JPH08251888A - Tandem magnetic pole rotor, and its manufacture, and rotating lectric mahcine - Google Patents

Tandem magnetic pole rotor, and its manufacture, and rotating lectric mahcine

Info

Publication number
JPH08251888A
JPH08251888A JP4830995A JP4830995A JPH08251888A JP H08251888 A JPH08251888 A JP H08251888A JP 4830995 A JP4830995 A JP 4830995A JP 4830995 A JP4830995 A JP 4830995A JP H08251888 A JPH08251888 A JP H08251888A
Authority
JP
Japan
Prior art keywords
magnetic material
nickel
permanent magnet
comb
pole rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4830995A
Other languages
Japanese (ja)
Inventor
Teruo Washizu
照雄 鷲頭
Hideki Yamamiya
秀樹 山宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4830995A priority Critical patent/JPH08251888A/en
Publication of JPH08251888A publication Critical patent/JPH08251888A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a tandem magnetic pole rotor which has firm junction structure to withstand ultrahigh-speed revolution. CONSTITUTION: Junction strength increases, without,a decarbonized layer or a carbonized layer existing at the junction interface between a nonmagnetic material and a permanent magnet and a magnetic material, by attaching the permanent magnet 14 at the center in diametrical direction of the nonmagnetic material 13 of nickel group alloy, and joining magnetic materials of alloy steel including nickel to both sides of front and rear in C direction of the rotary shaft of the nonmagnetic material and the permanent magnet, and forming a nickel diffusion layer at this junction interface, whereby this becomes a magnetic pole rotor which can withstand ultrahigh-speed revolution. Moreover, by providing a permanent magnet 14 at a part of the magnetic pole rotor 11, a part or the whole of the exciting coil 19 to be provided on the side of a stator 12 can be replaced with a permanent magnet, when using this magnetic pole rotor as the rotor of a tandem magnetic pole rotating-electric motor, in its turn, th rotating-electric machine can be downsized by making the exciting coil on the side of the stator small, or removing it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はくし形磁極式回転電機に
用いられるくし形磁極回転子と、その製造方法と、くし
形磁極回転子を有する回転電機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a comb type magnetic pole rotor used in a comb type magnetic pole type rotating electric machine, a method for manufacturing the same, and a rotating electric machine having a comb type magnetic pole rotor.

【0002】[0002]

【従来の技術】回転電機はその用途に応じて種々の型式
のものが利用されているが、超高速回転電機として多く
用いられているものに、くし形磁極式回転電機がある。
このくし形磁極式回転電機の一般的な構造は図17に示
すようなものであり、回転子1側は磁性材2,2を非磁
性材3の回転軸C方向の前後両側に接合した構造の磁極
4によって構成している。そして固定子5側は、フレー
ム6内に鉄心7を有する電機子コイル8及び励磁コイル
9を取り付けた構造にしている。このようなくし形磁極
式回転電機では、磁気回路10が励磁コイル9−回転子
1の磁極4−電機子コイル8−回転子1の磁極4−励磁
コイル9−フレーム6−励磁コイル9となるルートを通
る。
2. Description of the Related Art Rotating electric machines of various types are used according to their applications. One of the most widely used ultra-high speed rotating electric machines is the comb-shaped magnetic pole type rotating electric machine.
A general structure of this comb-shaped magnetic pole type rotating electric machine is as shown in FIG. 17, and the rotor 1 side has magnetic members 2 and 2 joined to the front and rear sides of the non-magnetic member 3 in the direction of the rotation axis C. It is constituted by the magnetic pole 4. The stator 5 side has a structure in which an armature coil 8 having an iron core 7 and an exciting coil 9 are mounted in a frame 6. In such a comb-type magnetic pole type rotating electric machine, the route in which the magnetic circuit 10 becomes the exciting coil 9-the magnetic pole 4-the armature coil 8-the magnetic pole 4-the exciting coil 9-the frame 6-the exciting coil 9 of the rotor 1 Pass through.

【0003】[0003]

【発明が解決しようとする課題】ところが、このような
構造を有する従来のくし形磁極式回転電機では、固定子
5のフレーム6内に大きな励磁コイル9を装着していた
ので固定子5側の回転軸方向の寸法が長くなり、ひいて
は回転電機全体の外形が大きくなる問題点があった。
However, in the conventional comb-shaped magnetic pole type electric rotating machine having such a structure, the large exciting coil 9 is mounted in the frame 6 of the stator 5, so that the stator 5 side is improved. There is a problem that the dimension in the direction of the rotating shaft becomes long, and eventually the outer shape of the entire rotary electric machine becomes large.

【0004】このような問題点を解決するには励磁コイ
ル9の一部あるいは全部をその磁力に相当する磁力を有
する永久磁石に置き換え、磁極回転子1側に装着するこ
とが考えられる。
In order to solve such a problem, it is conceivable to replace a part or all of the exciting coil 9 with a permanent magnet having a magnetic force corresponding to the magnetic force and mount it on the magnetic pole rotor 1 side.

【0005】しかしながら、永久磁石を磁極回転子1側
に装着するとすれば、超高速回転に耐え得る構造にする
ために磁性材2又は非磁性材3との接合関係を強固なも
のとしなければならないが、磁気回路素材の強固な接合
は加工上難しく、超高速回転に耐える得る接合構造を得
ることができず、かかる磁極回転子側に励磁コイルの一
部あるいは全部に置き換え得る磁力を有する永久磁石を
装着した構造のくし形磁極回転子やそれを用いた回転電
機は得られていない。
However, if a permanent magnet is mounted on the side of the magnetic pole rotor 1, it is necessary to strengthen the bonding relationship with the magnetic material 2 or the non-magnetic material 3 in order to have a structure that can withstand ultra-high speed rotation. However, strong joining of magnetic circuit materials is difficult in processing, a joining structure that can withstand ultra-high speed rotation cannot be obtained, and a permanent magnet having a magnetic force that can replace part or all of the exciting coil on the magnetic pole rotor side. A comb-shaped magnetic pole rotor having a structure in which a rotor is mounted and a rotating electric machine using the rotor have not been obtained.

【0006】本発明はこのような従来の技術的課題を解
決するためになされたもので、磁極回転子側に励磁コイ
ルの一部あるいは全部に置き換え得る磁力を有する永久
磁石を超高速回転にも耐えるように強固に接合させたく
し形磁極回転子及びそれを用いた回転電機を提供するこ
とを目的とする。
The present invention has been made in order to solve such a conventional technical problem, and a permanent magnet having a magnetic force capable of replacing part or all of an exciting coil on the magnetic pole rotor side is also used for ultra-high speed rotation. An object of the present invention is to provide a comb-shaped magnetic pole rotor that is firmly joined to endure and a rotating electric machine using the same.

【0007】本発明はまた、このようなくし形磁極回転
子を製造する方法を提供することを目的とする。
Another object of the present invention is to provide a method of manufacturing such a comb-shaped magnetic pole rotor.

【0008】[0008]

【課題を解決するための手段】請求項1の発明のくし形
磁極回転子は、ニッケル基合金の非磁性材の径方向中央
部に永久磁石が取り付けられ、非磁性材及び永久磁石の
回転軸方向の前後両面にニッケルを含む合金鋼の磁性材
が接合され、この接合界面にニッケル拡散層が形成され
たものである。
According to another aspect of the present invention, there is provided a comb-shaped magnetic pole rotor, wherein a permanent magnet is attached to a radial center of a non-magnetic material of a nickel-base alloy, and a rotating shaft of the non-magnetic material and the permanent magnet. A magnetic material made of an alloy steel containing nickel is bonded to both front and rear surfaces in the direction, and a nickel diffusion layer is formed at the bonding interface.

【0009】請求項2の発明は、請求項1の発明のくし
形磁極回転子において、非磁性材としてニッケル含有の
超合金を用い、磁性材としてニッケルクロムモリブデン
鋼を用いたものである。
According to a second aspect of the invention, in the comb-shaped magnetic pole rotor according to the first aspect of the invention, a nickel-containing superalloy is used as the non-magnetic material and nickel-chromium-molybdenum steel is used as the magnetic material.

【0010】請求項3の発明は、請求項1又は2の発明
のくし形磁極回転子において、磁性材として9パーセン
トニッケル合金鋼を用いたものである。
According to a third aspect of the invention, in the comb-shaped magnetic pole rotor according to the first or second aspect of the invention, 9% nickel alloy steel is used as the magnetic material.

【0011】請求項4の発明は、請求項1〜3いずれか
の発明のくし形磁極回転子において、2極くし形構造と
してものである。
According to a fourth aspect of the present invention, the comb-shaped magnetic pole rotor according to any one of the first to third aspects has a two-pole comb structure.

【0012】請求項5の発明のくし形磁極回転子の製造
方法は、中央部に永久磁石が取り付けられたニッケル基
合金の非磁性材の回転軸方向の前後両側にニッケルを含
む合金鋼の磁性材を、それらの対向面のうちの少なくと
も一方にニッケル層が介在するようにして配置し、熱間
等方圧加圧法によって非磁性材及び永久磁石と磁性材と
を拡散接合させるものである。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a comb-shaped magnetic pole rotor, wherein a non-magnetic material of a nickel-base alloy having a permanent magnet attached to a central portion thereof is made of a magnetic alloy steel containing nickel on both front and rear sides in a rotation axis direction. The material is arranged such that the nickel layer is interposed on at least one of the facing surfaces, and the nonmagnetic material and the permanent magnet and the magnetic material are diffusion-bonded by the hot isostatic pressing method.

【0013】請求項6の発明は、請求項5の発明のくし
形磁極回転子の製造方法において、非磁性材及び永久磁
石の磁性材との対向面、又は磁性材の非磁性材及び永久
磁石との対向面の少なくとも一方にニッケルメッキ層を
形成し、熱間等方圧加圧法によって非磁性材及び永久磁
石と磁性材とを拡散接合させるものである。
According to a sixth aspect of the present invention, in the method of manufacturing a comb-shaped magnetic pole rotor according to the fifth aspect of the present invention, the surface of the non-magnetic material and the permanent magnet facing the magnetic material, or the non-magnetic material and the permanent magnet of the magnetic material. A nickel plating layer is formed on at least one of the surfaces facing each other, and the nonmagnetic material and the permanent magnet and the magnetic material are diffusion-bonded by the hot isostatic pressing method.

【0014】請求項7の発明は、請求項5の発明のくし
形磁極回転子の製造方法において、非磁性材及び永久磁
石と磁性材との対向面間にニッケル箔を介在させ、熱間
等方圧加圧法によって非磁性材及び永久磁石と磁性材と
を拡散接合させるものである。
According to a seventh aspect of the present invention, in the method of manufacturing a comb-shaped magnetic pole rotor according to the fifth aspect of the invention, a nickel foil is interposed between the facing surfaces of the non-magnetic material and the permanent magnet and the magnetic material, and the hot work is performed. The non-magnetic material and the permanent magnet and the magnetic material are diffusion-bonded by the positive pressure method.

【0015】請求項8の発明の回転電機は、電機子コイ
ル及び励磁コイルの装着された固定子と、ニッケル基合
金の非磁性材の径方向中央部に永久磁石が取り付けら
れ、非磁性材及び永久磁石の回転軸方向の前後両面にニ
ッケルを含む合金鋼の磁性材が接合され、この接合界面
にニッケル拡散層が形成されたくし形磁極回転子とを備
えたものである。
According to another aspect of the present invention, there is provided a rotating electric machine in which a stator to which an armature coil and an exciting coil are mounted, and a permanent magnet is attached to a radial center of a non-magnetic material of nickel-base alloy. A magnetic material made of an alloy steel containing nickel is bonded to both front and rear surfaces of the permanent magnet in the direction of the rotation axis, and a comb-shaped magnetic pole rotor having a nickel diffusion layer formed at the bonding interface is provided.

【0016】請求項9の発明の回転電機は、電機子コイ
ルの装着された固定子と、ニッケル基合金の非磁性材の
径方向中央部に固定子に装着すべき励磁コイルに相当す
る大きさの磁力を有する永久磁石が取り付けられ、非磁
性材及び永久磁石との回転軸方向の前後両面にニッケル
を含む合金鋼の磁性材が接合され、この接合界面にニッ
ケル拡散層が形成されたくし形磁極回転子とを備えたも
のである。
According to a ninth aspect of the present invention, there is provided a rotating electric machine having a size corresponding to an armature coil mounted stator and an exciting coil to be mounted on the stator at a radial center of a non-magnetic material of nickel-base alloy. Comb-shaped magnetic pole in which a permanent magnet having a magnetic force of 1 is attached, magnetic materials made of alloy steel containing nickel are bonded to both front and rear surfaces of the non-magnetic material and the permanent magnet in the rotation axis direction, and a nickel diffusion layer is formed at the bonding interface. And a rotor.

【0017】請求項10の発明のくし形磁極回転子は、
ニッケル基合金の非磁性材の回転軸方向の前後両面にニ
ッケルを含む合金鋼の磁性材が接合され、磁性材の回転
軸方向の前後各端部に永久磁石が埋め込まれ、非磁性材
と磁性材との接合界面及び磁性材と永久磁石との接合界
面にニッケル拡散層が形成されたものである。
According to a tenth aspect of the present invention, there is provided a comb-shaped magnetic pole rotor comprising:
Magnetic material of alloy steel containing nickel is bonded to both front and rear surfaces of the non-magnetic material of nickel-based alloy in the rotation axis direction, and permanent magnets are embedded at the front and rear ends of the magnetic material in the rotation axis direction. A nickel diffusion layer is formed at the bonding interface with the material and the bonding interface between the magnetic material and the permanent magnet.

【0018】請求項11の発明は、請求項10のくし形
磁極回転子において、非磁性材としてニッケル含有の超
合金を用い、磁性材としてニッケルクロムモリブデン鋼
を用いたものである。
According to an eleventh aspect of the present invention, in the comb-shaped magnetic pole rotor according to the tenth aspect, a nickel-containing superalloy is used as the non-magnetic material and nickel-chromium-molybdenum steel is used as the magnetic material.

【0019】請求項12の発明は、請求項10又は11
の発明のくし形磁極回転子において、磁性材として9パ
ーセントニッケル合金鋼を用いたものである。
The invention of claim 12 is the invention of claim 10 or 11.
In the comb-shaped magnetic pole rotor of the present invention, 9% nickel alloy steel is used as the magnetic material.

【0020】請求項13の発明は、請求項10〜12い
ずれかの発明のくし形磁極回転子において、2極くし形
としたものである。
According to a thirteenth aspect of the present invention, the comb-type magnetic pole rotor according to any one of the tenth to twelfth aspects of the present invention is a two-pole comb type.

【0021】請求項14の発明のくし形磁極回転子の製
造方法は、ニッケル基合金の非磁性材の回転軸方向の前
後両側にニッケルを含む合金鋼の磁性材を、それらの対
向面のうちの少なくとも一方にニッケル層が介在するよ
うにして配置し、磁性材それぞれの回転軸方向の外側端
部に永久磁石を、それらの対向面のうちの少なくとも一
方にニッケル層が介在するようにして配置し、熱間等方
圧加圧法によって非磁性材と磁性材と永久磁石とを拡散
接合させるものである。
According to a fourteenth aspect of the present invention, there is provided a method for manufacturing a comb-shaped magnetic pole rotor, wherein a magnetic material made of an alloy steel containing nickel is provided on both front and rear sides of a non-magnetic material of a nickel-base alloy in a direction of a rotation axis, among the facing surfaces thereof. Of the magnetic material, the permanent magnets are arranged at the outer ends of the magnetic materials in the direction of the rotation axis, and the nickel layers are arranged so that at least one of the facing surfaces thereof has the nickel layer interposed therebetween. However, the non-magnetic material, the magnetic material, and the permanent magnet are diffusion-bonded by the hot isostatic pressing method.

