合物、または、それを土に
混ぜたものを入れるようにする。実際には、ある程度ゴ
ミを埋めたあと、この上に3価の鉄化合物2等を被せ、
更にゴミを埋める。
FIG. 2 is a diagram showing a second embodiment of the present invention, which is an example of treating general waste (dust) using a sheet. As shown in the figure, the waste (garbage) 7 is laid on the sheet 6 and at this time, the trivalent iron compound 2 or the trivalent iron compound 2 and the iron reduction are filled in the gap between the layers of the waste 7. Put the mixture with Bacteria 3 or a mixture of it with soil. Actually, after filling the trash to some extent, cover it with trivalent iron compound 2 etc.,
Fill the garbage further.

【0022】図3は本発明の第2の他の実施例を示す図
であり、この実施例は放射性廃棄物を処理する例で、図
示するように、廃棄物8を固化剤例えばセメント9で固
化しこのセメント9中に3価の鉄化合物2又は3価の鉄
化合物2と鉄還元細菌3とを混合し、これを金属容器1
0内に入れる。
FIG. 3 is a view showing a second other embodiment of the present invention. This embodiment is an example of treating radioactive waste. As shown, the waste 8 is treated with a solidifying agent such as cement 9. The cement 9 is solidified, and the trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacteria 3 are mixed in the cement 9, and the mixture is placed in the metal container 1
Put in 0.

【0023】このように、廃棄物8に3価の鉄化合物2
又は3価の鉄化合物2と鉄還元細菌3とを混合すること
により、メタン生成細菌等のガス発生微生物の繁殖を抑
制することができる。
In this way, the waste 8 contains trivalent iron compounds 2
Alternatively, by mixing the trivalent iron compound 2 and the iron-reducing bacteria 3, it is possible to suppress the growth of gas-producing microorganisms such as methanogenic bacteria.

【0024】すなわち、廃棄物7,8中にガス発生微生
物例えばメタン生成細菌が生存するとその細菌が廃棄物
7,8中の有機物を利用してメタン等のガスが発生す
る。その結果、大気へのメタンの放出や放射性核種の拡
散が生じる可能性がある。メタン生成細菌の基質(エ
サ、栄養源)も有機物であり、この有機物をより優先的
に消費するのが前述と同様に鉄還元細菌である。つま
り、メタン生成細菌の代謝(反応)は例えば次のように
なる。
That is, when gas-producing microorganisms such as methanogenic bacteria survive in the wastes 7 and 8, the bacteria utilize the organic substances in the wastes 7 and 8 to generate gases such as methane. As a result, the release of methane into the atmosphere and the diffusion of radionuclides may occur. Substrates (bait and nutrients) of methanogenic bacteria are also organic substances, and iron-reducing bacteria consume the organic substances more preferentially as described above. In other words, the metabolism (reaction) of methanogenic bacteria is as follows, for example.

【0025】CH3 COO- +H+ →CH4 +CO また、鉄還元細菌の代謝(反応)は例えば次のようにな
る。
CH 3 COO + H + → CH 4 + CO 2 The metabolism (reaction) of iron-reducing bacteria is as follows, for example.

【0026】CHCOO- +8Fe(III) +4H2
O→2HCO3 - +8Fe(II)+9H+ この場合、両
方の細菌がCH3 COO- を奪い合うことになる。3価
の鉄(Fe(III))がなければ、メタン生成細菌が優勢で
あるが、Fe(III) が十分あれば、鉄還元細菌が優勢と
なる。このため、廃棄物7,8に、3価の鉄の化合物2
のみ(鉄還元細菌は存在すると仮定)又は3価の鉄化合
物2と鉄還元細菌3を混合することで、廃棄物7,8は
鉄還元細菌3が増殖する環境になり、鉄還元細菌3が優
勢となって鉄還元細菌3が有機物を消費して増殖する。
これにより、メタン生成細菌などガス発生微生物の繁殖
が抑えられ、大気へのメタンの放出や放射性核種の拡散
が生じる可能性が極めて少なくなる。
CH 3 COO + 8Fe (III) + 4H 2
O → 2HCO 3 + 8Fe (II) + 9H + In this case, both bacteria compete for CH 3 COO . Without trivalent iron (Fe (III)), methanogenic bacteria dominate, but with sufficient Fe (III), iron-reducing bacteria dominate. For this reason, the wastes 7 and 8 contain trivalent iron compounds 2
Only (assuming that iron-reducing bacteria are present) or by mixing the trivalent iron compound 2 and the iron-reducing bacteria 3, the wastes 7 and 8 become an environment in which the iron-reducing bacteria 3 grow, and the iron-reducing bacteria 3 become The iron-reducing bacteria 3 become dominant and consume organic matter to grow.
As a result, the growth of gas-producing microorganisms such as methanogenic bacteria is suppressed, and the possibility that methane will be released into the atmosphere and radionuclides will be diffused is extremely reduced.

