JP2013151384A - Hydrogen production method - Google Patents

Hydrogen production method Download PDF

Info

Publication number
JP2013151384A
JP2013151384A JP2012012613A JP2012012613A JP2013151384A JP 2013151384 A JP2013151384 A JP 2013151384A JP 2012012613 A JP2012012613 A JP 2012012613A JP 2012012613 A JP2012012613 A JP 2012012613A JP 2013151384 A JP2013151384 A JP 2013151384A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen sulfide
generation
zinc oxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012012613A
Other languages
Japanese (ja)
Inventor
Toshihiro Hattori
敏裕 服部
Soichiro Taniguchi
壯一郎 谷口
Toshihiro Takeshita
俊宏 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEC CO Ltd
Aisin Takaoka Co Ltd
Original Assignee
KEC CO Ltd
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEC CO Ltd, Aisin Takaoka Co Ltd filed Critical KEC CO Ltd
Priority to JP2012012613A priority Critical patent/JP2013151384A/en
Publication of JP2013151384A publication Critical patent/JP2013151384A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen production method for producing hydrogen gas using an inorganic/organic mixed waste material containing an inorganic component capable of serving as a sulfur supply source, while inhibiting or suppressing the generation of hydrogen sulfide gas.SOLUTION: Hydrogen is generated under anaerobic conditions while inhibiting or suppressing the generation of hydrogen sulfide by putting zinc oxide in an environment in which (1) a treatment object containing at least a sulfur source, an organic component and water and (2) an anaerobic microorganism capable of generating hydrogen sulfide under anaerobic conditions exist at the same time. The zinc oxide is preferably provided in the form of dissolved dust. The treatment object is preferably a waste gypsum board, effluent sludge, sewage sludge or livestock excreta.

Description

本発明は、硫化水素(HS)ガスの発生を阻止又は抑制しつつ水素ガス(H)を発生させる水素生成方法に関する。 The present invention relates to a hydrogen generation method for generating hydrogen gas (H 2 ) while preventing or suppressing generation of hydrogen sulfide (H 2 S) gas.

バイオマス等の有機資源に対し微生物を作用させて水素ガスを発生させる方法が知られている。例えば特許文献1(特開平11−130402号公報)は、適当な大きさにカットした採取植物を容器に入れ、そのままで又は水に浸漬して暗条件下または明条件下に所定時間保持することにより、植物に付着していた水素生成細菌の作用によって水素を製造する方法を開示する。また、特許文献2(特開2007−159534号公報)は、食品残渣等の廃棄バイオマスを原料とし、複合嫌気性微生物群の存在下に75℃前後の温度で前記原料を嫌気性条件で加熱することにより、水素醗酵を利用して水素を生産する方法を開示する。   A method of generating hydrogen gas by causing microorganisms to act on organic resources such as biomass is known. For example, in Patent Document 1 (Japanese Patent Laid-Open No. 11-130402), a harvested plant cut to an appropriate size is placed in a container and left as it is or immersed in water and kept under dark or light conditions for a predetermined time. Discloses a method for producing hydrogen by the action of hydrogen-producing bacteria attached to the plant. Patent Document 2 (Japanese Patent Laid-Open No. 2007-159534) uses waste biomass such as food residue as a raw material, and heats the raw material under anaerobic conditions at a temperature of about 75 ° C. in the presence of a complex anaerobic microorganism group. Thus, a method for producing hydrogen using hydrogen fermentation is disclosed.

しかしながら、上記いずれの水素生成方法も有機物が主体の資源(又は廃棄有機資源)を活用するものであり、無機成分が主体の無機/有機混合廃棄物の利用を想定したものではない。   However, any of the hydrogen generation methods described above utilize resources (or waste organic resources) mainly composed of organic substances, and are not intended to use inorganic / organic mixed wastes mainly composed of inorganic components.

他方で、無機成分の含有量が多い無機/有機混合廃棄物の再資源化が望まれている。例えば石膏ボードの廃材(廃石膏ボード)は、硫酸カルシウム(CaSO)主体の石膏片をデンプン系の糊で接着した無機/有機混合廃棄物と言えるが、埋立て処分場に投棄された廃石膏ボードから有毒な硫化水素が発生する可能性が指摘されている。廃石膏ボードから硫化水素が発生するメカニズムについては諸説あるが、一説によると、嫌気性微生物が廃石膏ボードのデンプン糊(微生物の栄養源となる)を分解する際に、硫酸カルシウム(イオウ源にあたる)に由来するイオウを取り込んで硫化水素を生じさせる、とのことである。それ故、かかる無機/有機混合廃棄物を用いて、硫化水素のような有毒ガスではなく、もっと有用な資源(例えば水素ガス)を取り出せないか模索されている。 On the other hand, recycling of inorganic / organic mixed waste with a high content of inorganic components is desired. For example, waste gypsum board (waste gypsum board) is an inorganic / organic mixed waste in which a piece of gypsum mainly composed of calcium sulfate (CaSO 4 ) is bonded with starch paste, but waste gypsum dumped in a landfill site It has been pointed out that toxic hydrogen sulfide may be generated from the board. Although there are various theories about the mechanism of hydrogen sulfide generation from waste gypsum board, according to one theory, when anaerobic microorganisms decompose starch paste (which is a nutrient source for microorganisms) on waste gypsum board, it is the calcium sulfate (a source of sulfur) ) To produce hydrogen sulfide. Therefore, it is sought to use such a mixed inorganic / organic waste to extract a more useful resource (for example, hydrogen gas) instead of a toxic gas such as hydrogen sulfide.