【0022】請求項15の発明は、請求項14の発明の
くし形磁極回転子の製造方法において、非磁性材と磁性
材との対向面、及び磁性材と永久磁石との対向面それぞ
れの少なくとも一方にニッケルメッキ層を形成し、熱間
等方圧加圧法によって非磁性材と磁性材と永久磁石とを
拡散接合させるものである。
According to a fifteenth aspect of the present invention, in the method of manufacturing a comb-shaped magnetic pole rotor according to the fourteenth aspect, at least the facing surfaces of the non-magnetic material and the magnetic material and the facing surfaces of the magnetic material and the permanent magnet are at least provided. A nickel plating layer is formed on one side, and the non-magnetic material, the magnetic material, and the permanent magnet are diffusion-bonded by a hot isostatic pressing method.

【0023】請求項16の発明は、請求項14の発明の
くし形磁極回転子の製造方法において、非磁性材と磁性
材との対向面間、及び磁性材と永久磁石との対向面間そ
れぞれにニッケル箔を介在させ、熱間等方圧加圧法によ
って非磁性材と磁性材と永久磁石とを拡散接合させるも
のである。
According to a sixteenth aspect of the present invention, in the method of manufacturing a comb-shaped magnetic pole rotor according to the fourteenth aspect, between the facing surfaces of the non-magnetic material and the magnetic material and between the facing surfaces of the magnetic material and the permanent magnet, respectively. A nickel foil is interposed between the non-magnetic material, the magnetic material and the permanent magnet by diffusion bonding by a hot isostatic pressing method.

【0024】請求項17の発明の回転電機は、電機子コ
イル及び励磁コイルの装着された固定子と、ニッケル基
合金の非磁性材の回転軸方向の前後両面にニッケルを含
む合金鋼の磁性材が接合され、磁性材の回転軸方向の前
後各端部に永久磁石が埋め込まれ、非磁性材と磁性材と
の接合界面及び磁性材と永久磁石との接合界面にニッケ
ル拡散層が形成されたくし形磁極回転子とを備えたもの
である。
According to a seventeenth aspect of the present invention, there is provided a rotating electric machine in which a stator provided with an armature coil and an exciting coil and a magnetic material made of an alloy steel containing nickel on the front and rear surfaces of a non-magnetic material of nickel-base alloy in the rotation axis direction. And the permanent magnets are embedded at the front and rear ends of the magnetic material in the direction of the rotation axis, and nickel diffusion layers are formed at the bonding interface between the non-magnetic material and the magnetic material and at the bonding interface between the magnetic material and the permanent magnet. And a magnetic pole rotor.

【0025】[0025]

【作用】請求項1の発明のくし形磁極回転子では、ニッ
ケル基合金の非磁性材の径方向中央部に永久磁石を取り
付け、非磁性材及び永久磁石の回転軸方向の前後両面に
ニッケルを含む合金鋼の磁性材を接合し、この接合界面
にニッケル拡散層を形成することにより、非磁性材及び
永久磁石と磁性材との接合界面に脱炭層や炭化層が存在
しなくて接合強度が増し、超高速回転に耐える磁極回転
子とすることができる。
In the comb-shaped magnetic pole rotor according to the first aspect of the present invention, the permanent magnet is attached to the radial center of the non-magnetic material of the nickel-base alloy, and the front and rear surfaces of the non-magnetic material and the permanent magnet are provided with nickel. By joining the magnetic material of the alloy steel containing it and forming the nickel diffusion layer at this joining interface, there is no decarburized layer or carbonized layer at the joining interface between the non-magnetic material and the permanent magnet and the magnetic material, and the joining strength is improved. In addition, the magnetic pole rotor can withstand ultra-high speed rotation.

【0026】また磁極回転子の一部に永久磁石を設ける
ことにより、この磁極回転子をくし形磁極回転電機の回
転子として用いるとき、固定子側に設けるべき励磁コイ
ルの一部あるいは全部を永久磁石によって置き換えるこ
とができ、ひいては固定子側の励磁コイルを小さくし、
あるいはなくすことによって回転電機の小形化が図れ
る。
Further, by providing a permanent magnet on a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is permanent. It can be replaced by a magnet, which in turn reduces the size of the stator excitation coil,
Alternatively, by eliminating it, the size of the rotating electric machine can be reduced.

【0027】請求項2の発明のくし形磁極回転子では、
非磁性材としてニッケル含有の超合金を用い、磁性材と
してニッケルクロムモリブデン鋼を用い、これらの非磁
性材及び永久磁石と磁性材との接合界面にニッケル拡散
層を形成することにより、非磁性材及び永久磁石と磁性
材との接合界面に脱炭層や炭化層が存在しなくて接合強
度が増し、超高速回転に耐える磁極回転子とすることが
できる。
In the comb-shaped magnetic pole rotor according to the invention of claim 2,
By using a nickel-containing superalloy as the non-magnetic material and nickel-chromium-molybdenum steel as the magnetic material, and forming a nickel diffusion layer at the bonding interface between these non-magnetic material and permanent magnet, the non-magnetic material Further, since there is no decarburized layer or carbonized layer at the joining interface between the permanent magnet and the magnetic material, the joining strength is increased, and the magnetic pole rotor can withstand ultra-high speed rotation.

【0028】また磁極回転子の一部に永久磁石を設ける
ことにより、この磁極回転子をくし形磁極回転電機の回
転子として用いるとき、固定子側に設けるべき励磁コイ
ルの一部あるいは全部を永久磁石によって置き換えるこ
とができ、ひいては固定子側の励磁コイルを小さくし、
あるいはなくすことによって回転電機の小形化が図れ
る。
Further, by providing a permanent magnet in a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is permanent. It can be replaced by a magnet, which in turn reduces the size of the stator excitation coil,
Alternatively, by eliminating it, the size of the rotating electric machine can be reduced.

【0029】請求項3の発明のくし形磁極回転子では、
ニッケル基合金の非磁性材及び永久磁石を9パーセント
ニッケル合金鋼の磁性材で回転軸方向の前後両側から挟
み、接合界面にニッケル拡散層を形成することにより、
非磁性材及び永久磁石と磁性材との接合界面に脱炭層や
炭化層が存在しなくて接合強度が増し、超高速回転に耐
える磁極回転子とすることができる。
In the comb-shaped magnetic pole rotor according to the invention of claim 3,
By sandwiching the non-magnetic material of the nickel-based alloy and the permanent magnet with the magnetic material of 9% nickel alloy steel from both front and rear sides in the rotation axis direction, and forming the nickel diffusion layer at the joint interface,
Since there is no decarburized layer or carbonized layer at the joining interface between the non-magnetic material or the permanent magnet and the magnetic material, the joining strength is increased, and the magnetic pole rotor can withstand ultra-high speed rotation.

【0030】また磁極回転子の一部に永久磁石を設ける
ことにより、この磁極回転子をくし形磁極回転電機の回
転子として用いるとき、固定子側に設けるべき励磁コイ
ルの一部あるいは全部を永久磁石によって置き換えるこ
とができ、ひいては固定子側の励磁コイルを小さくし、
あるいはなくすことによって回転電機の小形化が図れ
る。
Further, by providing a permanent magnet in a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is permanent. It can be replaced by a magnet, which in turn reduces the size of the stator excitation coil,
Alternatively, by eliminating it, the size of the rotating electric machine can be reduced.

【0031】請求項4の発明のくし形磁極回転子では、
2極くし形構造とすることにより超高速回転用の磁極回
転子を形成できる。
In the comb-shaped magnetic pole rotor according to the invention of claim 4,
With the two-pole comb structure, a magnetic pole rotor for ultra-high speed rotation can be formed.

【0032】請求項5の発明のくし形磁極回転子の製造
方法では、中央部に永久磁石が取り付けられたニッケル
基合金の非磁性材の回転軸方向の前後両側にニッケルを
含む合金鋼の磁性材を、それらの対向面のうちの少なく
とも一方にニッケル層が介在するようにして配置し、熱
間等方圧加圧法によって非磁性材及び永久磁石と磁性材
とを拡散接合させることにより、非磁性材及び永久磁石
と磁性材との接合界面にニッケル拡散層を成長させ、接
合界面に脱炭層や炭化層が存在しなくて接合強度が大き
く、超高速回転に耐える磁極回転子を得る。
In the method for manufacturing a comb-shaped magnetic pole rotor according to the present invention, the magnetic property of the alloy steel containing nickel is provided on both the front and rear sides in the rotation axis direction of the non-magnetic material of the nickel base alloy having the permanent magnet attached to the central portion. By arranging the material so that a nickel layer intervenes on at least one of the facing surfaces, and diffusively bonding the non-magnetic material and the permanent magnet with the magnetic material by the hot isostatic pressing method. A nickel diffusion layer is grown at the bonding interface between a magnetic material and a permanent magnet and a magnetic material, and there is no decarburized layer or carbonized layer at the bonding interface, the bonding strength is high, and a magnetic pole rotor that can withstand ultra-high speed rotation is obtained.

【0033】請求項6の発明のくし形磁極回転子の製造
方法では、非磁性材及び永久磁石の磁性材との対向面、
又は磁性材の非磁性材及び永久磁石との対向面の少なく
とも一方にニッケルメッキ層を形成し、熱間等方圧加圧
法によって非磁性材及び永久磁石と磁性材とを拡散接合
させることにより、非磁性材及び永久磁石と磁性材との
接合界面にニッケル拡散層を成長させ、接合界面に脱炭
層や炭化層が存在しなくて接合強度が大きく、超高速回
転に耐える磁極回転子を得る。
In the method for manufacturing a comb-shaped magnetic pole rotor according to the sixth aspect of the present invention, the non-magnetic material and the surface of the permanent magnet facing the magnetic material,
Alternatively, by forming a nickel plating layer on at least one of the facing surfaces of the non-magnetic material and the permanent magnet of the magnetic material, and by diffusion bonding the non-magnetic material and the permanent magnet and the magnetic material by the hot isostatic pressing method, A nickel diffusion layer is grown at the joint interface between a non-magnetic material or a permanent magnet and a magnetic material, and a magnetic pole rotor having a large joint strength without a decarburized layer or a carbonized layer at the joint interface and capable of withstanding ultra-high speed rotation is obtained.

【0034】請求項7の発明のくし形磁極回転子の製造
方法では、非磁性材及び永久磁石と磁性材との対向面間
にニッケル箔を介在させ、熱間等方圧加圧法によって非
磁性材及び永久磁石と磁性材とを拡散接合させることに
より、非磁性材と磁性材との接合界面にニッケル拡散層
を成長させ、接合界面に脱炭層や炭化層が存在しなくて
接合強度が大きく、超高速回転に耐える磁極回転子を得
る。
In the method for manufacturing a comb-shaped magnetic pole rotor according to the present invention, a nickel foil is interposed between the facing surfaces of the non-magnetic material and the permanent magnet and the magnetic material, and the non-magnetic material is applied by the hot isostatic pressing method. Diffusion bonding between the magnetic material and the permanent magnet and the magnetic material causes a nickel diffusion layer to grow at the bonding interface between the non-magnetic material and the magnetic material, and the bonding strength is high because there is no decarburized layer or carbonized layer at the bonding interface. To obtain a magnetic pole rotor that can withstand ultra-high speed rotation.

【0035】請求項8の発明の回転電機では、電機子コ
イル及び励磁コイルの装着された固定子と、ニッケル基
合金の非磁性材の径方向中央部に永久磁石が取り付けら
れ、非磁性材及び永久磁石の回転軸方向の前後両面にニ
ッケルを含む合金鋼の磁性材が接合され、この接合界面
にニッケル拡散層が形成されたくし形磁極回転子とを備
えることにより、くし形磁極回転子側に設けた永久磁石
によって固定子側の励磁コイルの磁力の一部を補い、そ
の分、励磁コイルに必要とされる寸法を小さくし、ひい
ては回転電機全体の寸法を小さくする。
In the rotating electric machine according to the invention of claim 8, a permanent magnet is attached to the stator in which the armature coil and the exciting coil are mounted, and the non-magnetic material of the nickel-base alloy in the radial center thereof. The magnetic material of alloy steel containing nickel is joined to the front and rear surfaces of the permanent magnet in the direction of the rotation axis, and the comb-shaped magnetic pole rotor having the nickel diffusion layer formed on the bonding interface is provided on the comb-shaped magnetic pole rotor side. A part of the magnetic force of the exciting coil on the side of the stator is supplemented by the provided permanent magnet, and the size required for the exciting coil is reduced by that amount, which in turn reduces the size of the entire rotary electric machine.

【0036】請求項9の発明の回転電機では、電機子コ
イルの装着された固定子と、ニッケル基合金の非磁性材
の径方向中央部に固定子に装着すべき励磁コイルに相当
する大きさの磁力を有する永久磁石が取り付けられ、非
磁性材及び永久磁石との回転軸方向の前後両面にニッケ
ルを含む合金鋼の磁性材が接合され、この接合界面にニ
ッケル拡散層が形成されたくし形磁極回転子とを備える
ことにより、くし形磁極回転子側に設けた永久磁石によ
って固定子側に励磁コイルを必要とせず、その分、固定
子側のフレームの寸法を小さくし、ひいては回転電機全
体の寸法を小さくする。
According to a ninth aspect of the present invention, there is provided a rotating electric machine having a stator having an armature coil and a size corresponding to an exciting coil to be mounted on the stator at a radial center of a non-magnetic material of nickel-base alloy. Comb-shaped magnetic pole in which a permanent magnet having a magnetic force of 1 is attached, magnetic materials made of alloy steel containing nickel are bonded to both front and rear surfaces of the non-magnetic material and the permanent magnet in the rotation axis direction, and a nickel diffusion layer is formed at the bonding interface. By providing the rotor, the permanent magnets provided on the side of the comb-shaped magnetic pole rotor do not require an exciting coil on the side of the stator, and the size of the frame on the side of the stator is reduced by that amount. Reduce the size.

【0037】請求項10の発明のくし形磁極回転子で
は、ニッケル基合金の非磁性材の回転軸方向の前後両面
にニッケルを含む合金鋼の磁性材を接合し、磁性材の回
転軸方向の前後各端部に永久磁石を埋め込み、非磁性材
と磁性材との接合界面及び磁性材と永久磁石との接合界
面にニッケル拡散層を形成することにより、非磁性材と
磁性材と永久磁石とのそれぞれの接合界面に脱炭層や炭
化層が存在しなくて接合強度が増し、超高速回転に耐え
る磁極回転子とすることができる。
In the comb-shaped magnetic pole rotor according to the present invention, the magnetic material of alloy steel containing nickel is joined to the front and rear surfaces of the non-magnetic material of the nickel-base alloy in the direction of the rotation axis, and the magnetic material in the direction of the rotation axis of the magnetic material is joined. By embedding a permanent magnet in each of the front and rear ends and forming a nickel diffusion layer at the joint interface between the non-magnetic material and the magnetic material and the joint interface between the magnetic material and the permanent magnet, the non-magnetic material, the magnetic material, and the permanent magnet are formed. Since there is no decarburized layer or carbonized layer at each of the joining interfaces, the joining strength is increased, and the magnetic pole rotor can withstand ultra-high speed rotation.

【0038】また磁極回転子の一部に永久磁石を設ける
ことにより、この磁極回転子をくし形磁極回転電機の回
転子として用いるとき、固定子側に設けるべき励磁コイ
ルの一部あるいは全部を永久磁石によって置き換えるこ
とができ、ひいては固定子側の励磁コイルを小さくし、
あるいはなくすことによって回転電機の小形化が図れ
る。
Further, by providing a permanent magnet in a part of the magnetic pole rotor, when the magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is permanent. It can be replaced by a magnet, which in turn reduces the size of the stator excitation coil,
Alternatively, by eliminating it, the size of the rotating electric machine can be reduced.