【0027】図4は本発明の第3の実施例を示す図であ
り、この実施例は、図示するように、埋設物例えば廃棄
物11に3価の鉄化合物2等を混合すると共に、その廃
棄物11を埋設した地中の周囲に3価の鉄化合物2等を
散布する例である。廃棄物11を固化する固化剤例えば
セメント9の中に3価の鉄化合物2又は3価の鉄化合物
2と鉄還元細菌3とを混合し、これを金属容器12内に
収容する。この金属容器12を埋設する地中の周囲に3
価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3と
を散布する。
FIG. 4 is a diagram showing a third embodiment of the present invention. In this embodiment, as shown in the figure, the buried material, for example, the waste 11 is mixed with the trivalent iron compound 2 and the like. In this example, the trivalent iron compound 2 and the like are scattered around the ground where the waste 11 is buried. A trivalent iron compound 2 or a trivalent iron compound 2 and an iron-reducing bacterium 3 are mixed in a solidifying agent for solidifying the waste 11, for example, cement 9, and the mixture is housed in a metal container 12. 3 around the underground where this metal container 12 is buried
The ferrous iron compound 2 or trivalent iron compound 2 and the iron-reducing bacteria 3 are sprayed.

【0028】このように、廃棄物11に3価の鉄化合物
2又は3価の鉄化合物2と鉄還元細菌3とを混合すると
共に、埋設物11の周囲に3価の鉄化合物2又は3価の
鉄化合物2と鉄還元細菌3とを配することにより、硫酸
還元細菌やメタン生成細菌等の悪影響を及ぼす微生物の
繁殖が抑制される。
In this way, the waste 11 is mixed with the trivalent iron compound 2 or the trivalent iron compound 2 and the iron-reducing bacteria 3, and the waste 11 is surrounded by the trivalent iron compound 2 or the trivalent iron compound 2. By arranging the iron compound 2 and the iron-reducing bacterium 3 in the above, the reproduction of microorganisms such as sulfate-reducing bacteria and methanogenic bacteria, which have an adverse effect, is suppressed.

【0029】なお、本発明の効果を実証するため、次の
表の組成の液を容量70mlのバイアル瓶に入れ、ヘッド
スペースをN2 で置換して35℃で培養し硫酸還元及びメ
タン生成の状況を比較した。
In order to demonstrate the effect of the present invention, a solution having the composition shown in the following table was placed in a vial having a volume of 70 ml, the headspace was replaced with N 2 and the mixture was incubated at 35 ° C. to reduce sulfuric acid and methane. The situation was compared.

【0030】 バイアル瓶番号 A B C D ・硫酸還元細菌と鉄還元細菌を含む汚泥 1g 1g (SS21.5g/l,VSS17.1g/l) ・メタン生成細菌と鉄還元細菌を含む汚泥 1g 1g (SS21.5g/l,VSS17.1g/l) ・酢酸ナトリウム3水温 3g/ 100ml液 2ml 2ml 2ml 2ml ・無機塩培地 20ml 20ml 20ml 20ml ・FeCl 3 ・6H 2 O − 2g − 2g その結果、1日後の培養液(2価鉄を含む)の黒変(硫
酸還元細菌による硫化水素が発生すれば、これと2価鉄
が反応して黒色の硫化鉄ができる)は、3価の鉄化合物
(FeCl3 ・6H2 O)を添加しないAでは明らかに
認められたが、3価の鉄化合物を添加したBではごく僅
かな黒変のみであった。これにより、3価の鉄化合物は
硫酸還元細菌を抑える(硫酸還元細菌の活動や繁殖を抑
制する)ことが定性的に確認できた。また、1日後のヘ
ッドスペース中のメタン含有率は3価の鉄化合物(Fe
Cl3 ・6H2 O)を添加しないCでは 2.7%、3価の
鉄化合物を添加したDでは 1.5%であり、3価の鉄の添
加がメタン発生をある程度抑えることがわかった。
[0030]Vial bottle number A B C D ・ Sludge containing sulfate-reducing bacteria and iron-reducing bacteria 1g 1g (SS21.5g / l, VSS17.1g / l) ・ Sludge containing methanogenic bacteria and iron-reducing bacteria 1g 1g (SS21.5g / l, VSS 17.1g / l) l) ・ Sodium acetate 3 water temperature 3 g / 100 ml solution 2 ml 2 ml 2 ml 2 ml ・ Inorganic salt medium 20 ml 20 ml 20 ml 20 ml ・ FeCl 3 · 6H 2 O-2g-2g As a result, the blackening (sulfuric acid) of the culture solution (including divalent iron) after 1 day
If hydrogen sulfide is generated by acid-reducing bacteria, this and divalent iron
React to produce black iron sulfide) is a trivalent iron compound
(FeCl3・ 6H2Obviously in A without O)
Although it was recognized, it was very small in B containing a trivalent iron compound.
It was only black kana. As a result, the trivalent iron compound
Suppress sulfate-reducing bacteria (suppress the activity and reproduction of sulfate-reducing bacteria
It was confirmed qualitatively. Also, one day later
The methane content in the dead space is a trivalent iron compound (Fe
Cl3・ 6H2O) is not added in C, 2.7% and trivalent
In the case of adding iron compound, D is 1.5%.
It was found that addition suppresses methane generation to some extent.