なお、本願との関連性につき疑義が生じるかもしれない2つの特許文献について予め説明(釈明)する。先ず、特許文献3(特開2002−282693号公報)は、鋳鉄用溶解炉から廃出・回収される溶解ダストをセメントで固めて粒状化したものを空気浄化剤(より具体的には、脱硫化水素剤)として用い得ることを開示する。但し、文献3の技術は、処理対象となる気相系中に既に存在する悪臭成分(即ちHS分子)の浄化または脱硫化水素を図るものであり、固形状態のイオウ源からの硫化水素ガスの発生(または遊離)そのものを抑制する技術ではない。次に、特許文献4(特開2004−41998号公報)は、「被処理物からの硫化水素の除去と発生防止を確実に行うための硫化水素除去剤を用いた硫化水素の除去・抑制方法と装置を提供する」ことをその目的とする(文献4の要約/課題欄参照)。但し、文献4で使用する硫化水素除去剤は、酸化鉄、又は、酸化鉄を含有する金属酸化物を主成分としたものに過ぎず、本願発明とは異なる。 In addition, two patent documents that may have doubts about the relevance with the present application will be explained (explained) in advance. First, Patent Document 3 (Japanese Patent Application Laid-Open No. 2002-282893) discloses an air purifying agent (more specifically, desulfurization) obtained by solidifying and dissolving molten dust discharged and recovered from a cast iron melting furnace with cement. It can be used as a hydrogenation agent. However, the technique of Document 3 is intended to purify or desulfurize malodorous components (that is, H 2 S molecules) already present in the gas phase system to be treated. Hydrogen sulfide from a solid sulfur source It is not a technique for suppressing the generation (or release) of gas itself. Next, Patent Document 4 (Japanese Patent Application Laid-Open No. 2004-41998) discloses “a method for removing and suppressing hydrogen sulfide using a hydrogen sulfide removing agent for surely removing hydrogen sulfide from an object to be processed and preventing generation thereof”. The purpose is to provide a device (see Summary / Problem column of Reference 4). However, the hydrogen sulfide removing agent used in Document 4 is merely one containing iron oxide or a metal oxide containing iron oxide as a main component, and is different from the present invention.

特開平11−130402号公報Japanese Patent Laid-Open No. 11-130402 特開2007−159534号公報JP 2007-159534 A 特開2002−282693号公報JP 2002-282893 A 特開2004−041998号公報Japanese Patent Laid-Open No. 2004-041998

本発明の目的は、イオウの供給源となり得る無機成分を含んだ無機/有機混合廃棄物を用いて、硫化水素ガスの発生を阻止又は抑制しつつ水素ガスを発生させる水素生成方法を提供することにある。   An object of the present invention is to provide a hydrogen generation method for generating hydrogen gas while preventing or suppressing generation of hydrogen sulfide gas by using an inorganic / organic mixed waste containing an inorganic component that can be a supply source of sulfur. It is in.

本発明の水素生成方法は、
(イ)イオウ源、有機成分および水分を少なくとも含んでなる処理対象物、並びに、
(ロ)嫌気性条件の下で硫化水素を発生させ得る嫌気性微生物、が併存する環境中に、酸化亜鉛を投入することにより、嫌気性条件の下で硫化水素の発生を阻止又は抑制しつつ水素を発生させることを特徴とする。
The hydrogen generation method of the present invention comprises:
(A) A processing object comprising at least a sulfur source, an organic component and moisture, and
(B) By introducing zinc oxide into an environment where anaerobic microorganisms capable of generating hydrogen sulfide under anaerobic conditions coexist, while preventing or suppressing the generation of hydrogen sulfide under anaerobic conditions It is characterized by generating hydrogen.

本発明の水素生成方法によれば、イオウの供給源となり得る無機成分を含んだ無機/有機混合廃棄物を用いて、硫化水素ガスの発生を阻止又は抑制しつつ水素ガスを発生させることができる。   According to the hydrogen generation method of the present invention, hydrogen gas can be generated while preventing or suppressing the generation of hydrogen sulfide gas by using an inorganic / organic mixed waste containing an inorganic component that can be a sulfur supply source. .

水素ガス発生実験の装置および手順の概略を示す図。The figure which shows the outline of the apparatus and procedure of hydrogen gas generation | occurrence | production experiment. 実施例1〜6及び比較例5,6の実験結果を示し、(a)は酸化亜鉛添加量のグラフ、(b)は硫化水素発生量のグラフ、(c)は水素発生量のグラフ。The experimental result of Examples 1-6 and Comparative Examples 5 and 6 is shown, (a) is a graph of zinc oxide addition amount, (b) is a graph of hydrogen sulfide generation amount, (c) is a graph of hydrogen generation amount. 比較例1〜4の実験結果を示し、(a)は硫化水素発生量のグラフ、(b)は水素発生量のグラフ。The experimental result of Comparative Examples 1-4 is shown, (a) is a graph of hydrogen sulfide generation amount, (b) is a graph of hydrogen generation amount. 硫化物測定実験のための装置および手順の概略を示す図。The figure which shows the outline of the apparatus and procedure for a sulfide measurement experiment. 測定された硫化物量のグラフ。Graph of measured sulfide content.

以下、本発明を実施する際の好ましい形態について説明する。
本発明の水素生成方法は、
(イ)イオウ源、有機成分および水分を少なくとも含んでなる処理対象物、並びに、
(ロ)嫌気性条件の下で硫化水素を発生させ得る嫌気性微生物、が併存する環境中に、酸化亜鉛を投入することにより、嫌気性条件の下で実行される。
Hereinafter, preferred modes for carrying out the present invention will be described.
The hydrogen generation method of the present invention comprises:
(A) A processing object comprising at least a sulfur source, an organic component and moisture, and
(B) It is carried out under anaerobic conditions by introducing zinc oxide into an environment where anaerobic microorganisms capable of generating hydrogen sulfide under anaerobic conditions coexist.

ここで、(イ)の「イオウ源、有機成分および水分を少なくとも含んでなる処理対象物」とは、例えば、廃石膏ボード、排水汚泥、下水汚泥および家畜糞尿からなる群から選択されるいずれか一種であり、典型的には、無機/有機混合廃棄物である。中でも(廃)石膏ボードは、硫酸カルシウム(CaSO)が主体となって形成された板状の石膏片を専用の板紙(「石膏ボード原紙」と呼ばれる)で包むと共に糊(例えばデンプン糊)で接着してなるものである。それ故、(廃)石膏ボードにあっては、石膏がイオウ源となり、糊が有機成分の源となる。また、廃材として屋外に晒されることで雨水等を吸収し水分を持つにいたる。なお、デンプン糊に含まれる有機成分としては、デンプン、セルロース、パラフィン、ワックス等があげられる。「排水汚泥」、「下水汚泥」および「家畜糞尿」についても同様に、イオウ源、有機成分および水分を含むものであることは言うまでもない。 Here, the “treatment object comprising at least a sulfur source, an organic component and moisture” in (a) is any one selected from the group consisting of waste gypsum board, wastewater sludge, sewage sludge, and livestock manure, for example. One type, typically inorganic / organic mixed waste. In particular, (waste) gypsum board wraps plastered gypsum pieces mainly made of calcium sulfate (CaSO 4 ) with special paperboard (called “gypsum board base paper”) and paste (eg starch paste) It is made by bonding. Therefore, in (waste) gypsum board, gypsum is a source of sulfur and glue is a source of organic components. In addition, when exposed to the outdoors as a waste material, it absorbs rainwater and the like and has moisture. Examples of organic components contained in starch paste include starch, cellulose, paraffin, and wax. It goes without saying that “drainage sludge”, “sewage sludge” and “livestock manure” similarly contain sulfur sources, organic components and moisture.

(ロ)の「嫌気性条件の下で硫化水素を発生させ得る嫌気性微生物」は、例えば硫酸還元菌(硫酸塩還元細菌ともいう)であり、これは自然界に生息する微生物である。例えば処理対象物を湿潤状態で放置することにより、処理対象物中で繁殖させることができる。   (B) “Anaerobic microorganisms capable of generating hydrogen sulfide under anaerobic conditions” are, for example, sulfate-reducing bacteria (also referred to as sulfate-reducing bacteria), which are microorganisms that inhabit the natural world. For example, by leaving the treatment object in a wet state, it can be propagated in the treatment object.

上記(イ)及び(ロ)が併存する環境中には酸化亜鉛が投入される。この酸化亜鉛としては、工業製品として市販されている高純度の酸化亜鉛(ZnO)を用いることができるが、使用する酸化亜鉛が、鋳物工場等の鋳鉄用溶解炉から排出される溶解ダストの形態で提供されてもよい。かかる溶解ダストは各種金属酸化物の混合物であり、一般的には廃棄物と見なされているが、酸化亜鉛を少なからず含有することから、本発明では、嫌気性微生物による水素発生に関与する酸化亜鉛の供給源として利用することができる。   Zinc oxide is introduced into the environment in which the above (a) and (b) coexist. As this zinc oxide, high-purity zinc oxide (ZnO) marketed as an industrial product can be used, but the zinc oxide used is in the form of dissolved dust discharged from a melting furnace for cast iron such as a foundry. May be provided in Such dissolved dust is a mixture of various metal oxides and is generally regarded as waste. However, since it contains not a few zinc oxides, in the present invention, the oxidation involved in hydrogen generation by anaerobic microorganisms. It can be used as a source of zinc.

酸化亜鉛の使用量としては、処理対象物50質量部に対して酸化亜鉛を0.03質量部以上(より好ましくは、0.05質量部以上)使用することが好ましい。酸化亜鉛の使用量を0.03質量部以上とすることにより、硫化水素の発生を低レベルに抑制でき、酸化亜鉛の使用量を0.05質量部以上とすることにより、硫化水素の発生をほぼ防止することができる。酸化亜鉛使用量の上限は特に無いが、費用対効果の点から、処理対象物50質量部に対して酸化亜鉛2.0質量部を上限とするのが適切であろう。   The amount of zinc oxide used is preferably 0.03 parts by mass or more (more preferably 0.05 parts by mass or more) of zinc oxide with respect to 50 parts by mass of the object to be processed. By making the amount of zinc oxide used 0.03 parts by mass or more, the generation of hydrogen sulfide can be suppressed to a low level, and by making the amount of zinc oxide used 0.05 parts by mass or more, the generation of hydrogen sulfide can be suppressed. Almost can be prevented. There is no particular upper limit on the amount of zinc oxide used, but from the viewpoint of cost effectiveness, it is appropriate that the upper limit is 2.0 parts by mass of zinc oxide with respect to 50 parts by mass of the object to be treated.

本発明によれば、水分の存在下、微生物の作用によって硫化水素が発生する可能性のある嫌気性条件の環境下でも、そこに酸化亜鉛を投入するだけで硫化水素の発生を阻止又は抑制しつつ水素を生成することができる。本発明では、上記環境中に酸化亜鉛を投入することの他は特に条件を整える必要がなく、手間が少なく実施コストが安価であるという利点がある。   According to the present invention, even in an anaerobic environment where hydrogen sulfide may be generated by the action of microorganisms in the presence of moisture, generation of hydrogen sulfide is prevented or suppressed by simply introducing zinc oxide therein. Hydrogen can be produced. In the present invention, there is an advantage that there is no need to prepare conditions in particular except that zinc oxide is introduced into the environment, and there is little effort and the implementation cost is low.

なお、酸化亜鉛の投入により硫化水素発生を抑制しつつ水素生成が可能である理由又はメカニズムについては、定かではない。本願発明者らが実験及び考察を重ねたところでも、単に、一旦発生した硫化水素が酸化亜鉛と反応して別の化合物に転化されているわけではなさそうである(後述する参考実験では、金属硫化物の生成がみられなかった上、亜鉛の量と抑制された硫化水素の量とを比べたときに、別化合物の形成を仮定すると化学量論的に辻褄が合わなかった)。むしろ酸化亜鉛が、硫化水素の発生そのものを抑制すると共に、硫化水素ではなく水素ガスの生成に関与していると考えられる。   In addition, it is not certain about the reason or mechanism that hydrogen can be generated while suppressing the generation of hydrogen sulfide by adding zinc oxide. Even when the inventors of the present application have repeated experiments and considerations, it is not likely that hydrogen sulfide once generated simply reacts with zinc oxide and is converted into another compound (in the reference experiment described later, metal Sulfur formation was not observed, and when the amount of zinc was compared with the amount of suppressed hydrogen sulfide, it was not stoichiometrically correct assuming the formation of another compound). Rather, it is considered that zinc oxide suppresses the generation of hydrogen sulfide itself and is involved in the generation of hydrogen gas instead of hydrogen sulfide.

以下、実施例1〜6及び比較例1〜6により本発明をより具体的に説明する。なお、各例において使用する「処理対象物」、「嫌気性菌」、「溶解ダスト」その他の資材を、次のようにして準備した。   Hereinafter, the present invention will be described more specifically by Examples 1 to 6 and Comparative Examples 1 to 6. In addition, “processing object”, “anaerobic bacteria”, “dissolved dust” and other materials used in each example were prepared as follows.

処理対象物:
市販の石膏ボードを使い古して廃材となったもの(廃石膏ボード)を機械で粉砕すると共に、粉砕された廃石膏ボードを目開き2mmの篩にかけ、篩下に集まったものを「処理対象物」として使用した。ちなみに石膏ボードは、主に硫酸カルシウムからなる板状の石膏片を専用の板紙(「石膏ボード原紙」と呼ばれる)で包むと共にデンプン糊で接着したものである。
Processing object:
Using a commercially available gypsum board, the waste material (waste gypsum board) is pulverized with a machine, and the crushed waste gypsum board is passed through a sieve with a mesh opening of 2 mm. Used as. By the way, gypsum board is obtained by wrapping platy gypsum pieces mainly made of calcium sulfate with special paperboard (called “gypsum board base paper”) and glued with starch paste.

嫌気性菌:
嫌気性菌として、廃石膏ボードに自然付着した微生物を用いた。より具体的には、密閉容器内において廃石膏ボード片を純水に浸し、廃石膏中の石膏紙(石膏ボード原紙)を含水させた状態でこれを放置する。すると石膏紙では硫酸還元菌(硫酸塩還元細菌ともいう)が繁殖し、その証として硫化水素ガスが発生する。硫化水素ガスが発生したところでその容器内の水溶液をシードとして採用する。そのシードを別の水溶液に添加すると共に1〜2週間培養したものを「嫌気性菌含有水溶液」として使用した。
Anaerobic bacteria:
As anaerobic bacteria, microorganisms naturally attached to waste gypsum board were used. More specifically, the waste gypsum board piece is immersed in pure water in an airtight container, and the gypsum paper (gypsum board base paper) in the waste gypsum is left in the water-containing state. Then, sulfate-reducing bacteria (also called sulfate-reducing bacteria) propagate on the gypsum paper, and hydrogen sulfide gas is generated as evidence. When hydrogen sulfide gas is generated, the aqueous solution in the container is used as a seed. The seed was added to another aqueous solution and cultured for 1 to 2 weeks as an “anaerobic bacteria-containing aqueous solution”.

溶解ダスト:
鋼、銑鉄及び/又は戻し鉄材などの鉄分原料、その他を溶解炉(キュポラまたは電気誘導炉)に装填して1500〜1600℃の温度で溶解し、その際に発生するダスト(金属ガスが空気によって酸化されて形成された酸化物粉体)を溶解炉に附属の集塵装置で回収したものが「溶解ダスト」である。下記実施例1〜4および比較例5,6では「溶解ダスト1」から「溶解ダスト6」を使用しているが、これら6種類の溶解ダストは、溶解炉が異なる、あるいは溶解時の原料配合が異なる等することで、互いに別ロットとなる溶解ダストである。従ってこれら6種類の溶解ダスト間では、ZnO成分率が異なっている(下記表1参照)。ちなみに、溶解ダストの成分組成は、蛍光X線測定の結果に基づいて酸化物換算した値である。なお、溶解ダスト中には、(Fe,Zn,Mn)の示性式で表し得る複合金属酸化物も含まれており、蛍光X線測定の値がそのまま酸化亜鉛量になるものではないが、別途測定のX線回折の結果と照らし合わせると、酸化亜鉛含有比率の順番(序列)は蛍光X線測定の結果と同一視できたため、実施例1〜4および比較例5,6では、蛍光X線の測定結果を酸化亜鉛量とみなして取り扱った。
Dissolved dust:
Iron raw materials such as steel, pig iron and / or return iron, etc. are loaded into a melting furnace (cupola or electric induction furnace) and melted at a temperature of 1500 to 1600 ° C., and dust generated at that time (metal gas is caused by air “Oxidized powder formed by oxidation” is recovered by a dust collector attached to a melting furnace, which is “dissolved dust”. In Examples 1 to 4 and Comparative Examples 5 and 6 below, “Dissolved Dust 1” to “Dissolved Dust 6” are used, but these 6 types of dissolved dust have different melting furnaces or contain raw materials at the time of melting It is the melted dust which becomes a lot different from each other by having different. Therefore, the ZnO component ratio differs between these six types of dissolved dust (see Table 1 below). Incidentally, the component composition of the dissolved dust is a value converted to an oxide based on the result of the fluorescent X-ray measurement. Note that the dissolved dust also contains a composite metal oxide that can be expressed by the (Fe, Zn, Mn) x O y characteristic formula, and the value of the fluorescent X-ray measurement becomes the amount of zinc oxide as it is. However, when compared with the results of X-ray diffraction separately measured, the order (order) of the zinc oxide content ratio could be equated with the results of fluorescent X-ray measurement, so in Examples 1 to 4 and Comparative Examples 5 and 6 The measurement result of fluorescent X-ray was treated as the amount of zinc oxide.