【0039】請求項11の発明のくし形磁極回転子で
は、非磁性材としてニッケル含有の超合金を用い、磁性
材としてニッケルクロムモリブデン鋼を用い、非磁性材
と磁性材との接合界面及び磁性材と永久磁石との接合界
面にニッケル拡散層を形成することにより、非磁性材と
磁性材と永久磁石とのそれぞれの接合界面に脱炭層や炭
化層が存在しなくて接合強度が増し、超高速回転に耐え
る磁極回転子とすることができる。
According to the eleventh aspect of the present invention, in the comb-shaped magnetic pole rotor, a nickel-containing superalloy is used as the non-magnetic material, nickel chrome molybdenum steel is used as the magnetic material, and a bonding interface between the non-magnetic material and the magnetic material and magnetic properties are used. By forming a nickel diffusion layer at the joint interface between the material and the permanent magnet, there is no decarburized layer or carbonized layer at the joint interface between the non-magnetic material, the magnetic material and the permanent magnet, and the joint strength is increased. The magnetic pole rotor can withstand high-speed rotation.

【0040】また磁極回転子の一部に永久磁石を設ける
ことにより、この磁極回転子をくし形磁極回転電機の回
転子として用いるとき、固定子側に設けるべき励磁コイ
ルの一部あるいは全部を永久磁石によって置き換えるこ
とができ、ひいては固定子側の励磁コイルを小さくし、
あるいはなくすことによって回転電機の小形化が図れ
る。
Further, by providing a permanent magnet on a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is permanently set. It can be replaced by a magnet, which in turn reduces the size of the stator excitation coil,
Alternatively, by eliminating it, the size of the rotating electric machine can be reduced.

【0041】請求項12の発明の発明のくし形磁極回転
子では、磁性材として9パーセントニッケル合金鋼を用
い、非磁性材と磁性材との接合界面及び磁性材と永久磁
石との接合界面にニッケル拡散層を形成することによ
り、非磁性材と磁性材と永久磁石とのそれぞれの接合界
面に脱炭層や炭化層が存在しなくて接合強度が増し、超
高速回転に耐える磁極回転子とすることができる。
According to the twelfth aspect of the present invention, in the comb-shaped magnetic pole rotor, 9% nickel alloy steel is used as the magnetic material, and the joining interface between the non-magnetic material and the magnetic material and the joining interface between the magnetic material and the permanent magnet are used. By forming a nickel diffusion layer, there is no decarburization layer or carbonized layer at the bonding interface between the non-magnetic material, the magnetic material and the permanent magnet, the bonding strength increases and the magnetic pole rotor can withstand ultra-high speed rotation. be able to.

【0042】また磁極回転子の一部に永久磁石を設ける
ことにより、この磁極回転子をくし形磁極回転電機の回
転子として用いるとき、固定子側に設けるべき励磁コイ
ルの一部あるいは全部を永久磁石によって置き換えるこ
とができ、ひいては固定子側の励磁コイルを小さくし、
あるいはなくすことによって回転電機の小形化が図れ
る。
Further, by providing a permanent magnet in a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is permanent. It can be replaced by a magnet, which in turn reduces the size of the stator excitation coil,
Alternatively, by eliminating it, the size of the rotating electric machine can be reduced.

【0043】請求項13の発明のくし形磁極回転子で
は、2極くし形とすることにより超高速回転用の磁極回
転子を形成できる。
In the comb-shaped magnetic pole rotor according to the thirteenth aspect of the present invention, the magnetic pole rotor for ultra-high speed rotation can be formed by forming the two-pole comb-shaped rotor.

【0044】請求項14の発明のくし形磁極回転子の製
造方法では、ニッケル基合金の非磁性材の回転軸方向の
前後両側にニッケルを含む合金鋼の磁性材を、それらの
対向面のうちの少なくとも一方にニッケル層が介在する
ようにして配置し、磁性材それぞれの回転軸方向の外側
端部に永久磁石を、それらの対向面のうちの少なくとも
一方にニッケル層が介在するようにして配置し、熱間等
方圧加圧法によって非磁性材と磁性材と永久磁石とを拡
散接合させることにより、非磁性材と磁性材と永久磁石
とのそれぞれの接合界面にニッケル拡散層を成長させ、
接合界面に脱炭層や炭化層が存在しなくて接合強度が大
きく、超高速回転に耐える磁極回転子を得る。
In the method for manufacturing a comb-shaped magnetic pole rotor according to the fourteenth aspect of the present invention, the magnetic material of alloy steel containing nickel is provided on both front and rear sides of the non-magnetic material of nickel-base alloy in the direction of the rotation axis among the opposing surfaces thereof. Of the magnetic material, the permanent magnets are arranged at the outer ends of the magnetic materials in the direction of the rotation axis, and the nickel layers are arranged so that at least one of the facing surfaces thereof has the nickel layer interposed therebetween. Then, by diffusion bonding the non-magnetic material, the magnetic material, and the permanent magnet by the hot isostatic pressing method, a nickel diffusion layer is grown at each bonding interface between the non-magnetic material, the magnetic material, and the permanent magnet,
(EN) A magnetic pole rotor that has no decarburized layer or carbonized layer at the joint interface and has a large joint strength and can withstand ultra-high speed rotation.

【0045】請求項15の発明のくし形磁極回転子の製
造方法では、非磁性材と磁性材との対向面、及び磁性材
と永久磁石との対向面それぞれの少なくとも一方にニッ
ケルメッキ層を形成し、熱間等方圧加圧法によって非磁
性材と磁性材と永久磁石とを拡散接合させることによ
り、非磁性材と磁性材と永久磁石とのそれぞれの接合界
面にニッケル拡散層を成長させ、接合界面に脱炭層や炭
化層が存在しなくて接合強度が大きく、超高速回転に耐
える磁極回転子を得る。
In the method of manufacturing a comb-shaped magnetic pole rotor according to the fifteenth aspect of the present invention, a nickel plating layer is formed on at least one of the facing surfaces of the non-magnetic material and the magnetic material and the facing surface of the magnetic material and the permanent magnet. Then, by diffusion bonding the non-magnetic material, the magnetic material, and the permanent magnet by the hot isostatic pressing method, a nickel diffusion layer is grown at each bonding interface between the non-magnetic material, the magnetic material, and the permanent magnet, (EN) A magnetic pole rotor that has no decarburized layer or carbonized layer at the joint interface and has a large joint strength and can withstand ultra-high speed rotation.

【0046】請求項16の発明のくし形磁極回転子の製
造方法では、非磁性材と磁性材との対向面間、及び磁性
材と永久磁石との対向面間それぞれにニッケル箔を介在
させ、熱間等方圧加圧法によって非磁性材と磁性材と永
久磁石とを拡散接合させることにより、非磁性材と磁性
材と永久磁石とのそれぞれの接合界面にニッケル拡散層
を成長させ、接合界面に脱炭層や炭化層が存在しなくて
接合強度が大きく、超高速回転に耐える磁極回転子を得
る。
In the method for manufacturing a comb-shaped magnetic pole rotor according to the sixteenth aspect of the present invention, nickel foil is interposed between the facing surfaces of the non-magnetic material and the magnetic material and between the facing surfaces of the magnetic material and the permanent magnet. By diffusively bonding the non-magnetic material, the magnetic material, and the permanent magnet by the hot isostatic pressing method, a nickel diffusion layer is grown at each bonding interface of the non-magnetic material, the magnetic material, and the permanent magnet, and the bonding interface is formed. There is no decarburized layer or carbonized layer, and the bonding strength is large, and a magnetic pole rotor that can withstand ultra-high speed rotation is obtained.

【0047】請求項17の発明の回転電機では、電機子
コイル及び励磁コイルの装着された固定子と、ニッケル
基合金の非磁性材の回転軸方向の前後両面にニッケルを
含む合金鋼の磁性材が接合され、磁性材の回転軸方向の
前後各端部に永久磁石が埋め込まれ、非磁性材と磁性材
との接合界面及び磁性材と永久磁石との接合界面にニッ
ケル拡散層が形成されたくし形磁極回転子とを備えるこ
とにより、くし形磁極回転子側に設けた永久磁石によっ
て固定子側の励磁コイルの磁力の一部を補い、その分、
励磁コイルに必要とされる寸法を小さくし、ひいては回
転電機全体の寸法を小さくする。
According to a seventeenth aspect of the present invention, there is provided a rotating electric machine in which a stator provided with an armature coil and an exciting coil and a magnetic material made of an alloy steel containing nickel on the front and rear surfaces of a non-magnetic material of a nickel-base alloy in a rotation axis direction. And the permanent magnets are embedded at the front and rear ends of the magnetic material in the direction of the rotation axis, and nickel diffusion layers are formed at the bonding interface between the non-magnetic material and the magnetic material and at the bonding interface between the magnetic material and the permanent magnet. By including the shape magnetic pole rotor, a part of the magnetic force of the exciting coil on the stator side is supplemented by the permanent magnet provided on the side of the comb magnetic pole rotor,
The size required for the exciting coil is reduced, which in turn reduces the size of the entire rotary electric machine.

【0048】[0048]

【実施例】以下、本発明の実施例を図に基づいて詳説す
る。図1は回転電機の発明の第1の実施例を示してお
り、2極くし形磁極回転子11と固定子12とで構成さ
れている。そして2極くし形磁極回転子11は、インコ
ネル718のようなニッケル含有超合金を素材とするほ
ぼ楕円盤状のニッケル基合金の非磁性材13の中央部に
円盤状の永久磁石14を埋め込み、この非磁性材13及
び永久磁石14の回転軸方向の前後両側に、例えばニッ
ケルクロムモリブデン鋼(SNCM630)または9パ
ーセントニッケル合金鋼のような数パーセントニッケル
含有の低合金鋼を素材とする円柱状の磁性材15を接合
し、かつ非磁性材13及び永久磁石14と磁性材15と
の接合界面にニッケル相互拡散層を形成した組織構造で
ある。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a first embodiment of the invention of a rotating electric machine, which comprises a two-pole comb-shaped magnetic pole rotor 11 and a stator 12. The two-pole comb-shaped magnetic pole rotor 11 has a disk-shaped permanent magnet 14 embedded in the central portion of a non-magnetic material 13 made of a nickel-based alloy having a substantially elliptical disk shape made of a nickel-containing superalloy such as Inconel 718, The non-magnetic material 13 and the permanent magnet 14 have a columnar shape on both front and rear sides in the rotation axis direction, which are made of a low alloy steel containing several percent nickel such as nickel chromium molybdenum steel (SNCM630) or 9 percent nickel alloy steel. This is a structural structure in which a magnetic material 15 is bonded and a nickel interdiffusion layer is formed at the bonding interface between the non-magnetic material 13 and the permanent magnet 14 and the magnetic material 15.

【0049】また固定子12は、磁性材の外フレーム1
6内の中央部に鉄心17を有する電機子コイル18を装
着し、外フレーム16の回転軸C方向の前後各端部内周
に励磁コイル18を装着した構造である。
The stator 12 is an outer frame 1 made of a magnetic material.
In this structure, an armature coil 18 having an iron core 17 is attached to the center of the inner part of the inner peripheral portion 6 of the outer frame 16, and an exciting coil 18 is attached to the inner circumferences of the front and rear ends of the outer frame 16 in the direction of the rotation axis C.

【0050】磁極回転子11側の永久磁石14と固定子
12側の励磁コイル19との関係は、永久磁石14の磁
力によって磁気回路20が形成され、従来の励磁コイル
のみで形成されていた磁気回路21の一部を補い、それ
だけこの実施例の励磁コイル19に必要とされる寸法を
従来よりも小さくしてある。
The relationship between the permanent magnet 14 on the side of the magnetic pole rotor 11 and the exciting coil 19 on the side of the stator 12 is such that the magnetic circuit 20 is formed by the magnetic force of the permanent magnet 14 and is formed only by the conventional exciting coil. A part of the circuit 21 is supplemented, and the size required for the exciting coil 19 of this embodiment is smaller than that of the conventional one.

【0051】次に、上記回転電機の発明の第1の実施例
に用いられている磁極回転子11の製造方法の発明の第
1の実施例について図2〜図4に基づいて説明する。ま
ず図2に示すように、ニッケル含有の合金鋼の磁性材1
5として円柱体のニッケルクロムモリブデン鋼(SNC
M630)を用い、ニッケル基合金の非磁性材13とし
て楕円盤状のニッケル25パーセント含有の超合金イン
コネル718を用い、この非磁性材13の中央部にはサ
マリウムコバルト磁石、あるいはネオジウム鉄ボロン磁
石などの円盤状の永久磁石14を埋め込み、これらの接
合面を互いに組合わさる形状に加工成形し、鏡面仕上げ
する。
Next, the first embodiment of the invention of the method of manufacturing the magnetic pole rotor 11 used in the first embodiment of the invention of the rotating electric machine will be described with reference to FIGS. First, as shown in FIG. 2, magnetic material 1 of nickel-containing alloy steel
No. 5 cylindrical nickel-chromium-molybdenum steel (SNC
M630), an elliptical disc-shaped superalloy Inconel 718 containing 25% of nickel is used as the non-magnetic material 13 of a nickel-based alloy, and a samarium cobalt magnet, a neodymium iron boron magnet, or the like is used in the central portion of the non-magnetic material 13. The disk-shaped permanent magnet 14 is embedded, and these joint surfaces are processed and formed into a shape that is combined with each other, and mirror-finished.

【0052】そして非磁性材13及び永久磁石14と磁
性材15との少なくとも一方の接合面、ここでは磁性材
15の接合面に100ミクロン程度の厚さのニッケルメ
ッキ層31を形成する。このニッケルメッキ層31の介
在によって特に磁性材15に含有されている鉄分の酸化
が防止され、後の熱間等方圧加圧(HIP)工程での仕
上げ強度が理想的なものとなる。
Then, a nickel plating layer 31 having a thickness of about 100 μm is formed on the joint surface of at least one of the non-magnetic material 13 and the permanent magnet 14 and the magnetic material 15, here the joint surface of the magnetic material 15. The interposition of the nickel plating layer 31 prevents the oxidation of the iron component contained in the magnetic material 15 in particular, and makes the finishing strength in the subsequent hot isostatic pressing (HIP) step ideal.

【0053】次に、これらの非磁性材13及び永久磁石
14と磁性材15,15とを組み合わせて、図3に示す
ようにHIPキャン32内に収容し、蓋33をして密閉
し、これを加熱炉内に収容し、その後、アルゴンガスの
ような不活性ガスを注入し、1200℃、1000気圧
の条件下で約2時間の間HIP(熱間等方圧加圧)を行
い、非磁性材13及び永久磁石14と磁性材15との接
合界面で相互拡散を起こさせて固相接合を行う(なお、
熱間等方圧加圧法(HIP法)は特公平6−7740号
公報参照)。
Next, the non-magnetic material 13, the permanent magnet 14 and the magnetic materials 15, 15 are combined and housed in the HIP can 32 as shown in FIG. Was placed in a heating furnace, and then an inert gas such as argon gas was injected, and HIP (hot isotropic pressure pressurization) was performed for about 2 hours under the conditions of 1200 ° C. and 1000 atm. Solid-phase bonding is performed by causing mutual diffusion at the bonding interface between the magnetic material 13 and the permanent magnet 14 and the magnetic material 15.
For the hot isostatic pressing method (HIP method), see Japanese Patent Publication No. 6-7740).

【0054】こうしてHIP法によって得られた2極く
し形磁極回転子11は図4に示してあるが、HIPによ
る固相接合によって接合界面に存在していたニッケルメ
ッキ層31が非磁性材13及び永久磁石14と磁性材1
5との接合界面からそれぞれの内部に拡散していき、元
のニッケルメッキ層31が消失し、元の界面付近には相
互拡散層が形成される。
The two-pole comb-shaped magnetic pole rotor 11 thus obtained by the HIP method is shown in FIG. 4, and the nickel plating layer 31 existing at the joining interface by the solid-state joining by HIP has the non-magnetic material 13 and Permanent magnet 14 and magnetic material 1
5 diffuses inward from the joint interface with 5, the original nickel plating layer 31 disappears, and an interdiffusion layer is formed near the original interface.

【0055】なお、上記のくし形磁極回転子の製造方法
の発明の第1の実施例において、磁性材15としてニッ
ケルクロムモリブデン鋼に代えて、数パーセントニッケ
ル含有の低合金鋼、例えば、9パーセントニッケル合金
鋼を使用することができ、その場合にも、上記とほぼ同
じ条件でHIP法によって磁極回転子11を作ることが
できる。また作り出された磁極回転子11の接合界面の
強度もほとんど同じである。
In the first embodiment of the invention of the method for manufacturing the above-mentioned comb-shaped magnetic pole rotor, instead of nickel chromium molybdenum steel as the magnetic material 15, a low alloy steel containing a few percent nickel, for example, 9 percent. Nickel alloy steel can be used, and even in that case, the magnetic pole rotor 11 can be manufactured by the HIP method under substantially the same conditions as described above. Further, the strength of the bonding interface of the magnetic pole rotor 11 thus produced is almost the same.

【0056】次に、くし形磁極回転子の製造方法の発明
の第2の実施例を図5及び図6に基づいて説明する。ま
ず図5に示すように、ニッケル含有の合金鋼の磁性材1
5として円柱体のニッケルクロムモリブデン鋼(SNC
M630)を用い、ニッケル基合金の非磁性材13とし
て楕円盤状のニッケル25パーセント含有の超合金イン
コネル718を用い、この非磁性材13の中央部にはサ
マリウムコバルト磁石、あるいはネオジウム鉄ボロン磁
石などの円盤状の永久磁石14を埋め込み、これらの接
合面を互いに組合わさる形状に加工成形し、鏡面仕上げ
する。
Next, a second embodiment of the method of manufacturing the comb-shaped magnetic pole rotor will be described with reference to FIGS. 5 and 6. First, as shown in FIG. 5, magnetic material 1 of nickel-containing alloy steel
No. 5 cylindrical nickel-chromium-molybdenum steel (SNC
M630), an elliptical disc-shaped superalloy Inconel 718 containing 25% of nickel is used as the non-magnetic material 13 of a nickel-based alloy, and a samarium cobalt magnet, a neodymium iron boron magnet, or the like is used in the central portion of the non-magnetic material 13. The disk-shaped permanent magnet 14 is embedded, and these joint surfaces are processed and formed into a shape that is combined with each other, and mirror-finished.

【0057】そして非磁性材13及び永久磁石14と磁
性材15との間に100ミクロン程度の厚さのニッケル
箔34を介在させて両材を組み合わせ、これを図6に示
すようにHIPキャン32内に収容し、蓋33をして密
閉する。そして、加熱炉内に収容し、アルゴンガスのよ
うな不活性ガスを注入し、1200℃、1000気圧の
条件下で約2時間の間HIPを行い、非磁性材13及び
永久磁石14と磁性材15との接合界面で相互拡散を起
こさせて固相接合を行う。
Then, a nickel foil 34 having a thickness of about 100 μm is interposed between the non-magnetic material 13 and the permanent magnet 14 and the magnetic material 15 to combine both materials, and this is combined with the HIP can 32 as shown in FIG. It is housed inside, and the lid 33 is closed to seal it. Then, the non-magnetic material 13 and the permanent magnet 14 and the magnetic material are housed in a heating furnace, an inert gas such as argon gas is injected, and HIP is performed at 1200 ° C. and 1000 atmospheric pressure for about 2 hours. Solid-phase bonding is performed by causing mutual diffusion at the bonding interface with 15.

【0058】こうしてHIP法によって得られた2極く
し形磁極回転子11は上記製造方法の発明の第1の実施
例で得られたものと同じく図4に示すようなものであ
り、HIPによる固相接合によってニッケル箔34が両
材の接合界面から内部に拡散していき、元のニッケル箔
34は消失し、元の界面付近には相互拡散層が形成され
る。
The two-pole comb-shaped magnetic pole rotor 11 thus obtained by the HIP method is the same as that obtained in the first embodiment of the invention of the above manufacturing method as shown in FIG. By the phase bonding, the nickel foil 34 diffuses inward from the bonding interface between both materials, the original nickel foil 34 disappears, and an interdiffusion layer is formed near the original interface.

【0059】こうして得られた2極くし形磁極回転子1
1は、上記製造方法の発明の第1の実施例で得られたも
のとほぼ同じ強度を示す。
Two-pole comb-shaped magnetic pole rotor 1 thus obtained
1 shows almost the same strength as that obtained in the first embodiment of the invention of the above manufacturing method.

【0060】なお、上記製造方法の発明の第2の実施例
において、磁性材15としてニッケルクロムモリブデン
鋼に代えて、数パーセントニッケル含有の低合金鋼、例
えば、9パーセントニッケル合金鋼を使用することがで
き、その場合にも、上記とほぼ同じ条件でHIP法によ
って磁極回転子を作ることができる。また作り出された
磁極回転子11の接合界面の強度もほとんど同じであ
る。
In the second embodiment of the invention of the above-mentioned manufacturing method, the magnetic material 15 is replaced by nickel chromium molybdenum steel, and low alloy steel containing a few percent nickel, for example, 9 percent nickel alloy steel is used. In that case, the magnetic pole rotor can be manufactured by the HIP method under almost the same conditions as above. Further, the strength of the bonding interface of the magnetic pole rotor 11 thus produced is almost the same.

【0061】また上記製造方法の発明の第1、第2の実
施例それぞれではHIP法の条件として温度条件は用い
る素材が固相から液相に変わる直前の温度条件とし、ま
た圧力条件は高圧ほど望ましいが、特に限定されるわけ
でない。またHIP時間も数10分〜数時間の範囲で特
に限定されるわけではない。さらにニッケルメッキ層3
1は非磁性材13側に形成することもでき、さらには両
材13,15それぞれに形成することもできる。そして
ニッケルメッキ層31、ニッケル箔34それぞれの厚み
は数10ミクロン〜百数10ミクロンとすることができ
る。
In each of the first and second embodiments of the invention of the above manufacturing method, the temperature condition as the condition of the HIP method is the temperature condition just before the material used changes from the solid phase to the liquid phase, and the pressure condition is the higher the pressure. Although desirable, it is not particularly limited. Further, the HIP time is not particularly limited within the range of several tens of minutes to several hours. Further nickel plated layer 3
1 can be formed on the non-magnetic material 13 side, and can also be formed on both materials 13, 15. The thickness of each of the nickel plating layer 31 and the nickel foil 34 can be set to several tens of microns to several hundreds of microns.

【0062】なお、図1に示した回転電機の発明の第1
の実施例で用いられる2極くし形磁極回転子11は特に
その製造方法が上記製造方法の発明の第1、第2の実施
例のものに限定されるわけではなく、ニッケル基合金の
非磁性材13及び永久磁石14の回転軸方向の前後両面
にニッケルを含む合金鋼の磁性材15,15が接合さ
れ、この接合界面にニッケル拡散層が形成されている組
織構造を有する磁極回転子であれば、他の方法で得られ
るものであっても同様に大きな強度を有し、特に超高速
回転電機の回転子として使用するのに適したものとな
る。
The first aspect of the invention of the rotary electric machine shown in FIG.
The manufacturing method of the two-pole comb-shaped magnetic pole rotor 11 used in the first embodiment is not limited to those of the first and second embodiments of the invention of the above-described manufacturing method. A magnetic pole rotor having a texture structure in which magnetic materials 15 and 15 made of alloy steel containing nickel are bonded to both front and rear surfaces of the material 13 and the permanent magnet 14 in the rotation axis direction, and a nickel diffusion layer is formed at the bonding interface. For example, even if it is obtained by another method, it has a similarly large strength and is particularly suitable for use as a rotor of an ultrahigh-speed rotating electric machine.

【0063】次に、図7に基づいて回転電機の発明の第
2の実施例について説明する。図7は回転電機の発明の
第2の実施例を示しており、2極くし形磁極回転子41
と固定子42とで構成されている。そして2極くし形磁
極回転子41は、インコネル718のようなニッケル含
有超合金を素材とする帽子状のニッケル基合金の非磁性
材43,43を向き合わせ、それらの中央部に形成され
る空間に円柱体の永久磁石44を埋め込み、この非磁性
材43,43の回転軸方向の前後両側に、例えばニッケ
ルクロムモリブデン鋼(SNCM630)または9パー
セントニッケル合金鋼のような数パーセントニッケル含
有の低合金鋼を素材とする円柱状の磁性材45,45を
接合し、かつ非磁性材43と永久磁石44と磁性材45
とのそれぞれの接合界面にニッケル相互拡散層を形成し
た組織構造である。
Next, a second embodiment of the invention of a rotary electric machine will be described with reference to FIG. FIG. 7 shows a second embodiment of the invention of a rotary electric machine, which is a two-pole comb-shaped magnetic pole rotor 41.
And a stator 42. The two-pole comb-shaped magnetic pole rotor 41 is a space formed in the central portion of the non-magnetic materials 43, 43 of a hat-shaped nickel-based alloy made of a nickel-containing superalloy such as Inconel 718 as opposed to each other. A cylindrical permanent magnet 44 is embedded in the non-magnetic material 43, 43, and a low alloy containing several percent nickel such as nickel chromium molybdenum steel (SNCM630) or 9 percent nickel alloy steel on both front and rear sides of the non-magnetic material 43, 43 in the rotation axis direction. Cylindrical magnetic materials 45, 45 made of steel are joined together, and a non-magnetic material 43, a permanent magnet 44, and a magnetic material 45 are joined.
This is a structural structure in which a nickel interdiffusion layer is formed at each joint interface with.

【0064】また固定子42は、磁性材の外フレーム4
6内の中央部に鉄心47を有する電機子コイル48を装
着した構造であり、永久磁石44に強力な磁力を持たせ
ることにより、従来必要とされていた励磁コイルは備え
られていない。
The stator 42 is an outer frame 4 made of a magnetic material.
6 has a structure in which an armature coil 48 having an iron core 47 is mounted in the central portion of 6, and by providing the permanent magnet 44 with a strong magnetic force, the conventionally required excitation coil is not provided.

【0065】この実施例の回転電機では、永久磁石44
によって磁気回路49が形成され、磁極回転子41は高
速回転する。したがって、励磁コイルを装着する空間を
外フレーム46に設ける必要がなく、その分、外フレー
ム46の回転軸方向の寸法が短くなっている。
In the rotating electric machine of this embodiment, the permanent magnet 44
Thus, the magnetic circuit 49 is formed, and the magnetic pole rotor 41 rotates at high speed. Therefore, it is not necessary to provide a space for mounting the exciting coil in the outer frame 46, and the dimension of the outer frame 46 in the rotation axis direction is reduced accordingly.

【0066】次に、図7に示した回転電機の発明の第2
の実施例に用いられている磁極回転子41の製造方法の
発明の第1の実施例について図8〜図10に基づいて説
明する。まず図8に示すように、ニッケル含有の合金鋼
の磁性材45として円柱体のニッケルクロムモリブデン
鋼(SNCM630)を用い、ニッケル基合金の非磁性
材43として帽子状のニッケル25パーセント含有の超
合金インコネル718を用い、円柱体の永久磁石44と
してサマリウムコバルト磁石、あるいはネオジウム鉄ボ
ロン磁石などを用い、これらの接合面を互いに組合わさ
る形状に加工成形し、鏡面仕上げする。
Next, the second aspect of the invention of the rotary electric machine shown in FIG.
The first embodiment of the invention of the method of manufacturing the magnetic pole rotor 41 used in the embodiment will be described with reference to FIGS. First, as shown in FIG. 8, a cylindrical nickel-chromium-molybdenum steel (SNCM630) is used as the magnetic material 45 of the nickel-containing alloy steel, and a hat-shaped superalloy containing 25% of nickel as the non-magnetic material 43 of the nickel-based alloy. Using Inconel 718, a samarium-cobalt magnet, a neodymium iron boron magnet, or the like is used as the columnar permanent magnet 44, and these joining surfaces are processed and molded into a shape in which they are combined with each other, and mirror-finished.

【0067】そして非磁性材43と永久磁石44との少
なくとも一方の接合面、また非磁性材43と磁性材45
との少なくとも一方の接合面、ここでは非磁性材43の
表裏両方の接合面に100ミクロン程度の厚さのニッケ
ルメッキ層51を形成する。このニッケルメッキ層51
の介在によって特に磁性材45に含有されている鉄分の
酸化が防止され、後のHIP工程での仕上げ強度が理想
的なものとなる。
Then, the joining surface of at least one of the non-magnetic material 43 and the permanent magnet 44, and the non-magnetic material 43 and the magnetic material 45.
A nickel plating layer 51 having a thickness of about 100 μm is formed on at least one of the joint surfaces, that is, both the front and back joint surfaces of the nonmagnetic material 43. This nickel plating layer 51
In particular, oxidation of the iron component contained in the magnetic material 45 is prevented by the inclusion of, and the finishing strength in the subsequent HIP step becomes ideal.

【0068】次に、これらの非磁性材43,43を向か
い合わせてその中央に形成される空間に永久磁石44を
入れ込み、さらに両側の非磁性材43,43それぞれの
外側に磁性材45,45を組み合わせて、図9に示すよ
うにHIPキャン52内に収容し、蓋53をして密閉
し、これを加熱炉内に収容してアルゴンガスのような不
活性ガスを注入し、1200℃、1000気圧の条件下
で約2時間の間HIP(熱間等方圧加圧)を行い、非磁
性材43と永久磁石44と磁性材45との各接合界面で
相互拡散を起こさせて固相接合を行う。
Next, these non-magnetic materials 43, 43 are opposed to each other, and the permanent magnet 44 is inserted into the space formed in the center of the non-magnetic materials 43, 43. 9, and housed in a HIP can 52 as shown in FIG. 9, sealed with a lid 53, housed in a heating furnace and injected with an inert gas such as argon gas, 1200 ° C. HIP (hot isostatic pressurization) is performed under the condition of 1000 atm for about 2 hours to cause mutual diffusion at each bonding interface of the non-magnetic material 43, the permanent magnet 44, and the magnetic material 45, and solid phase. Join.

【0069】こうしてHIP法によって得られた2極く
し形磁極回転子41は図10に示してあるが、HIPに
よる固相接合によって接合界面に存在していたニッケル
メッキ層51が非磁性材43と永久磁石44と磁性材4
5との各接合界面からそれぞれの内部に拡散していき、
元のニッケルメッキ層51が消失し、元の界面付近には
相互拡散層が形成される。
The two-pole comb-shaped magnetic pole rotor 41 thus obtained by the HIP method is shown in FIG. 10. The nickel plating layer 51 existing at the joining interface by the solid-state joining by the HIP and the non-magnetic material 43. Permanent magnet 44 and magnetic material 4
Diffusion from each joint interface with 5 to each inside,
The original nickel plating layer 51 disappears and an interdiffusion layer is formed near the original interface.

【0070】なお、上記のくし形磁極回転子の製造方法
の発明の第1の実施例において、磁性材45としてニッ
ケルクロムモリブデン鋼に代えて、数パーセントニッケ
ル含有の低合金鋼、例えば、9パーセントニッケル合金
鋼を使用することができ、その場合にも、上記とほぼ同
じ条件でHIP法によって磁極回転子41を作ることが
できる。また作り出された磁極回転子41の接合界面の
強度もほとんど同じである。
In the first embodiment of the invention of the method for manufacturing the above-mentioned comb-shaped magnetic pole rotor, the nickel-chromium-molybdenum steel is used as the magnetic material 45 instead of the low alloy steel containing a few percent nickel, for example, 9 percent. Nickel alloy steel can be used, and even in that case, the magnetic pole rotor 41 can be manufactured by the HIP method under substantially the same conditions as described above. Further, the strength of the joint interface of the magnetic pole rotor 41 produced is almost the same.

【0071】次に、回転電機の発明の第2の実施例に用
いられるくし形磁極回転子の製造方法の発明の第2の実
施例を図11に基づいて説明する。まずニッケル含有の
合金鋼の磁性材45として円柱体のニッケルクロムモリ
ブデン鋼(SNCM630)を用い、ニッケル基合金の
非磁性材43として帽子状のニッケル25パーセント含
有の超合金インコネル718を用い、円柱体の永久磁石
44としてサマリウムコバルト磁石、あるいはネオジウ
ム鉄ボロン磁石などを用い、これらの接合面を互いに組
合わさる形状に加工成形し、鏡面仕上げする。
Next, a second embodiment of the invention of the method for manufacturing the comb-shaped magnetic pole rotor used in the second embodiment of the invention of the rotating electric machine will be described with reference to FIG. First, a cylindrical nickel-chromium-molybdenum steel (SNCM630) is used as the magnetic material 45 of the nickel-containing alloy steel, and a cap-shaped superalloy Inconel 718 containing 25% of nickel is used as the non-magnetic material 43 of the nickel-based alloy. A samarium-cobalt magnet, a neodymium iron boron magnet, or the like is used as the permanent magnet 44, and the joining surfaces thereof are processed and shaped into a shape that is combined with each other, and mirror-finished.

【0072】そして非磁性材43と永久磁石44との
間、非磁性材43と磁性材45との間それぞれに100
ミクロン程度の厚さのニッケル箔54(このニッケル箔
54は接合面の形状に合わせてあらかじめ成形しておく
ことができる)を介在させて両材を組み合わせ、これを
第1の実施例と同じく図9に示すようにHIPキャン5
2内に収容し、蓋53をして密閉する。そして、加熱炉
内に収容してアルゴンガスのような不活性ガスを注入
し、1200℃、1000気圧の条件下で約2時間の間
HIPを行い、非磁性材43と永久磁石44と磁性材4
5との接合界面で相互拡散を起こさせて固相接合を行
う。
Then, 100 is provided between the non-magnetic material 43 and the permanent magnet 44 and 100 is provided between the non-magnetic material 43 and the magnetic material 45.
Both materials are combined with a nickel foil 54 having a thickness of about micron (this nickel foil 54 can be preformed according to the shape of the bonding surface) interposed therebetween, and this is shown in the same manner as in the first embodiment. HIP can 5 as shown in 9
It is housed in 2 and is covered with a lid 53 to be hermetically sealed. Then, it is housed in a heating furnace, an inert gas such as argon gas is injected, and HIP is performed under the conditions of 1200 ° C. and 1000 atm for about 2 hours, and the non-magnetic material 43, the permanent magnets 44, and the magnetic material. Four
Solid-phase bonding is performed by causing mutual diffusion at the bonding interface with 5.

【0073】こうしてHIP法によって得られた2極く
し形磁極回転子41は上記製造方法の発明の第1の実施
例で得られたものと同じく図10に示すようなものであ
り、HIPによる固相接合によってニッケル箔54が両
材の接合界面から内部に拡散していき、元のニッケル箔
54は消失し、元の界面付近には相互拡散層が形成され
る。
The two-pole comb-shaped magnetic pole rotor 41 thus obtained by the HIP method is the same as that obtained in the first embodiment of the invention of the above manufacturing method as shown in FIG. By the phase bonding, the nickel foil 54 diffuses inward from the bonding interface between both materials, the original nickel foil 54 disappears, and an interdiffusion layer is formed near the original interface.

【0074】こうして得られた2極くし形磁極回転子4
1は、上記製造方法の発明の第1の実施例で得られたも
のとほぼ同じ強度を示す。
The 2-pole comb-shaped magnetic pole rotor 4 thus obtained
1 shows almost the same strength as that obtained in the first embodiment of the invention of the above manufacturing method.

【0075】なお、回転電機の発明の第2の実施例で用
いられる上記の磁極回転子の製造方法の発明の第2の実
施例において、磁性材45としてニッケルクロムモリブ
デン鋼に代えて、数パーセントニッケル含有の低合金
鋼、例えば、9パーセントニッケル合金鋼を使用するこ
とができ、その場合にも、上記とほぼ同じ条件でHIP
法によって磁極回転子を作ることができる。また作り出
された磁極回転子41の接合界面の強度もほとんど同じ
である。
In the second embodiment of the method of manufacturing the magnetic pole rotor used in the second embodiment of the rotating electric machine invention, nickel magnetic nickel molybdenum steel is used as the magnetic material 45 in place of several percent. Nickel-containing low alloy steels, such as 9 percent nickel alloy steels, can be used, and HIPs will still be used under approximately the same conditions as above.
A magnetic pole rotor can be made by the method. Further, the strength of the joint interface of the magnetic pole rotor 41 produced is almost the same.

【0076】また上記製造方法の発明の第1、第2の実
施例それぞれではHIP法の条件として温度条件は用い
る素材が固相から液相に変わる直前の温度条件とし、ま
た圧力条件は高圧ほど望ましいが、特に限定されるわけ
でない。またHIP時間も数10分〜数時間の範囲で特
に限定されるわけではない。さらにニッケルメッキ層5
1は磁性材45側と永久磁石44側に形成することもで
き、さらにはすべての部材に形成することもできる。そ
してニッケルメッキ層51、ニッケル箔54それぞれの
厚みは数10ミクロン〜百数10ミクロンとすることが
できる。
Further, in each of the first and second embodiments of the invention of the above-mentioned manufacturing method, the temperature condition as the condition of the HIP method is the temperature condition just before the material used changes from the solid phase to the liquid phase, and the pressure condition is the higher the pressure. Although desirable, it is not particularly limited. Further, the HIP time is not particularly limited within the range of several tens of minutes to several hours. Further nickel plated layer 5
1 can be formed on the magnetic material 45 side and the permanent magnet 44 side, and can also be formed on all members. The nickel plating layer 51 and the nickel foil 54 can each have a thickness of several tens of microns to hundreds of tens of microns.

【0077】なお、図7に示した回転電機の発明の第2
の実施例で用いられる2極くし形磁極回転子41は特に
その製造方法が上記製造方法の発明の第1、第2の実施
例のものに限定されるわけではなく、中央部に永久磁石
44が配置され、その両側にニッケル基合金の非磁性材
43,43が接合され、さらに非磁性材43,43それ
ぞれの外側にニッケルを含む合金鋼の磁性材45,45
が接合され、これらの各接合界面にニッケル拡散層が形
成されている組織構造を有する磁極回転子であれば、他
の方法で得られるものであっても、同様に大きな強度を
有し、特に超高速回転電機の回転子として使用するのに
適したものとなる。
The second aspect of the invention of the rotary electric machine shown in FIG.
The manufacturing method of the two-pole comb-shaped magnetic pole rotor 41 used in this embodiment is not particularly limited to that of the first and second embodiments of the invention of the above-mentioned manufacturing method, and the permanent magnet 44 is provided in the central portion. Are arranged, non-magnetic materials 43, 43 of nickel-based alloy are joined to both sides thereof, and magnetic materials 45, 45 of alloy steel containing nickel are provided outside the non-magnetic materials 43, 43, respectively.
If the magnetic pole rotor has a textured structure in which a nickel diffusion layer is formed at each of these junction interfaces, even if it is obtained by another method, it has a similarly large strength, This makes it suitable for use as the rotor of an ultrahigh-speed rotating electric machine.

【0078】次に、図12に基づいて回転電機の発明の
第3の実施例について説明する。図12は回転電機の発
明の第3の実施例を示しており、2極くし形磁極回転子
61と固定子62とで構成されている。そして2極くし
形磁極回転子61は、インコネル718のようなニッケ
ル含有超合金を素材とするほぼ楕円盤状のニッケル基合
金の非磁性材63の両側に、例えばニッケルクロムモリ
ブデン鋼(SNCM630)または9パーセントニッケ
ル合金鋼のような数パーセントニッケル含有の低合金鋼
を素材とする円柱状の磁性材65,65を接合し、さら
に磁性材65,65それぞれの外側端部にリング状の永
久磁石64,64を埋め込み、非磁性材63と磁性材6
5との接合界面、また磁性材65と永久磁石64との接
合界面にニッケル相互拡散層を形成した組織構造であ
る。
Next, a third embodiment of the invention of a rotary electric machine will be described with reference to FIG. FIG. 12 shows a rotating electric machine according to a third embodiment of the invention, which is composed of a two-pole comb-shaped magnetic pole rotor 61 and a stator 62. The two-pole comb-shaped magnetic pole rotor 61 is provided on both sides of a non-magnetic material 63 of a nickel-based alloy having a substantially elliptical disk shape made of a nickel-containing superalloy such as Inconel 718, for example, nickel chrome molybdenum steel (SNCM630) or Cylindrical magnetic materials 65, 65 made of low alloy steel containing a few percent nickel such as 9 percent nickel alloy steel are joined together, and ring-shaped permanent magnets 64 are provided on the outer ends of the magnetic materials 65, 65 respectively. , 64 are embedded, and the non-magnetic material 63 and the magnetic material 6 are embedded.
5 has a texture structure in which a nickel interdiffusion layer is formed at the bonding interface with the magnetic material 65 and the bonding interface between the magnetic material 65 and the permanent magnet 64.

【0079】また固定子62は、磁性材の外フレーム6
6内の中央部に鉄心67を有する電機子コイル68を装
着し、回転軸C方向の前後各端部内に励磁コイル69を
装着した構造である。この実施例の回転電機では、励磁
コイル69と永久磁石64によって、永久磁石64によ
り励磁コイル69の磁力を補う形で磁気回路70が形成
され、ひいては、励磁コイル69としては従来必要とさ
れていた大きさのものより小さいものが使用され、その
分、外フレーム66の回転軸方向の寸法が短くなってい
る。
The stator 62 is composed of an outer frame 6 made of a magnetic material.
In this structure, an armature coil 68 having an iron core 67 is mounted in the central portion of 6 and excitation coils 69 are mounted in the front and rear ends of the rotation axis C direction. In the rotating electric machine of this embodiment, the exciting coil 69 and the permanent magnet 64 form the magnetic circuit 70 in a form of supplementing the magnetic force of the exciting coil 69 by the permanent magnet 64, and thus the exciting coil 69 has been conventionally required. A smaller size is used, and the dimension of the outer frame 66 in the direction of the rotation axis is shortened accordingly.

【0080】次に、図12に示した回転電機の発明の第
3の実施例に用いられている磁極回転子61の製造方法
の発明の第1の実施例について図13〜図15に基づい
て説明する。まず図13に示すように、ニッケル含有の
合金鋼の磁性材65として円柱体のニッケルクロムモリ
ブデン鋼(SNCM630)を用い、ニッケル基合金の
非磁性材63として楕円盤状のニッケル25パーセント
含有の超合金インコネル718を用い、永久磁石64に
リング状のサマリウムコバルト磁石、あるいはネオジウ
ム鉄ボロン磁石を用い、各部材を互いに組合わさる形状
に加工成形し、鏡面仕上げする。
Next, the first embodiment of the invention of the method of manufacturing the magnetic pole rotor 61 used in the third embodiment of the invention of the rotary electric machine shown in FIG. 12 will be described with reference to FIGS. 13 to 15. explain. First, as shown in FIG. 13, a cylindrical nickel-chromium-molybdenum steel (SNCM630) is used as the magnetic material 65 of nickel-containing alloy steel, and an elliptical disk containing 25% of nickel is contained as the non-magnetic material 63 of nickel-based alloy. Alloy Inconel 718 is used, and a ring-shaped samarium-cobalt magnet or neodymium-iron-boron magnet is used as the permanent magnet 64, and each member is processed into a shape in which they are combined with each other, and mirror-finished.

【0081】そして非磁性材63と磁性材65との少な
くとも一方の接合面、また永久磁石64と磁性材65と
の少なくとも一方の接合面、ここでは非磁性材63の両
側接合面と、永久磁石64の接合面に100ミクロン程
度の厚さのニッケルメッキ層71を形成する。このニッ
ケルメッキ層71の介在によって特に磁性材65に含有
されている鉄分の酸化が防止され、後のHIP工程での
仕上げ強度が理想的なものとなる。
Then, at least one joint surface between the non-magnetic material 63 and the magnetic material 65, at least one joint surface between the permanent magnet 64 and the magnetic material 65, here, both joint surfaces of the non-magnetic material 63, and the permanent magnet. A nickel plating layer 71 having a thickness of about 100 μm is formed on the joint surface 64. The interposition of the nickel-plated layer 71 prevents the oxidation of the iron component particularly contained in the magnetic material 65, and makes the finishing strength in the subsequent HIP step ideal.

【0082】次に、これらの非磁性材63と磁性材6
5,65と永久磁石64,64とを組み合わせて、図1
4に示すようにHIPキャン72内に収容し、蓋73を
して密閉し、これを加熱炉内に収容し、その後、アルゴ
ンガスのような不活性ガスを注入し、1200℃、10
00気圧の条件下で約2時間の間HIP(熱間等方圧加
圧)を行い、非磁性材63と磁性材65との接合界面、
また永久磁石64と磁性材65との接合界面で相互拡散
を起こさせて固相接合を行う。
Next, these non-magnetic material 63 and magnetic material 6
5 and 65 and the permanent magnets 64 and 64 are combined, as shown in FIG.
As shown in FIG. 4, it is housed in a HIP can 72, covered with a lid 73 and sealed, and then housed in a heating furnace. Then, an inert gas such as argon gas is injected, and 1200 ° C.
HIP (hot isotropic pressure pressurization) is performed for about 2 hours under the condition of 00 atm to bond the non-magnetic material 63 and the magnetic material 65 together.
Further, solid-phase bonding is performed by causing mutual diffusion at the bonding interface between the permanent magnet 64 and the magnetic material 65.

【0083】こうしてHIP法によって得られた2極く
し形磁極回転子61は図15に示してあるが、HIPに
よる固相接合によって接合界面に存在していたニッケル
メッキ層71が各部材間の接合界面からそれぞれの内部
に拡散していき、元のニッケルメッキ層71が消失し、
元の界面付近には相互拡散層が形成される。
The two-pole comb-shaped magnetic pole rotor 61 thus obtained by the HIP method is shown in FIG. 15, but the nickel plating layer 71 existing at the joining interface by the solid-state joining by HIP is joined between the respective members. The original nickel plating layer 71 disappears as it diffuses from the interface to the inside,
An interdiffusion layer is formed near the original interface.

【0084】なお、上記のくし形磁極回転子の製造方法
の発明の第1の実施例において、磁性材65としてニッ
ケルクロムモリブデン鋼に代えて、数パーセントニッケ
ル含有の低合金鋼、例えば、9パーセントニッケル合金
鋼を使用することができ、その場合にも、上記とほぼ同
じ条件でHIP法によって磁極回転子61を作ることが
できる。また作り出された磁極回転子61の接合界面の
強度もほとんど同じである。
In the first embodiment of the invention of the method for manufacturing a comb-shaped magnetic pole rotor, the magnetic material 65 is replaced by nickel-chromium-molybdenum steel, and low alloy steel containing several percent nickel, for example, 9 percent. Nickel alloy steel can be used, and even in that case, the magnetic pole rotor 61 can be manufactured by the HIP method under substantially the same conditions as described above. Further, the strength of the joint interface of the magnetic pole rotor 61 produced is almost the same.

【0085】次に、回転電機の発明の第3の実施例に用
いられるくし形磁極回転子の製造方法の発明の第2の実
施例を図16に基づいて説明する。まずニッケル含有の
合金鋼の磁性材65として円柱体のニッケルクロムモリ
ブデン鋼(SNCM630)を用い、ニッケル基合金の
非磁性材63として楕円盤状のニッケル25パーセント
含有の超合金インコネル718を用い、リング状の永久
磁石64としてサマリウムコバルト磁石、あるいはネオ
ジウム鉄ボロン磁石を用い、これらの各部材の接合面を
互いに組合わさる形状に加工成形し、鏡面仕上げする。
Next, the second embodiment of the invention of the method for manufacturing the comb-shaped magnetic pole rotor used in the third embodiment of the invention of the rotary electric machine will be described with reference to FIG. First, a cylindrical nickel-chromium-molybdenum steel (SNCM630) is used as the magnetic material 65 of nickel-containing alloy steel, and an elliptical disc-shaped superalloy Inconel 718 containing 25% of nickel is used as the non-magnetic material 63 of nickel-based alloy. A samarium-cobalt magnet or a neodymium-iron-boron magnet is used as the permanent magnet 64, and the joint surfaces of these members are processed and molded into a shape that is combined with each other and mirror-finished.