【0031】従って、埋設物1の周囲の地中に有機物又
は硫酸還元細菌やメタン生成細菌等の微生物がいる場合
には、その地中に3価の鉄化合物2又は3価の鉄化合物
2と鉄還元細菌3とを散布する。また、埋設物7,8に
有機物又は硫酸還元細菌やメタン生成細菌等の微生物が
含まれる場合には、埋設物7,8に3価の鉄化合物2又
は3価の鉄化合物2と鉄還元細菌3とを混合する。さら
に、埋設物11の周囲の地中及び埋設物11の両方に3
価の鉄化合物2又は3価の鉄化合物2と鉄還元細菌3と
を配する。これにより、埋設物の周囲、あるいは埋設物
又はその両方が鉄還元細菌の繁殖に有利な環境になり、
鉄還元細菌が有機物を優先的に消費して、硫酸還元細菌
やメタン生成細菌等の微生物が活動できなく(又はしに
くく)なる。このように、殺菌剤と異なり人の健康への
害がなく(鉄が流出しても除去技術がある)、硫酸還元
細菌やメタン生成細菌等の悪影響を及ぼす微生物の活動
や繁殖を抑制することができ、埋設物を良好に保全する
ことができる。また、3価の鉄化合物2と共に鉄還元細
菌3を配することにより、鉄還元細菌3が早く繁殖し
て、その効果が早くあらわれる。
Therefore, when there are organic substances or microorganisms such as sulfate-reducing bacteria and methanogenic bacteria in the ground around the buried object 1, the trivalent iron compound 2 or the trivalent iron compound 2 is present in the ground. Spray with iron-reducing bacteria 3. When the buried substances 7, 8 contain organic substances or microorganisms such as sulfate-reducing bacteria and methanogenic bacteria, the buried substances 7, 8 contain trivalent iron compounds 2 or trivalent iron compounds 2 and iron-reducing bacteria. Mix with 3. In addition, 3 both in the ground around the buried object 11 and in the buried object 11.
A ferrous iron compound 2 or a trivalent iron compound 2 and an iron-reducing bacterium 3 are placed. As a result, the environment around the buried object, or the buried object, or both becomes an environment advantageous for the reproduction of iron-reducing bacteria,
Iron-reducing bacteria preferentially consume organic substances, so that microorganisms such as sulfate-reducing bacteria and methanogenic bacteria become inactive (or difficult). In this way, unlike fungicides, there is no harm to human health (there is technology to remove iron even if it leaks out), and the activity and reproduction of microorganisms that adversely affect sulfate-reducing bacteria, methanogenic bacteria, etc. are suppressed. The buried object can be well preserved. Further, by arranging the iron-reducing bacterium 3 together with the trivalent iron compound 2, the iron-reducing bacterium 3 proliferates quickly and its effect appears quickly.

【0032】[0032]

【発明の効果】以上要するに本発明によれば、埋設物を
良好に保全できるという優れた効果を奏する。
In summary, according to the present invention, the excellent effect that the buried object can be satisfactorily maintained can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す図である。FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】本発明の第2の他の実施例を示す図である。FIG. 3 is a diagram showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す図である。FIG. 4 is a diagram showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 埋設物 2 3価の鉄化合物 3 鉄還元細菌 1 buried material 2 3 valent iron compound 3 iron reducing bacteria