溶解ダスト以外の添加物:
実施例1〜4および比較例5,6では溶解ダストを添加物として使用したのに対し、実施例5,6および比較例1,2,3では溶解ダスト以外のものを添加物として使用した。即ち、実施例5,6では、市販の酸化亜鉛(ZnO)を添加物として使用した(表1参照)。比較例1ではFeを、比較例2ではFeを、比較例3では純鉄粉(Fe)をそれぞれ添加物として使用した(表2参照)。
Additives other than dissolved dust:
In Examples 1 to 4 and Comparative Examples 5 and 6, dissolved dust was used as an additive, while in Examples 5 and 6 and Comparative Examples 1, 2 and 3, those other than dissolved dust were used as additives. That is, in Examples 5 and 6, commercially available zinc oxide (ZnO) was used as an additive (see Table 1). In Comparative Example 1, Fe 3 O 4 was used as an additive, in Comparative Example 2 Fe 2 O 3 was used as an additive, and in Comparative Example 3 pure iron powder (Fe) was used as an additive (see Table 2).

[実施例1〜4および比較例5,6]
図1に示す手順で水素発生実験を行った。具体的には500mL(ミリリットル)のデュラン瓶の中に、50gの処理対象物(破砕した廃石膏ボード)と、0.1gの溶解ダストと、200mLの純水と、1mLの嫌気性菌含有水溶液とを投入した。各例の添加処方を表1に示す。その後、瓶中に高純度窒素ガスを吹き込んで瓶中の空気を窒素ガスでほぼ置換した(嫌気性雰囲気の設定)。そして瓶の上端開口部をシリコン栓で密栓し、これを35℃の恒温槽にて25日間、静止状態で保管した。25日後、各瓶のヘッドスペース(気相)からシリンジで気体を抜き取り、この気体の成分をガスクロマトグラフィーにて測定した。その測定結果を図2のグラフに示す。
[Examples 1 to 4 and Comparative Examples 5 and 6]
A hydrogen generation experiment was conducted according to the procedure shown in FIG. Specifically, in a 500 mL (milliliter) Duran bottle, 50 g of a processing object (crushed waste gypsum board), 0.1 g of dissolved dust, 200 mL of pure water, and 1 mL of an anaerobic bacteria-containing aqueous solution And put it in. Table 1 shows the additive formulation of each example. Thereafter, high-purity nitrogen gas was blown into the bottle to substantially replace the air in the bottle with nitrogen gas (setting an anaerobic atmosphere). The upper end opening of the bottle was sealed with a silicon stopper, and this was stored in a static state at 35 ° C. for 25 days. After 25 days, gas was extracted from the head space (gas phase) of each bottle with a syringe, and the components of this gas were measured by gas chromatography. The measurement results are shown in the graph of FIG.

[実施例5,6]
実施例1〜4と同様、図1に示す手順で水素発生実験を行った。但し、実施例5,6では、溶解ダストに代えて酸化亜鉛(ZnO)を添加物として使用し、実施例5ではZnO添加量を0.03gとし、実施例6ではZnO添加量を0.05gとした。各例の添加処方を表1に、ガスクロマトグラフィーの測定結果を図2のグラフに示す。
[Examples 5 and 6]
As in Examples 1 to 4, a hydrogen generation experiment was performed according to the procedure shown in FIG. However, in Examples 5 and 6, zinc oxide (ZnO) was used as an additive instead of dissolved dust, in Example 5, the ZnO addition amount was 0.03 g, and in Example 6, the ZnO addition amount was 0.05 g. It was. The addition formulation of each example is shown in Table 1, and the measurement result of gas chromatography is shown in the graph of FIG.

Figure 2013151384
Figure 2013151384

[比較例1〜4]
実施例1〜4と同様、図1に示す手順で水素発生実験を行った。但し、
比較例1では、0.1gの溶解ダストに代えて、1gのFeを、
比較例2では、0.1gの溶解ダストに代えて、1gのFeを、
比較例3では、0.1gの溶解ダストに代えて、0.1gの純鉄粉(Fe)を、それぞれ添加物として使用した。比較例4は、添加物無しの例である。各例の添加処方を表2に、ガスクロマトグラフィーの測定結果を図3のグラフに示す。
[Comparative Examples 1-4]
As in Examples 1 to 4, a hydrogen generation experiment was performed according to the procedure shown in FIG. However,
In Comparative Example 1, 1 g of Fe 3 O 4 was used instead of 0.1 g of dissolved dust.
In Comparative Example 2, instead of 0.1 g of dissolved dust, 1 g of Fe 2 O 3
In Comparative Example 3, 0.1 g of pure iron powder (Fe) was used as an additive in place of 0.1 g of dissolved dust. Comparative Example 4 is an example without additives. The addition formulation of each example is shown in Table 2, and the measurement result of gas chromatography is shown in the graph of FIG.

Figure 2013151384
Figure 2013151384

表2及び図3からわかるように、添加物として酸化亜鉛を全く用いない比較例1〜4では、水素は殆ど発生していない。加えて、添加物無しの比較例4では硫化水素が多量に発生し、添加物として酸化鉄を採用した比較例1及び2でも硫化水素の発生が観察された。他方で、表1及び図2からわかるように、酸化亜鉛の添加量と水素ガスの発生量との間には正の相関関係が観察され、これとは逆に酸化亜鉛の添加量と硫化水素の発生量との間には負の相関関係が観察された。実施例4、比較例5,6、実施例5の四例の対比から、処理対象物50gに対して酸化亜鉛(ZnO)を0.03g以上使用することで、硫化水素の発生を低レベルに抑制しつつ、水素ガス発生を促進することができる。特に実施例1〜4及び6の傾向を見ると、処理対象物50gに対して酸化亜鉛(ZnO)を0.05g以上使用することで、硫化水素の発生をほぼ完全に阻止しつつ、水素ガス発生を促進することができる。   As can be seen from Table 2 and FIG. 3, in Comparative Examples 1 to 4 in which no zinc oxide was used as an additive, almost no hydrogen was generated. In addition, a large amount of hydrogen sulfide was generated in Comparative Example 4 without an additive, and generation of hydrogen sulfide was also observed in Comparative Examples 1 and 2 employing iron oxide as an additive. On the other hand, as can be seen from Table 1 and FIG. 2, a positive correlation was observed between the amount of zinc oxide added and the amount of hydrogen gas generated, and on the contrary, the amount of zinc oxide added and hydrogen sulfide A negative correlation was observed between the amount of occurrence and From the comparison of the four examples of Example 4, Comparative Examples 5, 6, and Example 5, the generation of hydrogen sulfide is reduced to a low level by using 0.03 g or more of zinc oxide (ZnO) with respect to 50 g of the object to be treated. While suppressing, hydrogen gas generation can be promoted. In particular, when looking at the trends of Examples 1 to 4 and 6, by using 0.05 g or more of zinc oxide (ZnO) with respect to 50 g of the object to be treated, hydrogen gas is almost completely prevented from being generated while hydrogen gas is generated. Generation can be promoted.

[参考実験および推論的考察]
本発明において硫化水素の発生を抑制しつつ水素ガスが発生可能である理由を探るべく参考実験を行っているので、参考までに紹介する。
[Reference experiment and speculative consideration]
In the present invention, a reference experiment is conducted to find out the reason why hydrogen gas can be generated while suppressing the generation of hydrogen sulfide.

硫化水素が観察されない理由として、一旦発生した硫化水素が酸化亜鉛と反応し、硫化物となって固体(処理対象物)の内部又は表面に固定されているという推測(仮説)も成り立つ。この推測が正しいか否かを確かめるために、上記実施例2,6および比較例3,4のデュラン瓶を用い、図4に示すような装置にて以下のような実験を行った(尚、この実験は、JIS K0102の硫化物測定方法を一部変更したものに相当する)。   As a reason why hydrogen sulfide is not observed, the assumption (hypothesis) that hydrogen sulfide once generated reacts with zinc oxide to become sulfide and is fixed inside or on the surface of the solid (object to be treated) holds. In order to confirm whether or not this guess is correct, the following experiments were performed using the Duran bottles of Examples 2 and 6 and Comparative Examples 3 and 4 using an apparatus as shown in FIG. This experiment corresponds to a partial modification of the sulfide measurement method of JIS K0102.

即ち図4に示すように、35℃で25日間放置後のデュラン瓶をしんとう機の上に設置した。但し、比較例4だけは硫化水素ガスが発生しているので、比較例4のデュラン瓶中に酢酸亜鉛水溶液(濃度200g/L)を5mL添加し、瓶中の硫化水素を水溶液中に吸収させてから、比較例4のデュラン瓶をしんとう機の上に設置した。そして、しんとう機上のデュラン瓶を、上流側配管を介して窒素ガスボンベに接続すると共に、下流側配管を介してマグネティックスターラー上に設置された2本の吸収瓶と直列接続した。各吸収瓶には、酢酸亜鉛水溶液(硫化水素の吸収液)を収容した。その後、デュラン瓶にバンドヒーターを巻いて70℃に加熱すると共に、ロータリーシェイカーで内容物が常に流動するように攪拌した。また、2本の吸収瓶では、ガス流速を高めるためにストレート管インピンジャーを2本直列に接続すると共に、ガス吸収効率を高めるために各インピンジャーに攪拌子を入れてマグネティックスターラーで攪拌した(攪拌速度1500rpm)。   That is, as shown in FIG. 4, the duran bottle after being left at 35 ° C. for 25 days was placed on a machine. However, since hydrogen sulfide gas is generated only in Comparative Example 4, 5 mL of an aqueous solution of zinc acetate (concentration 200 g / L) is added to the Duran bottle of Comparative Example 4 to absorb the hydrogen sulfide in the bottle into the aqueous solution. After that, the Duran bottle of Comparative Example 4 was placed on a machine. Then, the Duran bottle on the machine was connected to a nitrogen gas cylinder through an upstream pipe, and was connected in series with two absorption bottles installed on a magnetic stirrer via a downstream pipe. Each absorption bottle contained an aqueous zinc acetate solution (hydrogen sulfide absorption solution). Thereafter, a band heater was wound around a Duran bottle and heated to 70 ° C., and the contents were stirred by a rotary shaker so that the contents always flowed. In addition, in the two absorption bottles, in order to increase the gas flow rate, two straight pipe impingers were connected in series, and in order to increase gas absorption efficiency, a stirrer was placed in each impinger and stirred with a magnetic stirrer ( (Stirring speed 1500 rpm).

配管および70℃への加熱が完了した段階で、デュラン瓶中に硫酸10mLを添加し、瓶中の試料に硫化物として固定されているイオウ(その可能性があるときの話)を、揮発性の硫化水素ガスとして遊離させた。そして、遊離した硫化水素を、デュラン瓶の下流側に配置された吸収瓶の酢酸亜鉛水溶液中に回収した。遊離硫化水素を全量回収した後に吸収瓶の酢酸亜鉛水溶液を集め、そこに過剰量のヨウ素溶液を添加してからチオ硫酸ナトリウム溶液で滴定した。滴定結果に基づき、デュラン瓶中の試料に固定されていた硫化物の量(mgS/kg、試料1kgあたりのイオウ換算量)を計算した。実施例2,6および比較例3,4の四例についての硫化物量の計算結果を図5のグラフに示す。   When the piping and heating to 70 ° C are complete, 10 mL of sulfuric acid is added to the Duran bottle, and sulfur fixed as a sulfide to the sample in the bottle (when it is possible) is volatile. Was released as hydrogen sulfide gas. The liberated hydrogen sulfide was recovered in an aqueous zinc acetate solution in an absorption bottle disposed on the downstream side of the Duran bottle. After collecting the entire amount of free hydrogen sulfide, an aqueous zinc acetate solution in an absorption bottle was collected, and an excessive amount of iodine solution was added thereto, followed by titration with a sodium thiosulfate solution. Based on the titration results, the amount of sulfide (mgS / kg, the amount converted to sulfur per kg of the sample) fixed to the sample in the Duran bottle was calculated. The graph of FIG. 5 shows the calculation results of the sulfide amounts for Examples 2 and 6 and Comparative Examples 3 and 4.

図5のグラフは、廃石膏ボート1kgあたりどれだけのイオウ(S)が硫化物として固定されていたかを示す(そのイオウは硫化水素として遊離検出)。図5に示すように、比較例3及び4の硫化物量は約1400mgS/kgであることから、50gの廃石膏ボート中には約70mgS相当の硫化物が固定されていたことになる。ここで、比較例4は添加物無しの事例であること、並びに、実施例2及び6では硫化物がほとんど検出されていないことを併せて勘案すると、実施例2及び6ではそれに相当する量の硫化水素発生が抑制されたと理解することができる。より具体的には、比較例4(添加物無し)でのイオウ量が約70mgであること、実施例2のZnO添加量が0.056gであること、及び、実施例6のZnO添加量が0.05gであることからすると、実施例2では1000mgのZnOあたり1330mgの硫化水素の発生を、又、実施例6では1000mgのZnOあたり1490mgの硫化水素の発生を抑制した計算になる。   The graph of FIG. 5 shows how much sulfur (S) was fixed as sulfide per kg of waste gypsum boat (the sulfur was detected as free as hydrogen sulfide). As shown in FIG. 5, since the amount of sulfide in Comparative Examples 3 and 4 is about 1400 mgS / kg, sulfide equivalent to about 70 mgS was fixed in the 50 g waste gypsum boat. Here, in consideration of the fact that Comparative Example 4 is an example without additives and that almost no sulfide was detected in Examples 2 and 6, in Examples 2 and 6, the amount corresponding thereto was It can be understood that the generation of hydrogen sulfide was suppressed. More specifically, the amount of sulfur in Comparative Example 4 (without additives) is about 70 mg, the amount of ZnO added in Example 2 is 0.056 g, and the amount of ZnO added in Example 6 is From the fact that it is 0.05 g, in Example 2, 1330 mg of hydrogen sulfide is generated per 1000 mg of ZnO, and in Example 6, generation of 1490 mg of hydrogen sulfide is suppressed per 1000 mg of ZnO.

亜鉛(Zn)とイオウ(S)とが反応してできる硫化物としては、ZnS,ZnSOが考えられるが、いずれの場合も化学量論比(モル比)はZn:S=1:1であり、これを原子量に基づいて質量換算すると、Zn:S=65:32=約2:1となる。この点を踏まえつつ、上記実施例2及び6での硫化水素発生の抑制量(即ち1000mgのZnOあたり1330mgの硫化水素発生の抑制など)を化学量論的観点から評価すると、実施例2及び6においてZnSやZnSOといった硫化物が生じているとは考えにくい。 As a sulfide formed by the reaction of zinc (Zn) and sulfur (S), ZnS and ZnSO 4 can be considered. In either case, the stoichiometric ratio (molar ratio) is Zn: S = 1: 1. When this is converted into mass based on the atomic weight, Zn: S = 65: 32 = about 2: 1. In consideration of this point, when the amount of suppression of hydrogen sulfide generation in Examples 2 and 6 (that is, suppression of generation of 1330 mg of hydrogen sulfide per 1000 mg of ZnO) is evaluated from a stoichiometric viewpoint, Examples 2 and 6 In this case, it is unlikely that sulfides such as ZnS and ZnSO 4 are generated.

以上の参考実験および推論的考察によれば、硫化水素が観察されない理由として、イオウ(S)が硫化物(ZnS,ZnSO)となっているという説は成り立たない。とすれば、本発明において酸化亜鉛は、そもそも硫化水素の発生を抑制しつつ水素生成を促進していると推測される。そして、硫化水素発生を抑制するメカニズムとして考えられるものは、一般的に知られている酸化亜鉛による硫化水素除去反応、即ち、
ZnO+HS → ZnS+HOといったものではなく、全く別のメカニズムであると考えざるを得ない。少なくとも、前記一般的に知られている反応式から予想されるよりも多量の硫化水素発生が抑制されることから、本発明における反応メカニズムはあまり知られていない新規な反応系に基づくと考えられる。
According to the above reference experiment and speculative consideration, the theory that sulfur (S) is sulfide (ZnS, ZnSO 4 ) does not hold as the reason why hydrogen sulfide is not observed. Then, in the present invention, it is presumed that zinc oxide promotes hydrogen production while suppressing the generation of hydrogen sulfide in the first place. And what can be considered as a mechanism for suppressing hydrogen sulfide generation is a generally known hydrogen sulfide removal reaction by zinc oxide, that is,
It is not ZnO + H 2 S → ZnS + H 2 O, but it must be considered as a completely different mechanism. Since at least the generation of hydrogen sulfide is suppressed more than expected from the generally known reaction formula, it is considered that the reaction mechanism in the present invention is based on a novel reaction system that is not well known. .

本発明は、イオウ源があるときの嫌気性条件下での微生物反応に関するものであることから、廃石膏ボード等の廃棄物の処理場、企業等における無機・有機排水汚泥を生じる排水処理場、下水汚泥を生じる下水処理場、家畜糞尿を扱うバイオガス発生施設等での廃棄物再利用プロセスに活用することができる。特に本発明は、溶解ダストの利用により新たな原料を必要としないため、環境負荷を増大させない方法として活用できる。本発明によって、バイオガス発生施設等において脱硫化水素設備を廃止できる可能性もある。   Since the present invention relates to a microbial reaction under anaerobic conditions when there is a sulfur source, waste treatment plants such as waste gypsum board, wastewater treatment plants that produce inorganic and organic wastewater sludge in companies, It can be used for waste recycling processes at sewage treatment plants that produce sewage sludge, biogas generation facilities that handle livestock manure, and the like. In particular, the present invention can be utilized as a method that does not increase the environmental load because new raw materials are not required by using dissolved dust. According to the present invention, there is a possibility that the desulfurization equipment can be abolished in a biogas generation facility or the like.

更に本発明は、反応系中での水素生成に伴い、水素利用微生物の活性向上が期待され、微生物反応が促進される可能性がある。また、水素生成に伴い、反応系中に存在する重金属イオンの還元作用が期待される。例えば、六価クロムを三価クロムに還元することによる反応系の無害化促進等の可能性もある。
したがって、本発明は、バイオガス発生施設等で発生した水素を貯蔵して活用するような閉鎖系の他、例えば、ビルピットや汚泥堆積場、廃棄物堆積場のような開放系においても、発生水素が反応系中で有効に作用することが期待される。
Furthermore, the present invention is expected to improve the activity of hydrogen-utilizing microorganisms as hydrogen is produced in the reaction system, and there is a possibility that the microbial reaction is promoted. In addition, with the generation of hydrogen, a reduction action of heavy metal ions present in the reaction system is expected. For example, there is a possibility of promoting detoxification of the reaction system by reducing hexavalent chromium to trivalent chromium.
Therefore, the present invention is not limited to a closed system that stores and utilizes hydrogen generated in a biogas generation facility or the like, for example, in an open system such as a building pit, a sludge deposition site, and a waste deposition site. Is expected to act effectively in the reaction system.

図2,3及び5のグラフ中、「実」とは実施例を、「比」とは比較例を意味する。   In the graphs of FIGS. 2, 3 and 5, “actual” means an example, and “ratio” means a comparative example.

Claims (3)

(イ)イオウ源、有機成分および水分を少なくとも含んでなる処理対象物、並びに、
(ロ)嫌気性条件の下で硫化水素を発生させ得る嫌気性微生物、が併存する環境中に、酸化亜鉛を投入することにより、嫌気性条件の下で硫化水素の発生を阻止又は抑制しつつ水素を発生させることを特徴とする水素生成方法。
(A) A processing object comprising at least a sulfur source, an organic component and moisture, and
(B) By introducing zinc oxide into an environment where anaerobic microorganisms capable of generating hydrogen sulfide under anaerobic conditions coexist, while preventing or suppressing the generation of hydrogen sulfide under anaerobic conditions A method for producing hydrogen, comprising generating hydrogen.
前記酸化亜鉛は溶解ダストの形態で提供される、ことを特徴とする請求項1に記載の水素生成方法。   The method for generating hydrogen according to claim 1, wherein the zinc oxide is provided in the form of dissolved dust. 前記処理対象物が、廃石膏ボード、排水汚泥、下水汚泥および家畜糞尿からなる群から選択されるいずれか一種である、ことを特徴とする請求項1又は2に記載の水素生成方法。   The method for generating hydrogen according to claim 1 or 2, wherein the object to be treated is any one selected from the group consisting of waste gypsum board, wastewater sludge, sewage sludge, and livestock manure.
JP2012012613A 2012-01-25 2012-01-25 Hydrogen production method Pending JP2013151384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012012613A JP2013151384A (en) 2012-01-25 2012-01-25 Hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012012613A JP2013151384A (en) 2012-01-25 2012-01-25 Hydrogen production method

Publications (1)

Publication Number Publication Date
JP2013151384A true JP2013151384A (en) 2013-08-08

Family

ID=49048109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012012613A Pending JP2013151384A (en) 2012-01-25 2012-01-25 Hydrogen production method

Country Status (1)

Country Link
JP (1) JP2013151384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168044A (en) * 2017-03-30 2018-11-01 宇部興産株式会社 Method for producing cement clinker, method for producing cement and method for processing organic sludge and sulfur-containing waste
JP2018168043A (en) * 2017-03-30 2018-11-01 宇部興産株式会社 Method for producing cement clinker, method for producing cement and method for processing organic sludge and construction based waste plastic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168044A (en) * 2017-03-30 2018-11-01 宇部興産株式会社 Method for producing cement clinker, method for producing cement and method for processing organic sludge and sulfur-containing waste
JP2018168043A (en) * 2017-03-30 2018-11-01 宇部興産株式会社 Method for producing cement clinker, method for producing cement and method for processing organic sludge and construction based waste plastic

Similar Documents

Publication Publication Date Title
Barros et al. From waste to commodity: transforming shells into high purity calcium carbonate
Singh et al. Reduction of heavy metals during composting
CN105582638B (en) Liquid stabilizer for treating waste incineration fly ash with high lead and cadmium content and application thereof
CN106978190B (en) Stabilizing remediation agent for chromium-contaminated soil and method for applying stabilizing remediation agent to soil remediation
US20070272609A1 (en) Reuse of waste materials via manure additive
JPH0866698A (en) Inactivation of liquid waste mud and solid waste containing heavy metal due to sulfuric acid reducing bacteria
JPH0655183A (en) Composition and method for suppressing odor of sulfide containing water
Xuejiang et al. Changes of Cu, Zn, and Ni chemical speciation in sewage sludge co-composted with sodium sulfide and lime
JP2014054602A (en) Insolubilizer of harmful matter and insolubilization treatment method of harmful matter
Raketh et al. Sulfate removal using rubber wood ash to enhance biogas production from sulfate-rich wastewater generated from a concentrated latex factory
JP2007268513A (en) Method for treating waste
Ivanov et al. Iron-containing clay and hematite iron ore in slurry-phase anaerobic digestion of chicken manure
Peng et al. Sludge aging stabilizes heavy metals subjected to pyrolysis
JP2013151384A (en) Hydrogen production method
KR101120058B1 (en) Manufacturing method of soil cement composition for landfill facility cover soil using sludge of sewage and waste water
JP2006296739A (en) Malodor generation-preventing agent, and malodor generation-preventing method
JP5180106B2 (en) The sludge deodorization and solidification method, the water purification solid produced by the sludge deodorization and solidification method, and the regenerated lower layer roadbed material
KR20130123799A (en) Method for treating organic waste matter
CN114130785B (en) Fly ash treatment method of garbage incinerator
CN112479608B (en) Curing and stabilizing agent for antimony tailings in mining area and application thereof
Zhang et al. Reuse of waste sulfur from biogas desulfurization for potentially toxic metals stabilization in MSWI fly ash towards zero-waste in venous industry park
JP3965412B2 (en) Sludge modifier
JP5135552B2 (en) Method for producing steelmaking slag for water injection
CN114378092A (en) Method for oxidation stabilization treatment of arsenic sulfide slag and application thereof
JP5171350B2 (en) Solid waste treatment method