【0086】そして非磁性材63と磁性材65との間、
また永久磁石64と磁性材65との間に100ミクロン
程度の厚さのニッケル箔74,75を介在させて各部材
を組み合わせ、これを第1の実施例と同じように図14
に示すようにHIPキャン72内に収容し、蓋73をし
て密閉する。そして、加熱炉内に収容して、その後、ア
ルゴンガスのような不活性ガスを注入し、1200℃、
1000気圧の条件下で約2時間の間HIPを行い、非
磁性材63と磁性材65との接合界面、及び永久磁石6
4と磁性材65との接合界面で相互拡散を起こさせて固
相接合を行う。
Between the non-magnetic material 63 and the magnetic material 65,
Further, the nickel foils 74 and 75 having a thickness of about 100 μm are interposed between the permanent magnet 64 and the magnetic material 65 to assemble the respective members, and as shown in FIG.
As shown in FIG. Then, it is housed in a heating furnace, then an inert gas such as argon gas is injected, and the temperature is set to 1200 ° C.
HIP is performed for about 2 hours under the condition of 1000 atm to bond the non-magnetic material 63 and the magnetic material 65 together with the permanent magnet 6.
The solid-phase bonding is performed by causing mutual diffusion at the bonding interface between the magnetic material 4 and the magnetic material 65.

【0087】こうしてHIP法によって得られた2極く
し形磁極回転子61は上記第1の実施例で得られたもの
と同じく図15に示すようなものであり、HIPによる
固相接合によってニッケル箔74,75が各部材の接合
界面から内部に拡散していき、元のニッケル箔74,7
5は消失し、元の界面付近には相互拡散層が形成され
る。
The two-pole comb-shaped magnetic pole rotor 61 thus obtained by the HIP method is similar to that obtained in the first embodiment as shown in FIG. 15, and nickel foil is formed by solid-state joining by HIP. 74, 75 diffused inward from the bonding interface of each member, and the original nickel foils 74, 7
5 disappears and an interdiffusion layer is formed near the original interface.

【0088】こうして得られた2極くし形磁極回転子6
1は、上記製造方法の発明の第1の実施例で得られたも
のとほぼ同じ強度を示す。
The 2-pole comb-shaped magnetic pole rotor 6 thus obtained
1 shows almost the same strength as that obtained in the first embodiment of the invention of the above manufacturing method.

【0089】なお、上記製造方法の発明の第2の実施例
において、磁性材65としてニッケルクロムモリブデン
鋼に代えて、数パーセントニッケル含有の低合金鋼、例
えば、9パーセントニッケル合金鋼を使用することがで
き、その場合にも、上記とほぼ同じ条件でHIP法によ
って磁極回転子を作ることができる。また作り出された
磁極回転子61の接合界面の強度もほとんど同じであ
る。
In the second embodiment of the invention of the above manufacturing method, a low alloy steel containing a few percent nickel, for example, a 9 percent nickel alloy steel, is used as the magnetic material 65 instead of the nickel chrome molybdenum steel. In that case, the magnetic pole rotor can be manufactured by the HIP method under almost the same conditions as above. Further, the strength of the joint interface of the magnetic pole rotor 61 produced is almost the same.

【0090】また上記製造方法の発明の第1、第2の実
施例それぞれではHIP法の条件として温度条件は用い
る素材が固相から液相に変わる直前の温度条件とし、ま
た圧力条件は高圧ほど望ましいが、特に限定されるわけ
でない。またHIP時間も数10分〜数時間の範囲で特
に限定されるわけではない。さらにニッケルメッキ層7
1は非磁性材73側に形成することもでき、さらには各
部材すべての接合面に形成することもできる。そしてニ
ッケルメッキ層71、ニッケル箔74,75それぞれの
厚みは数10ミクロン〜百数10ミクロンとすることが
できる。
Further, in each of the first and second embodiments of the invention of the above-mentioned manufacturing method, the temperature condition as the condition of the HIP method is the temperature condition just before the material used changes from the solid phase to the liquid phase, and the pressure condition is as high as possible. Although desirable, it is not particularly limited. Further, the HIP time is not particularly limited within the range of several tens of minutes to several hours. Further nickel plated layer 7
1 can be formed on the side of the non-magnetic material 73, and can also be formed on the joint surfaces of all the members. The thickness of each of the nickel plating layer 71 and the nickel foils 74 and 75 can be set to several tens of microns to hundreds of tens of microns.

【0091】なお、図12に示した回転電機の発明の第
3の実施例で用いられる2極くし形磁極回転子61は特
にその製造方法が上記製造方法の発明の第1、第2の実
施例のものに限定されるわけではなく、ニッケル基合金
の非磁性材63と永久磁石64とニッケルを含む合金鋼
の磁性材65とが接合され、各部材間の接合界面にニッ
ケル拡散層が形成されている組織構造を有する磁極回転
子であれば、他の方法で得られるものであっても、同様
に大きな強度を有し、特に超高速回転電機の回転子とし
て使用するのに適したものとなる。
The two-pole comb-shaped magnetic pole rotor 61 used in the third embodiment of the invention of the rotating electric machine shown in FIG. 12 is manufactured by the first and second embodiments of the invention. The invention is not limited to the example, and the non-magnetic material 63 of nickel-based alloy, the permanent magnet 64, and the magnetic material 65 of alloy steel containing nickel are joined, and a nickel diffusion layer is formed at the joining interface between the members. A magnetic pole rotor having a structured structure, even if obtained by other methods, also has a large strength and is particularly suitable for use as a rotor of an ultrahigh-speed rotating electric machine. Becomes

【0092】[0092]

【発明の効果】以上のように請求項1の発明のくし形磁
極回転子によれば、ニッケル基合金の非磁性材の径方向
中央部に永久磁石を取り付け、非磁性材及び永久磁石の
回転軸方向の前後両面にニッケルを含む合金鋼の磁性材
を接合し、この接合界面にニッケル拡散層を形成してい
るので、非磁性材及び永久磁石と磁性材との接合界面に
脱炭層や炭化層が存在しなくて接合強度が増し、超高速
回転に耐える磁極回転子とすることができる。また磁極
回転子の一部に永久磁石を設けているので、この磁極回
転子をくし形磁極回転電機の回転子として用いるとき、
固定子側に設けるべき励磁コイルの一部あるいは全部を
永久磁石によって置き換えることができ、ひいては固定
子側の励磁コイルを小さくし、あるいはなくすことによ
って回転電機の小形化が図れる。
As described above, according to the comb-shaped magnetic pole rotor of the invention of claim 1, the permanent magnet is attached to the radial center of the non-magnetic material of the nickel-base alloy to rotate the non-magnetic material and the permanent magnet. A magnetic material of alloy steel containing nickel is bonded to both front and rear surfaces in the axial direction, and a nickel diffusion layer is formed at this bonding interface.Therefore, a decarburization layer or carbonization layer is formed at the bonding interface between the non-magnetic material or permanent magnet and the magnetic material. The layer does not exist, the bonding strength is increased, and the magnetic pole rotor can withstand ultra-high speed rotation. Moreover, since a permanent magnet is provided in a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine,
A part or all of the exciting coil to be provided on the stator side can be replaced by a permanent magnet, and by making the exciting coil on the stator side smaller or eliminated, the rotating electric machine can be downsized.

【0093】請求項2の発明のくし形磁極回転子によれ
ば、非磁性材としてニッケル含有の超合金を用い、磁性
材としてニッケルクロムモリブデン鋼を用い、これらの
非磁性材及び永久磁石と磁性材との接合界面にニッケル
拡散層を形成しているので、非磁性材及び永久磁石と磁
性材との接合界面に脱炭層や炭化層が存在しなくて接合
強度が増し、超高速回転に耐える磁極回転子とすること
ができる。また磁極回転子の一部に永久磁石を設けてい
るので、この磁極回転子をくし形磁極回転電機の回転子
として用いるとき、固定子側に設けるべき励磁コイルの
一部あるいは全部を永久磁石によって置き換えることが
でき、ひいては固定子側の励磁コイルを小さくし、ある
いはなくすことによって回転電機の小形化が図れる。
According to the comb-shaped magnetic pole rotor of the second aspect of the present invention, a nickel-containing superalloy is used as the non-magnetic material, and nickel-chromium-molybdenum steel is used as the magnetic material. Since a nickel diffusion layer is formed at the joint interface with the material, there is no decarburization layer or carbonized layer at the joint interface between the non-magnetic material and the permanent magnet and the magnetic material, the joint strength increases and it withstands ultra-high speed rotation. It can be a magnetic pole rotor. Further, since a permanent magnet is provided in a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is provided by the permanent magnet. It can be replaced, and by extension, the size of the rotating electric machine can be reduced by reducing or eliminating the exciting coil on the stator side.

【0094】請求項3の発明のくし形磁極回転子によれ
ば、ニッケル基合金の非磁性材及び永久磁石を9パーセ
ントニッケル合金鋼の磁性材で回転軸方向の前後両側か
ら挟み、接合界面にニッケル拡散層を形成しているの
で、非磁性材及び永久磁石と磁性材との接合界面に脱炭
層や炭化層が存在しなくて接合強度が増し、超高速回転
に耐える磁極回転子とすることができる。また磁極回転
子の一部に永久磁石を設けているので、この磁極回転子
をくし形磁極回転電機の回転子として用いるとき、固定
子側に設けるべき励磁コイルの一部あるいは全部を永久
磁石によって置き換えることができ、ひいては固定子側
の励磁コイルを小さくし、あるいはなくすことによって
回転電機の小形化が図れる。
According to the comb-shaped magnetic pole rotor of the third aspect of the present invention, the non-magnetic material of the nickel-base alloy and the permanent magnet are sandwiched by the magnetic material of 9% nickel alloy steel from both the front and rear sides in the rotation axis direction, and the joining interface is formed. Since the nickel diffusion layer is formed, there is no decarburization layer or carbonized layer at the bonding interface between the non-magnetic material or permanent magnet and the magnetic material, the bonding strength increases, and the magnetic pole rotor should withstand ultra-high speed rotation. You can Further, since a permanent magnet is provided in a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is provided by the permanent magnet. It can be replaced, and by extension, the size of the rotating electric machine can be reduced by reducing or eliminating the exciting coil on the stator side.

【0095】請求項4の発明のくし形磁極回転子によれ
ば、2極くし形構造としているので、超高速回転用の磁
極回転子を形成できる。
According to the comb-shaped magnetic pole rotor of the fourth aspect of the present invention, since it has the two-pole comb-shaped structure, it is possible to form a magnetic pole rotor for ultra-high speed rotation.

【0096】請求項5の発明のくし形磁極回転子の製造
方法によれば、中央部に永久磁石が取り付けられたニッ
ケル基合金の非磁性材の回転軸方向の前後両側にニッケ
ルを含む合金鋼の磁性材を、それらの対向面のうちの少
なくとも一方にニッケル層が介在するようにして配置
し、熱間等方圧加圧法によって非磁性材及び永久磁石と
磁性材とを拡散接合させるので、非磁性材及び永久磁石
と磁性材との接合界面にニッケル拡散層を成長させ、接
合界面に脱炭層や炭化層が存在しなくて接合強度が大き
く、超高速回転に耐える磁極回転子を得ることができ
る。
According to the method for manufacturing a comb-shaped magnetic pole rotor of the fifth aspect of the present invention, an alloy steel containing nickel on both front and rear sides in the rotation axis direction of a non-magnetic material of nickel-base alloy having a permanent magnet attached to the central portion. The magnetic material is arranged so that the nickel layer is present on at least one of the opposing surfaces, and the nonmagnetic material and the permanent magnet and the magnetic material are diffusion-bonded by the hot isostatic pressing method. To obtain a magnetic pole rotor that grows a nickel diffusion layer at the bonding interface between a non-magnetic material or a permanent magnet and a magnetic material, has a large bonding strength without a decarburized layer or a carbonized layer at the bonding interface, and can withstand ultra-high speed rotation. You can

【0097】請求項6の発明のくし形磁極回転子の製造
方法によれば、非磁性材及び永久磁石の磁性材との対向
面、又は磁性材の非磁性材及び永久磁石との対向面の少
なくとも一方にニッケルメッキ層を形成し、熱間等方圧
加圧法によって非磁性材及び永久磁石と磁性材とを拡散
接合させるので、非磁性材及び永久磁石と磁性材との接
合界面にニッケル拡散層を成長させ、接合界面に脱炭層
や炭化層が存在しなくて接合強度が大きく、超高速回転
に耐える磁極回転子を得ることができる。
According to the method for manufacturing a comb-shaped magnetic pole rotor of the sixth aspect of the present invention, the surface of the nonmagnetic material and the permanent magnet facing the magnetic material, or the surface of the magnetic material facing the nonmagnetic material and the permanent magnet is formed. Since a nickel plating layer is formed on at least one side and the nonmagnetic material and the permanent magnet are magnetically bonded to the magnetic material by the hot isostatic pressing method, nickel is diffused at the bonding interface between the nonmagnetic material and the permanent magnet and the magnetic material. It is possible to obtain a magnetic pole rotor that grows the layers and has a large joining strength without a decarburized layer or a carbonized layer at the joining interface and can withstand ultra-high speed rotation.

【0098】請求項7の発明のくし形磁極回転子の製造
方法によれば、非磁性材及び永久磁石と磁性材との対向
面間にニッケル箔を介在させ、熱間等方圧加圧法によっ
て非磁性材及び永久磁石と磁性材とを拡散接合させるの
で、非磁性材と磁性材との接合界面にニッケル拡散層を
成長させ、接合界面に脱炭層や炭化層が存在しなくて接
合強度が大きく、超高速回転に耐える磁極回転子を得る
ことができる。
According to the method of manufacturing a comb-shaped magnetic pole rotor of the invention of claim 7, a nickel foil is interposed between the facing surfaces of the non-magnetic material and the permanent magnet and the magnetic material, and the hot isostatic pressing method is used. Since the non-magnetic material and the permanent magnet and the magnetic material are diffusion-bonded, a nickel diffusion layer is grown at the bonding interface between the non-magnetic material and the magnetic material, and the decarburization layer or the carbonized layer does not exist at the bonding interface, and the bonding strength is increased. It is possible to obtain a large magnetic pole rotor that can withstand ultra-high speed rotation.

【0099】請求項8の発明の回転電機によれば、電機
子コイル及び励磁コイルの装着された固定子と、ニッケ
ル基合金の非磁性材の径方向中央部に永久磁石が取り付
けられ、非磁性材及び永久磁石の回転軸方向の前後両面
にニッケルを含む合金鋼の磁性材が接合され、この接合
界面にニッケル拡散層が形成されたくし形磁極回転子と
を備えているので、くし形磁極回転子側に設けた永久磁
石によって固定子側の励磁コイルの磁力の一部を補い、
その分、励磁コイルに必要とされる寸法を小さくし、ひ
いては回転電機全体の寸法を小さくすることができる。
According to the rotating electric machine of the present invention, a permanent magnet is attached to the stator in which the armature coil and the exciting coil are mounted, and the non-magnetic material of the nickel-based alloy in the radial center thereof. The magnetic material of alloy steel containing nickel is bonded to both the front and rear surfaces of the permanent magnet and the permanent magnet in the direction of the rotation axis, and a comb-shaped magnetic pole rotor having a nickel diffusion layer formed at the bonding interface is provided. Part of the magnetic force of the exciting coil on the stator side is supplemented by the permanent magnet provided on the child side,
Therefore, the size required for the exciting coil can be reduced, and the size of the entire rotary electric machine can be reduced accordingly.

【0100】請求項9の発明の回転電機によれば、電機
子コイルの装着された固定子と、ニッケル基合金の非磁
性材の径方向中央部に固定子に装着すべき励磁コイルに
相当する大きさの磁力を有する永久磁石が取り付けら
れ、非磁性材及び永久磁石との回転軸方向の前後両面に
ニッケルを含む合金鋼の磁性材が接合され、この接合界
面にニッケル拡散層が形成されたくし形磁極回転子とを
備えているので、くし形磁極回転子側に設けた永久磁石
によって固定子側に励磁コイルを必要とせず、その分、
固定子側のフレームの寸法を小さくし、ひいては回転電
機全体の寸法を小さくすることができる。
According to the rotating electric machine of the ninth aspect of the invention, it corresponds to the stator to which the armature coil is attached and the exciting coil to be attached to the stator at the radial center of the non-magnetic material of nickel-based alloy. A permanent magnet having a large magnetic force is attached, magnetic materials made of alloy steel containing nickel are bonded to the front and rear surfaces of the non-magnetic material and the permanent magnet in the direction of the rotation axis, and a nickel diffusion layer is formed at the bonding interface. Since the magnetic pole rotor is provided, the permanent magnet provided on the comb magnetic pole rotor side does not require an exciting coil on the stator side.
The size of the frame on the side of the stator can be reduced, and thus the size of the entire rotating electrical machine can be reduced.

【0101】請求項10の発明のくし形磁極回転子によ
れば、ニッケル基合金の非磁性材の回転軸方向の前後両
面にニッケルを含む合金鋼の磁性材を接合し、磁性材の
回転軸方向の前後各端部に永久磁石を埋め込み、非磁性
材と磁性材との接合界面及び磁性材と永久磁石との接合
界面にニッケル拡散層を形成しているので、非磁性材と
磁性材と永久磁石とのそれぞれの接合界面に脱炭層や炭
化層が存在しなくて接合強度が増し、超高速回転に耐え
る磁極回転子とすることができる。また磁極回転子の一
部に永久磁石を設けているので、この磁極回転子をくし
形磁極回転電機の回転子として用いるとき、固定子側に
設けるべき励磁コイルの一部あるいは全部を永久磁石に
よって置き換えることができ、ひいては固定子側の励磁
コイルを小さくし、あるいはなくすことによって回転電
機の小形化が図れる。
According to the tenth aspect of the present invention, the magnetic pole rotor includes the magnetic material made of alloy steel containing nickel, which is joined to the front and rear surfaces of the non-magnetic material of nickel base alloy in the direction of the rotation axis. Since permanent magnets are embedded at the front and rear ends of the direction, and nickel diffusion layers are formed at the joint interface between the non-magnetic material and the magnetic material and the joint interface between the magnetic material and the permanent magnet, Since there is no decarburized layer or carbonized layer at each joint interface with the permanent magnet, the joint strength is increased and the magnetic pole rotor can withstand ultra-high speed rotation. Further, since a permanent magnet is provided in a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is provided by the permanent magnet. It can be replaced, and by extension, the size of the rotating electric machine can be reduced by reducing or eliminating the exciting coil on the stator side.

【0102】請求項11の発明のくし形磁極回転子によ
れば、非磁性材としてニッケル含有の超合金を用い、磁
性材としてニッケルクロムモリブデン鋼を用い、非磁性
材と磁性材との接合界面及び磁性材と永久磁石との接合
界面にニッケル拡散層を形成しているので、非磁性材と
磁性材と永久磁石とのそれぞれの接合界面に脱炭層や炭
化層が存在しなくて接合強度が増し、超高速回転に耐え
る磁極回転子とすることができる。また磁極回転子の一
部に永久磁石を設けているので、この磁極回転子をくし
形磁極回転電機の回転子として用いるとき、固定子側に
設けるべき励磁コイルの一部あるいは全部を永久磁石に
よって置き換えることができ、ひいては固定子側の励磁
コイルを小さくし、あるいはなくすことによって回転電
機の小形化が図れる。
According to the eleventh aspect of the invention, the comb magnetic pole rotor uses a nickel-containing superalloy as the non-magnetic material, uses nickel chrome molybdenum steel as the magnetic material, and joins the non-magnetic material with the magnetic material. In addition, since the nickel diffusion layer is formed at the joint interface between the magnetic material and the permanent magnet, there is no decarburization layer or carbonized layer at each joint interface between the non-magnetic material, the magnetic material and the permanent magnet, and the joint strength is In addition, the magnetic pole rotor can withstand ultra-high speed rotation. Further, since a permanent magnet is provided in a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is provided by the permanent magnet. It can be replaced, and by extension, the size of the rotating electric machine can be reduced by reducing or eliminating the exciting coil on the stator side.

【0103】請求項12の発明の発明のくし形磁極回転
子によれば、磁性材として9パーセントニッケル合金鋼
を用い、非磁性材と磁性材との接合界面及び磁性材と永
久磁石との接合界面にニッケル拡散層を形成しているの
で、非磁性材と磁性材と永久磁石とのそれぞれの接合界
面に脱炭層や炭化層が存在しなくて接合強度が増し、超
高速回転に耐える磁極回転子とすることができる。また
磁極回転子の一部に永久磁石を設けることにより、この
磁極回転子をくし形磁極回転電機の回転子として用いる
とき、固定子側に設けるべき励磁コイルの一部あるいは
全部を永久磁石によって置き換えることができ、ひいて
は固定子側の励磁コイルを小さくし、あるいはなくすこ
とによって回転電機の小形化が図れる。
According to the comb-shaped magnetic pole rotor of the invention of claim 12, 9% nickel alloy steel is used as the magnetic material, the bonding interface between the non-magnetic material and the magnetic material, and the bonding between the magnetic material and the permanent magnet. Since the nickel diffusion layer is formed at the interface, there is no decarburization layer or carbonized layer at the joining interface between the non-magnetic material, magnetic material and permanent magnet, increasing the joining strength and rotating the magnetic pole to withstand ultra-high speed rotation. Can be a child. Further, by providing a permanent magnet on a part of the magnetic pole rotor, when this magnetic pole rotor is used as a rotor of a comb-shaped magnetic pole rotating electric machine, a part or all of the exciting coil to be provided on the stator side is replaced by the permanent magnet. The size of the rotating electric machine can be reduced by reducing or eliminating the exciting coil on the stator side.

【0104】請求項13の発明のくし形磁極回転子によ
れば、2極くし形としているので、超高速回転用の磁極
回転子を形成できる。
According to the comb-shaped magnetic pole rotor of the thirteenth aspect of the present invention, since the magnetic pole rotor has a two-pole comb shape, it is possible to form a magnetic pole rotor for ultra-high speed rotation.

【0105】請求項14の発明のくし形磁極回転子の製
造方法によれば、ニッケル基合金の非磁性材の回転軸方
向の前後両側にニッケルを含む合金鋼の磁性材を、それ
らの対向面のうちの少なくとも一方にニッケル層が介在
するようにして配置し、磁性材それぞれの回転軸方向の
外側端部に永久磁石を、それらの対向面のうちの少なく
とも一方にニッケル層が介在するようにして配置し、熱
間等方圧加圧法によって非磁性材と磁性材と永久磁石と
を拡散接合させているので、非磁性材と磁性材と永久磁
石とのそれぞれの接合界面にニッケル拡散層を成長さ
せ、接合界面に脱炭層や炭化層が存在しなくて接合強度
が大きく、超高速回転に耐える磁極回転子を得ることが
できる。
According to the method for manufacturing a comb-shaped magnetic pole rotor of the fourteenth aspect of the present invention, the magnetic material of the alloy steel containing nickel is provided on the front and rear sides of the non-magnetic material of the nickel-base alloy in the front-and-rear direction in the rotation axis direction. At least one of which has a nickel layer interposed therebetween, a permanent magnet is provided at the outer end of each magnetic material in the rotation axis direction, and a nickel layer is provided at least on one of the facing surfaces thereof. Since the non-magnetic material, the magnetic material, and the permanent magnet are diffusion bonded by the hot isostatic pressing method, a nickel diffusion layer is formed at each bonding interface between the non-magnetic material, the magnetic material, and the permanent magnet. It is possible to obtain a magnetic pole rotor that is grown and has a large bonding strength without a decarburized layer or a carbonized layer at the bonding interface and can withstand ultra-high speed rotation.

【0106】請求項15の発明のくし形磁極回転子の製
造方法によれば、非磁性材と磁性材との対向面、及び磁
性材と永久磁石との対向面それぞれの少なくとも一方に
ニッケルメッキ層を形成し、熱間等方圧加圧法によって
非磁性材と磁性材と永久磁石とを拡散接合させているの
で、非磁性材と磁性材と永久磁石とのそれぞれの接合界
面にニッケル拡散層を成長させ、接合界面に脱炭層や炭
化層が存在しなくて接合強度が大きく、超高速回転に耐
える磁極回転子を得ることができる。
According to the method of manufacturing a comb-shaped magnetic pole rotor of the fifteenth aspect of the present invention, a nickel plating layer is provided on at least one of the facing surfaces of the non-magnetic material and the magnetic material and the facing surface of the magnetic material and the permanent magnet. And the non-magnetic material, the magnetic material, and the permanent magnet are diffusion bonded by the hot isostatic pressing method.Therefore, a nickel diffusion layer is formed at each bonding interface between the non-magnetic material, the magnetic material, and the permanent magnet. It is possible to obtain a magnetic pole rotor that is grown and has a large bonding strength without a decarburized layer or a carbonized layer at the bonding interface and can withstand ultra-high speed rotation.

【0107】請求項16の発明のくし形磁極回転子の製
造方法によれば、非磁性材と磁性材との対向面間、及び
磁性材と永久磁石との対向面間それぞれにニッケル箔を
介在させ、熱間等方圧加圧法によって非磁性材と磁性材
と永久磁石とを拡散接合させるので、非磁性材と磁性材
と永久磁石とのそれぞれの接合界面にニッケル拡散層を
成長させ、接合界面に脱炭層や炭化層が存在しなくて接
合強度が大きく、超高速回転に耐える磁極回転子を得る
ことができる。
According to the method for manufacturing a comb-shaped magnetic pole rotor of the sixteenth aspect of the present invention, nickel foil is interposed between the facing surfaces of the non-magnetic material and the magnetic material and between the facing surfaces of the magnetic material and the permanent magnet. Since the non-magnetic material, the magnetic material and the permanent magnet are diffusion-bonded by the hot isostatic pressing method, a nickel diffusion layer is grown and bonded at each bonding interface of the non-magnetic material, the magnetic material and the permanent magnet. Since there is no decarburized layer or carbonized layer at the interface, the bonding strength is large, and a magnetic pole rotor that can withstand ultra-high speed rotation can be obtained.

【0108】請求項17の発明の回転電機によれば、電
機子コイル及び励磁コイルの装着された固定子と、ニッ
ケル基合金の非磁性材の回転軸方向の前後両面にニッケ
ルを含む合金鋼の磁性材が接合され、磁性材の回転軸方
向の前後各端部に永久磁石が埋め込まれ、非磁性材と磁
性材との接合界面及び磁性材と永久磁石との接合界面に
ニッケル拡散層が形成されたくし形磁極回転子とを備え
ているので、くし形磁極回転子側に設けた永久磁石によ
って固定子側の励磁コイルの磁力の一部を補い、その
分、励磁コイルに必要とされる寸法を小さくし、ひいて
は回転電機全体の寸法を小さくすることができる。
According to the rotating electric machine of the seventeenth aspect of the present invention, the stator having the armature coil and the exciting coil mounted thereon and the alloy steel containing nickel on the front and rear surfaces of the non-magnetic material of the nickel base alloy in the rotation axis direction are formed. Magnetic materials are bonded, permanent magnets are embedded at the front and rear ends of the magnetic material in the direction of the rotation axis, and nickel diffusion layers are formed at the bonding interface between the non-magnetic material and the magnetic material and at the bonding interface between the magnetic material and the permanent magnet. Since it is equipped with a comb-shaped magnetic pole rotor, a part of the magnetic force of the exciting coil on the stator side is supplemented by a permanent magnet provided on the side of the comb-shaped magnetic pole rotor, and the size required for the exciting coil Can be reduced, and in turn, the overall size of the rotary electric machine can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のくし形磁極回転子及びそれを用いた回
転電機の第1の実施例の断面図。
FIG. 1 is a cross-sectional view of a first embodiment of a comb-shaped magnetic pole rotor according to the present invention and a rotary electric machine using the same.

【図2】上記くし形磁極回転子の第1の実施例の製造方
法の第1の実施例の素材構成を示す断面図。
FIG. 2 is a cross-sectional view showing the material constitution of the first embodiment of the manufacturing method of the first embodiment of the above comb-shaped magnetic pole rotor.

【図3】上記製造方法の第1の実施例のHIP処理段階
を示す断面図。
FIG. 3 is a cross-sectional view showing a HIP processing step of the first embodiment of the above manufacturing method.

【図4】上記製造方法の第1の実施例で得られたくし形
磁極回転子の斜視図。
FIG. 4 is a perspective view of a comb-shaped magnetic pole rotor obtained in the first embodiment of the manufacturing method.

【図5】上記くし形磁極回転子の第1の実施例の製造方
法の第2の実施例の素材構成を示す断面図。
FIG. 5 is a cross-sectional view showing a material configuration of a second embodiment of the manufacturing method of the first embodiment of the comb-shaped magnetic pole rotor.

【図6】上記製造方法の第2の実施例のHIP処理段階
を示す断面図。
FIG. 6 is a sectional view showing a HIP processing step of the second embodiment of the manufacturing method.

【図7】本発明のくし形磁極回転子及びそれを用いた回
転電機の第2の実施例の断面図。
FIG. 7 is a sectional view of a second embodiment of a comb-shaped magnetic pole rotor according to the present invention and a rotary electric machine using the same.

【図8】上記くし形磁極回転子の第2の実施例の製造方
法の第1の実施例の素材構成を示す断面図。
FIG. 8 is a cross-sectional view showing the material constitution of the first embodiment of the manufacturing method of the second embodiment of the above comb-shaped magnetic pole rotor.

【図9】上記製造方法の第1の実施例のHIP処理段階
を示す断面図。
FIG. 9 is a sectional view showing a HIP processing step of the first embodiment of the manufacturing method.

【図10】上記製造方法の第1の実施例で得られたくし
形磁極回転子の斜視図。
FIG. 10 is a perspective view of a comb-shaped magnetic pole rotor obtained in the first embodiment of the manufacturing method.

【図11】上記くし形磁極回転子の第1の実施例の製造
方法の第2の実施例の素材構成を示す断面図。
FIG. 11 is a cross-sectional view showing a material configuration of a second embodiment of the manufacturing method of the first embodiment of the above comb-shaped magnetic pole rotor.

【図12】本発明のくし形磁極回転子及びそれを用いた
回転電機の第3の実施例の断面図。
FIG. 12 is a cross-sectional view of a third embodiment of a comb-shaped magnetic pole rotor according to the present invention and a rotary electric machine using the same.

【図13】上記くし形磁極回転子の第3の実施例の製造
方法の第1の実施例の素材構成を示す断面図。
FIG. 13 is a cross-sectional view showing the material constitution of the first embodiment of the manufacturing method of the third embodiment of the above comb-shaped magnetic pole rotor.

【図14】上記製造方法の第1の実施例のHIP処理段
階を示す断面図。
FIG. 14 is a cross-sectional view showing a HIP processing step of the first embodiment of the manufacturing method.

【図15】上記製造方法の第1の実施例で得られたくし
形磁極回転子の斜視図。
FIG. 15 is a perspective view of a comb-shaped magnetic pole rotor obtained in the first embodiment of the manufacturing method.

【図16】上記くし形磁極回転子の第3の実施例の製造
方法の第2の実施例の素材構成を示す断面図。
FIG. 16 is a cross-sectional view showing the material configuration of a second embodiment of the method for manufacturing the third embodiment of the above comb-shaped magnetic pole rotor.

【図17】従来例のくし形磁極回転子及びそれを用いた
回転電機の断面図。
FIG. 17 is a cross-sectional view of a conventional comb-shaped magnetic pole rotor and a rotating electric machine using the same.

【符号の説明】[Explanation of symbols]

11 回転子 12 固定子 13 非磁性材 14 永久磁石 15 磁性材 16 外フレーム 17 鉄心 18 電機子コイル 19 励磁コイル 20 磁気回路 21 磁気回路 31 ニッケルメッキ層 32 キャン 33 蓋 34 ニッケル箔 41 回転子 42 固定子 43 非磁性材 44 永久磁石 45 磁性材 46 外フレーム 47 鉄心 48 電機子コイル 49 磁気回路 51 ニッケルメッキ層 52 キャン 53 蓋 54 ニッケル箔 61 回転子 62 固定子 63 非磁性材 64 永久磁石 65 磁性材 71 ニッケルメッキ層 72 キャン 73 蓋 74 ニッケル箔 75 ニッケル箔 11 Rotor 12 Stator 13 Non-Magnetic Material 14 Permanent Magnet 15 Magnetic Material 16 Outer Frame 17 Iron Core 18 Armature Coil 19 Excitation Coil 20 Magnetic Circuit 21 Magnetic Circuit 31 Nickel Plating Layer 32 Can 33 Lid 34 Nickel Foil 41 Rotor 42 Fixed Child 43 Non-magnetic material 44 Permanent magnet 45 Magnetic material 46 Outer frame 47 Iron core 48 Armature coil 49 Magnetic circuit 51 Nickel plating layer 52 Can 53 53 Lid 54 Nickel foil 61 Rotor 62 Stator 63 Non-magnetic material 64 Permanent magnet 65 Magnetic material 71 Nickel Plating Layer 72 Can 73 Lid 74 Nickel Foil 75 Nickel Foil

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル基合金の非磁性材の径方向中央
部に永久磁石が取り付けられ、前記非磁性材及び永久磁
石の回転軸方向の前後両面にニッケルを含む合金鋼の磁
性材が接合され、この接合界面にニッケル拡散層が形成
されたくし形磁極回転子。
1. A non-magnetic material of a nickel-base alloy, a permanent magnet is attached to a central portion in a radial direction, and a magnetic material of an alloy steel containing nickel is bonded to both front and rear surfaces of the non-magnetic material and the permanent magnet in a rotation axis direction. , A comb-shaped magnetic pole rotor having a nickel diffusion layer formed at this junction interface.
【請求項2】 前記非磁性材がニッケル含有の超合金で
あり、前記磁性材がニッケルクロムモリブデン鋼である
ことを特徴とする請求項1記載のくし形磁極回転子。
2. The comb magnetic pole rotor according to claim 1, wherein the non-magnetic material is a nickel-containing superalloy and the magnetic material is nickel chromium molybdenum steel.
【請求項3】 前記磁性材が9パーセントニッケル合金
鋼であることを特徴とする請求項1又は2記載のくし形
磁極回転子。
3. The comb magnetic pole rotor according to claim 1, wherein the magnetic material is 9% nickel alloy steel.
【請求項4】 2極くし形であることを特徴とする請求
項1〜3いずれか記載のくし形磁極回転子。
4. The comb-shaped magnetic pole rotor according to claim 1, wherein the comb-shaped magnetic pole rotor has a two-pole comb shape.
【請求項5】 中央部に永久磁石が取り付けられたニッ
ケル基合金の非磁性材の回転軸方向の前後両側にニッケ
ルを含む合金鋼の磁性材を、それらの対向面のうちの少
なくとも一方にニッケル層が介在するようにして配置
し、 熱間等方圧加圧法によって前記非磁性材及び永久磁石と
磁性材とを拡散接合させることを特徴とするくし形磁極
回転子の製造方法。
5. A non-magnetic material of a nickel-base alloy having a permanent magnet attached to the center thereof is provided with a magnetic material of an alloy steel containing nickel on both front and rear sides in the rotation axis direction, and nickel is provided on at least one of opposing surfaces thereof. A method for manufacturing a comb-shaped magnetic pole rotor, characterized in that the layers are arranged so that the layers are interposed, and the non-magnetic material and the permanent magnet and the magnetic material are diffusion-bonded by a hot isostatic pressing method.
【請求項6】 前記非磁性材及び永久磁石の前記磁性材
との対向面、又は前記磁性材の前記非磁性材及び永久磁
石との対向面の少なくとも一方にニッケルメッキ層を形
成し、 熱間等方圧加圧法によって前記非磁性材及び永久磁石と
磁性材とを拡散接合させることを特徴とする請求項5記
載のくし形磁極回転子の製造方法。
6. A nickel plating layer is formed on at least one of a surface of the non-magnetic material and the permanent magnet facing the magnetic material, or a surface of the magnetic material facing the non-magnetic material and the permanent magnet. The method of manufacturing a comb-shaped magnetic pole rotor according to claim 5, wherein the non-magnetic material, the permanent magnet, and the magnetic material are diffusion-bonded by an isotropic pressure pressing method.
【請求項7】 前記非磁性材及び永久磁石と前記磁性材
との対向面間にニッケル箔を介在させ、 熱間等方圧加圧法によって前記非磁性材及び永久磁石と
磁性材とを拡散接合させることを特徴とする請求項5記
載のくし形磁極回転子の製造方法。
7. A nickel foil is interposed between the facing surfaces of the non-magnetic material and the permanent magnet and the magnetic material, and the non-magnetic material and the permanent magnet and the magnetic material are diffusion-bonded by a hot isostatic pressing method. The method of manufacturing a comb-shaped magnetic pole rotor according to claim 5, wherein
【請求項8】 電機子コイル及び励磁コイルの装着され
た固定子と、 ニッケル基合金の非磁性材の径方向中央部に永久磁石が
取り付けられ、前記非磁性材及び永久磁石の回転軸方向
の前後両面にニッケルを含む合金鋼の磁性材が接合さ
れ、この接合界面にニッケル拡散層が形成されたくし形
磁極回転子とを備えて成る回転電機。
8. A stator to which an armature coil and an exciting coil are mounted, and a permanent magnet is attached to a radial center portion of a non-magnetic material of nickel-based alloy, and the permanent magnet is attached to the non-magnetic material and the permanent magnet in a rotational axis direction. A rotating electric machine comprising: a magnetic material made of an alloy steel containing nickel on both front and rear surfaces; and a comb-shaped magnetic pole rotor having a nickel diffusion layer formed on the bonding interface.
【請求項9】 電機子コイルの装着された固定子と、 ニッケル基合金の非磁性材の径方向中央部に前記固定子
に装着すべき励磁コイルに相当する大きさの磁力を有す
る永久磁石が取り付けられ、前記非磁性材及び永久磁石
との回転軸方向の前後両面にニッケルを含む合金鋼の磁
性材が接合され、この接合界面にニッケル拡散層が形成
されたくし形磁極回転子とを備えて成る回転電機。
9. A stator to which an armature coil is mounted, and a permanent magnet having a magnetic force of a magnitude corresponding to an exciting coil to be mounted on the stator in a radial center portion of a non-magnetic material of nickel-based alloy. The non-magnetic material and the permanent magnet are combined with magnetic material of alloy steel containing nickel on both front and rear surfaces in the rotation axis direction of the non-magnetic material and the permanent magnet, and a comb-shaped magnetic pole rotor having a nickel diffusion layer formed at the bonding interface is provided. A rotating electric machine consisting of.
【請求項10】 ニッケル基合金の非磁性材の回転軸方
向の前後両面にニッケルを含む合金鋼の磁性材が接合さ
れ、前記磁性材の回転軸方向の前後各端部に永久磁石が
埋め込まれ、前記非磁性材と磁性材との接合界面及び前
記磁性材と永久磁石との接合界面にニッケル拡散層が形
成されたくし形磁極回転子。
10. A non-magnetic material of a nickel-base alloy is joined with magnetic materials of alloy steel containing nickel on both front and rear surfaces in the rotation axis direction, and permanent magnets are embedded at front and rear ends of the magnetic material in the rotation axis direction. A comb-shaped magnetic pole rotor in which a nickel diffusion layer is formed at a joint interface between the non-magnetic material and the magnetic material and a joint interface between the magnetic material and the permanent magnet.
【請求項11】 前記非磁性材がニッケル含有の超合金
であり、前記磁性材がニッケルクロムモリブデン鋼であ
ることを特徴とする請求項10記載のくし形磁極回転
子。
11. The comb magnetic pole rotor according to claim 10, wherein the non-magnetic material is a nickel-containing superalloy and the magnetic material is nickel chromium molybdenum steel.
【請求項12】 前記磁性材が9パーセントニッケル合
金鋼であることを特徴とする請求項10又は11記載の
くし形磁極回転子。
12. The comb magnetic pole rotor according to claim 10, wherein the magnetic material is 9% nickel alloy steel.
【請求項13】 2極くし形であることを特徴とする請
求項10〜12いずれか記載のくし形磁極回転子。
13. The comb-shaped magnetic pole rotor according to claim 10, wherein the comb-shaped magnetic pole rotor has a two-pole comb shape.
【請求項14】 ニッケル基合金の非磁性材の回転軸方
向の前後両側にニッケルを含む合金鋼の磁性材を、それ
らの対向面のうちの少なくとも一方にニッケル層が介在
するようにして配置し、 前記磁性材それぞれの回転軸方向の端部に永久磁石を、
それらの対向面のうちの少なくとも一方にニッケル層が
介在するようにして配置し、 熱間等方圧加圧法によって前記非磁性材と磁性材と永久
磁石とを拡散接合させることを特徴とするくし形磁極回
転子の製造方法。
14. A magnetic material of alloy steel containing nickel is arranged on both front and rear sides of a non-magnetic material of a nickel base alloy in a rotation axis direction such that a nickel layer is interposed on at least one of opposing surfaces thereof. , A permanent magnet at the end of each magnetic material in the direction of the rotation axis,
A comb characterized in that a nickel layer is disposed so as to intervene on at least one of the facing surfaces, and the nonmagnetic material, the magnetic material, and the permanent magnet are diffusion bonded by a hot isostatic pressing method. Of manufacturing a pole-shaped magnetic pole rotor.
【請求項15】 前記非磁性材と磁性材との対向面、及
び前記磁性材と永久磁石との対向面それぞれの少なくと
も一方にニッケルメッキ層を形成し、 熱間等方圧加圧法によって前記非磁性材と磁性材と永久
磁石とを拡散接合させることを特徴とする請求項14記
載のくし形磁極回転子の製造方法。
15. A nickel plating layer is formed on at least one of the opposing surfaces of the non-magnetic material and the magnetic material and the opposing surface of the magnetic material and the permanent magnet, and the non-magnetic material is applied by a hot isostatic pressing method. 15. The method for manufacturing a comb-shaped magnetic pole rotor according to claim 14, wherein the magnetic material, the magnetic material, and the permanent magnet are diffusion-bonded.
【請求項16】 前記非磁性材と磁性材との対向面間、
及び前記磁性材と永久磁石との対向面間それぞれにニッ
ケル箔を介在させ、 熱間等方圧加圧法によって前記非磁性材と磁性材と永久
磁石とを拡散接合させることを特徴とする請求項14記
載のくし形磁極回転子の製造方法。
16. Between the facing surfaces of the non-magnetic material and the magnetic material,
And a nickel foil interposed between the facing surfaces of the magnetic material and the permanent magnet, and the nonmagnetic material, the magnetic material, and the permanent magnet are diffusion-bonded by a hot isostatic pressing method. 14. The method for manufacturing a comb-shaped magnetic pole rotor according to 14.
【請求項17】 電機子コイル及び励磁コイルの装着さ
れた固定子と、 ニッケル基合金の非磁性材の回転軸方向の前後両面にニ
ッケルを含む合金鋼の磁性材が接合され、前記磁性材の
回転軸方向の前後各端部に永久磁石が埋め込まれ、前記
非磁性材と磁性材との接合界面及び前記磁性材と永久磁
石との接合界面にニッケル拡散層が形成されたくし形磁
極回転子とを備えて成る回転電機。
17. A stator to which an armature coil and an exciting coil are mounted, and a magnetic material of alloy steel containing nickel is joined to both front and rear surfaces of a non-magnetic material of nickel-based alloy in a rotation axis direction. A comb-shaped magnetic pole rotor in which a permanent magnet is embedded at each of front and rear ends in the rotation axis direction, and a nickel diffusion layer is formed at a joint interface between the non-magnetic material and the magnetic material and a joint interface between the magnetic material and the permanent magnet. A rotating electric machine comprising.
JP4830995A 1995-03-08 1995-03-08 Tandem magnetic pole rotor, and its manufacture, and rotating lectric mahcine Pending JPH08251888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4830995A JPH08251888A (en) 1995-03-08 1995-03-08 Tandem magnetic pole rotor, and its manufacture, and rotating lectric mahcine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4830995A JPH08251888A (en) 1995-03-08 1995-03-08 Tandem magnetic pole rotor, and its manufacture, and rotating lectric mahcine

Publications (1)

Publication Number Publication Date
JPH08251888A true JPH08251888A (en) 1996-09-27

Family

ID=12799826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4830995A Pending JPH08251888A (en) 1995-03-08 1995-03-08 Tandem magnetic pole rotor, and its manufacture, and rotating lectric mahcine

Country Status (1)

Country Link
JP (1) JPH08251888A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786956A1 (en) * 1998-12-07 2000-06-09 Centre Nat Rech Scient DOUBLE EXCITATION ROTATING ELECTRIC MACHINE
JP2014005831A (en) * 2012-06-22 2014-01-16 Eskaef Manutic Mechatronic Turbocharger embedding electrical machine with dc coil
JP2014005832A (en) * 2012-06-22 2014-01-16 Eskaef Manutic Mechatronic Turbocharger embedding electrical machine with permanent magnets
JP2020088889A (en) * 2018-11-15 2020-06-04 株式会社豊田中央研究所 Rotary electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786956A1 (en) * 1998-12-07 2000-06-09 Centre Nat Rech Scient DOUBLE EXCITATION ROTATING ELECTRIC MACHINE
WO2000035065A1 (en) * 1998-12-07 2000-06-15 Centre National De La Recherche Scientifique (C.N.R.S.) Rotating electric machine with improved double excitation
US6462449B1 (en) 1998-12-07 2002-10-08 Centre National De La Recherche Scientifique (C.N.R.S.) Rotating electric machine with improved double excitation
JP2014005831A (en) * 2012-06-22 2014-01-16 Eskaef Manutic Mechatronic Turbocharger embedding electrical machine with dc coil
JP2014005832A (en) * 2012-06-22 2014-01-16 Eskaef Manutic Mechatronic Turbocharger embedding electrical machine with permanent magnets
JP2020088889A (en) * 2018-11-15 2020-06-04 株式会社豊田中央研究所 Rotary electric machine

Similar Documents

Publication Publication Date Title
US7960884B2 (en) Axial gap type rotating machine
US6889419B2 (en) Method of making a composite electric machine component of a desired magnetic pattern
EP0587685B1 (en) Low-cost stepping or synchronous motor
JP2695332B2 (en) Permanent magnet field type rotor
US6675460B2 (en) Method of making a powder metal rotor for a synchronous reluctance machine
JPH08331784A (en) Permanent-magnet type rotary electric machine
JP5263253B2 (en) Multi-gap rotating electric machine
JP2000253635A (en) Axial gap motor
JP3630332B2 (en) Permanent magnet rotor
JPH0767272A (en) Stator structure for synchronous machine, manufacture thereof and its tooth piece
JP3687804B2 (en) Magnet rotor for rotating machine
JP2017121118A (en) Method of manufacturing anisotropic magnet, method of manufacturing anisotropic soft magnetic material and method of manufacturing rotor of dynamo-electric machine
JPH09149572A (en) Permanent magnet type rotating electric machine
JPH0880015A (en) Electric rotary machine
JP4644875B2 (en) End plates used for motors and rotors of motors
JPH08251888A (en) Tandem magnetic pole rotor, and its manufacture, and rotating lectric mahcine
WO1996042132A1 (en) High speed synchronous reluctance motor-generator
JP2001211615A (en) Manufacture of rotor of squirrel-cage induction motor for high-speed revolutions
JP3985281B2 (en) Rotating electric machine
JPH06133478A (en) Field core with pawl and manufacture thereof
JP2004064887A (en) Permanent magnet motor
JP2003143787A (en) Structure of stator of motor and manufacturing method therefor
JPH08251887A (en) Tandem magnetic pole rotor, and its manufacture
JPH1023695A (en) Dynamo-electric machine with radial-direction magnetization-type rotor
JPH09298123A (en) Manufacture of permanent magnet bonded body