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 地中に埋設した埋設物の周囲に3価の鉄
化合物を散布することを特徴とする埋設物保全方法。
1. A method of preserving buried objects, characterized by spraying a trivalent iron compound around the buried object buried in the ground.
【請求項2】 地中に埋設した埋設物の周囲に3価の鉄
化合物と鉄還元細菌とを散布することを特徴とする埋設
物保全方法。
2. A method for preserving a buried object, which comprises spraying a trivalent iron compound and iron-reducing bacteria around a buried object buried in the ground.
【請求項3】 前記埋設物に3価の鉄化合物を混合する
請求項1又は2記載の埋設物保全方法。
3. The buried object preservation method according to claim 1, wherein a trivalent iron compound is mixed with the buried object.
【請求項4】 前記埋設物に3価の鉄化合物と鉄還元細
菌とを混合する請求項1又は2記載の埋設物保全方法。
4. The method for preserving buried objects according to claim 1, wherein the buried object is mixed with a trivalent iron compound and iron-reducing bacteria.
【請求項5】 前記埋設物の周囲に3価の鉄化合物と3
価の鉄還元細菌のいずれか一方又は両方を混合した緩衝
材を配置した請求項1〜4記載の埋設物保全方法。
5. A trivalent iron compound and 3 around the buried object.
The method for preserving buried substances according to claim 1, wherein a buffer material containing either one or both of the high-valent iron-reducing bacteria is arranged.
【請求項6】 廃棄物を地中に埋設して処分する際に、
廃棄物に3価の鉄化合物を混合することを特徴とする埋
設物保全方法。
6. When the waste is buried underground and disposed of,
A method for preserving buried substances, characterized in that waste is mixed with a trivalent iron compound.
【請求項7】 廃棄物を地中に埋設して処分する際に、
廃棄物に3価の鉄化合物と鉄還元細菌とを混合すること
を特徴とする埋設物保全方法。
7. When the waste is buried underground and disposed of,
A method for preserving buried substances, which comprises mixing a waste with a trivalent iron compound and iron-reducing bacteria.
JP05923595A 1995-03-17 1995-03-17 Method for maintaining buried objects Expired - Fee Related JP3644069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05923595A JP3644069B2 (en) 1995-03-17 1995-03-17 Method for maintaining buried objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05923595A JP3644069B2 (en) 1995-03-17 1995-03-17 Method for maintaining buried objects

Publications (2)

Publication Number Publication Date
JPH08252555A true JPH08252555A (en) 1996-10-01
JP3644069B2 JP3644069B2 (en) 2005-04-27

Family

ID=13107529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05923595A Expired - Fee Related JP3644069B2 (en) 1995-03-17 1995-03-17 Method for maintaining buried objects

Country Status (1)

Country Link
JP (1) JP3644069B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113788A (en) * 2009-11-26 2011-06-09 Osaka Prefecture Univ Electrode catalyst and fuel cell employing the same
JP2020007626A (en) * 2018-07-11 2020-01-16 Tnk水道コンサルタント株式会社 Sulfuric acid corrosion resistant concrete-based pipe, sulfuric acid corrosion prevention method of concrete-based pipe and corrosion prevention method of steel bar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113788A (en) * 2009-11-26 2011-06-09 Osaka Prefecture Univ Electrode catalyst and fuel cell employing the same
JP2020007626A (en) * 2018-07-11 2020-01-16 Tnk水道コンサルタント株式会社 Sulfuric acid corrosion resistant concrete-based pipe, sulfuric acid corrosion prevention method of concrete-based pipe and corrosion prevention method of steel bar

Also Published As

Publication number Publication date
JP3644069B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
US6303367B1 (en) Method for purifying matter contaminated with halogenated organic compounds
Pepper The soil health-human health nexus
Huang et al. Carbon and N conservation during composting: A review
JP4554833B2 (en) Apparatus and method for removing nitrate nitrogen in waste water
JPH08252555A (en) Method for maintaining embedded matter
KR20190033890A (en) Microbial agent for simultaneous degradation of methane and odor and the method for simultaneous degradation of methane and odor using the same
Stotzky Soil biochemistry, volume 10
McCabe The potential significance of microbial activity in radioactive waste disposal
Kogbara Encouraging microbial activity in cementitious systems: an emerging frontier in contaminated soil treatment
Stevens Interaction of mass transfer and inhibition in biofilms
US20160076057A1 (en) Inhibition of methane and hydrogen sulfide production in anaerobic digester animal farms, landfills, sediments and sewer systems
Kamboj et al. Leachate disposal induced groundwater pollution: A threat to drinking water scarcity and its management
Obire et al. Bacterial community of leachate from a waste-dump and an adjacent stream
Mbakwe et al. Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment
González‐Blanco et al. Nitrite as oxidizing power for p‐cresol removal using a denitrifying sludge: kinetic study
Uemoto et al. Nitrogen removal with a dual bag system capable of simultaneous nitrification and denitrification
JP2007090245A (en) Method for purifying soil polluted by petroleum-based hydrocarbon
JP2013245118A (en) Concrete block for cleaning water environment
Herman et al. Consequences of biogeochemical cycles gone wild
JP2013151384A (en) Hydrogen production method
JP2022032195A (en) Waste landfill method
JPH09155387A (en) Proliferation fixing material for denitrified bacteria
Lee et al. Differential mode of denitrification by pseudomonas sp. KY1 using molasses as a carbon source
Ivanov et al. Biogeochemical Basis of Construction Bioprocesses
JP2001074890A (en) Method for preventing pressure rising of radioactive waste-disposal facilities

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees