JPH08250770A - Manufacturing of light-emitting device - Google Patents

Manufacturing of light-emitting device

Info

Publication number
JPH08250770A
JPH08250770A JP35383695A JP35383695A JPH08250770A JP H08250770 A JPH08250770 A JP H08250770A JP 35383695 A JP35383695 A JP 35383695A JP 35383695 A JP35383695 A JP 35383695A JP H08250770 A JPH08250770 A JP H08250770A
Authority
JP
Japan
Prior art keywords
type gan
emitting device
gan layer
electrodes
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35383695A
Other languages
Japanese (ja)
Inventor
Yasuhiro Harada
泰広 原田
Masayuki Senoo
雅之 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP35383695A priority Critical patent/JPH08250770A/en
Publication of JPH08250770A publication Critical patent/JPH08250770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE: To make high the luminance of a light-emitting device without concentrating an electric field between both electrodes as well as to make wide the allowable range of the breakdown voltage of the device by a method wherein a pair of electrodes are formed on an insulative substrate, an external electrode is provided in such a way as to encircle the periphery of an internal electrode and moreover, the external electrode is continuously provided. CONSTITUTION: An n-type GaN layer and an i-type GaN layer are laminated in order on a sapphire substrate. Then, the i-type GaN layer is etched to the n-type GaN by an ion-beam etching and one part of the n-type GaN layer is made to expose. Then, one pair of electrodes are formed on the substrate to the i-type and n-type GaN layers. An external electrode on the i-type GaN layer is formed in such a way as to encircle an internal electrode provided on the n-type GaN layer. The external electrode is continuously provided. The distance between the outer peripheral parts of the internal electrode on the n-type GaN layer and the external electrode, which encircles the outer peripheral parts, on the i-type GaN layer is equal, an applying voltage spreads uniformly to the GaN layers without concentrating an electric field between both electrodes and a light-emitting device emits effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体発光デバイスの
電極構造に係り、特に発光輝度、及び信頼性に優れた発
光デバイスを得るための電極構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure of a semiconductor light emitting device, and more particularly to an electrode structure for obtaining a light emitting device having excellent emission brightness and reliability.

【0002】[0002]

【従来の技術】青色発光デバイスの材料として、色々な
化合物半導体が提唱されているが、最近、その中でも窒
化ガリウム系化合物半導体が最も高輝度を示すことが明
らかにされ、注目されている。
2. Description of the Related Art Various compound semiconductors have been proposed as materials for blue light emitting devices. Recently, it has been clarified that gallium nitride-based compound semiconductors have the highest brightness among them, and they are attracting attention.

【0003】一般に窒化ガリウム系化合物半導体を有す
る青色発光素子は、厚さ数百μmの絶縁性基板(例えば
サファイア基板)上にMOCVD法、MBE法等を用い
て、GaXAlX-1N(0≦X≦1)の結晶をn型及びp
型、あるいはn型 及びi型に積層させることによって
得られる。
In general, a blue light emitting device having a gallium nitride-based compound semiconductor has a Ga X Al X-1 N ( 0 ≦ X ≦ 1) crystals are n-type and p-type
It can be obtained by stacking a mold, or n-type and i-type.

【0004】ところでGaAlAs、GaP等の化合物
半導体を有する赤色発光デバイス、緑色発光デバイスに
おいてはp型、n型の半導体結晶より電極を取り出す場
合、基板が既に半導体化合物であり導電性を有するた
め、電極は図3に示すように通常、上下から取り出され
ている。
In a red light emitting device or a green light emitting device having a compound semiconductor such as GaAlAs or GaP, when an electrode is taken out from a p-type or n-type semiconductor crystal, since the substrate is already a semiconductor compound and has conductivity, the electrode Are usually taken out from above and below as shown in FIG.

【0005】しかしながら、例えば窒化ガリウム系化合
物半導体を有する青色発光素子においては、上記のよう
に絶縁性基板上に、pn接合あるいはin接合の結晶を
成長させているため、上下から電極を取り出すことは不
可能である。このため、一般に図4及び図5に示すよう
な構造として電極が取り出されている。
However, for example, in a blue light emitting device having a gallium nitride-based compound semiconductor, since the pn junction or in junction crystal is grown on the insulating substrate as described above, it is not possible to take out the electrodes from above and below. It is impossible. Therefore, the electrodes are generally taken out as a structure as shown in FIGS.

【0006】図4は青色発光デバイスの断面図である
が、この図に示すようにn型層の側面に電極を形成する
ことは、非常に細かい作業を必要とするため歩留が悪
く、生産技術上非常に困難である。
FIG. 4 is a cross-sectional view of a blue light emitting device. Forming an electrode on the side surface of an n-type layer as shown in this figure requires a very fine work, which results in poor yield and production. It is technically very difficult.

【0007】図5も同じく青色発光デバイスの断面図で
あり、この図に示すように電極を上方から取り出すこと
は、容易であり、生産技術にも優れており有利である。
FIG. 5 is also a sectional view of a blue light emitting device. As shown in this figure, it is easy to take out the electrode from above, and it is advantageous because it is excellent in production technology.

【0008】[0008]

【発明が解決しようとする課題】図5の青色発光デバイ
スの平面図を図6に示す。図6に示すように、絶縁性基
板を有する発光デバイスにおいて、上方から電極を取り
出す場合、左右対称型に電極を形成することが一般的で
ある。
A plan view of the blue light emitting device of FIG. 5 is shown in FIG. As shown in FIG. 6, in a light emitting device having an insulating substrate, when the electrodes are taken out from above, it is common to form the electrodes symmetrically.

【0009】しかしながら図6のような、左右対称型電
極では双方の電極の間に大きな電界の集中が起こり下記
に示すような問題点があった。
However, in the left-right symmetric type electrode as shown in FIG. 6, a large electric field is concentrated between both electrodes, which causes the following problems.

【0010】 比較的小さい印加電圧で素子の破壊が
発生する。 局所的に電界が集中するため、結晶の劣化が起こり
寿命が短い。 発光部の面積がチップ面積に対して小さい。
The breakdown of the device occurs with a relatively small applied voltage. Since the electric field is locally concentrated, crystal deterioration occurs and the life is short. The area of the light emitting portion is smaller than the chip area.

【0011】[0011]

【課題を解決するための手段】本発明はこのような事情
を鑑みて成されたもので、電極の形状(パターン)、位
置を変えることにより、電界がチップ内にできるだけ広
がり、電界の集中が起こらないようにする発光デバイス
の電極構造を提供するものである。すなわち、本発明の
発光デバイスの電極構造は、絶縁性基板の上に半導体層
を積層して、半導体層の同一面側に一対の電極を形成し
ている。
The present invention has been made in view of such circumstances, and by changing the shape (pattern) and the position of the electrode, the electric field spreads as much as possible in the chip and the electric field is concentrated. It is intended to provide an electrode structure for a light emitting device that prevents it from happening. That is, in the electrode structure of the light emitting device of the present invention, the semiconductor layer is laminated on the insulating substrate, and the pair of electrodes is formed on the same surface side of the semiconductor layer.

【0012】さらに、本発明の発光デバイスの電極構造
は、絶縁性基板の上に複数層の半導体層を積層してい
る。積層された半導体層は、表面の半導体層の一部がエ
ッチングして除去されて内面の半導体層を表出させてい
る。表出する内面の半導体層と、表面の半導体層とに一
対の電極が形成されている。
Furthermore, in the electrode structure of the light emitting device of the present invention, a plurality of semiconductor layers are laminated on the insulating substrate. A part of the semiconductor layer on the surface of the stacked semiconductor layers is removed by etching to expose the semiconductor layer on the inner surface. A pair of electrodes is formed on the exposed semiconductor layer on the inner surface and the semiconductor layer on the surface.

【0013】さらに、本発明の発光デバイスの電極構造
は、内面の半導体層と表面の半導体層とに設けられた電
極を独特の構造とする。すなわち、一方の電極の周囲を
他方の電極が囲むように一対の電極を配設している。さ
らにまた、一方の電極の周囲を囲む電極は、連続して設
けられている。
Further, in the electrode structure of the light emitting device of the present invention, the electrodes provided on the inner semiconductor layer and the front semiconductor layer have a unique structure. That is, a pair of electrodes is arranged so that one electrode is surrounded by the other electrode. Furthermore, the electrodes surrounding the periphery of one electrode are continuously provided.

【0014】[0014]

【作用】図1は、本発明の一実施例による青色発光デバ
イスの平面図であり、図2は同じくその断面図である。
この図の発光デバイスは、i型GaN層とn型GaN層
とに一対の電極を形成している。n型GaN層に設けた
電極の周囲を取り囲むように、i型GaN層の電極を形
成している。n型GaN層の電極の外周部は、それを取
り囲むi型GaN層の電極との距離が等しいために、双
方の電極間に電界の集中が起こりにくく、印加電圧を均
一にGaN層に広げることができるため、効果的にGa
N層を発光させることができる。
1 is a plan view of a blue light emitting device according to an embodiment of the present invention, and FIG. 2 is a sectional view of the same.
The light emitting device in this figure has a pair of electrodes formed on an i-type GaN layer and an n-type GaN layer. The electrode of the i-type GaN layer is formed so as to surround the electrode provided on the n-type GaN layer. Since the outer peripheral portion of the electrode of the n-type GaN layer has the same distance from the electrode of the i-type GaN layer surrounding it, electric field concentration is unlikely to occur between both electrodes, and the applied voltage should be spread uniformly over the GaN layer. Ga can be effectively
The N layer can emit light.

【0015】以下、一実施例に基づき、図面を参照しな
がら本発明を詳説する。
The present invention will be described below in detail based on an embodiment with reference to the drawings.

【0016】[0016]

【実施例】本発明の発光デバイスの電極構造の製造工程
を図7〜図12に示す。図7の断面図に示すように、絶
縁性基板であるサファイア基板の上に、MOCVD法に
より、n型GaN層とi型GaN層を順に積層して、複
数の半導体層を積層する。
EXAMPLE The manufacturing process of the electrode structure of the light emitting device of the present invention is shown in FIGS. As shown in the cross-sectional view of FIG. 7, an n-type GaN layer and an i-type GaN layer are sequentially laminated by MOCVD on a sapphire substrate which is an insulating substrate, and a plurality of semiconductor layers are laminated.

【0017】さらに、図8の平面図と図9の断面図に示
すように、表面の半導体層であるi型GaN層の表面
に、フォトレジストをしてエッチングパターンを形成す
る。フォトレジストは、図8と図9に示すように、中心
部を残して、半導体層の外周部全面に設けられる。
Further, as shown in the plan view of FIG. 8 and the sectional view of FIG. 9, a photoresist is formed on the surface of the i-type GaN layer which is the semiconductor layer on the surface to form an etching pattern. As shown in FIGS. 8 and 9, the photoresist is provided on the entire outer peripheral portion of the semiconductor layer, leaving the central portion.

【0018】イオンビームエッチングにより、円内のi
型GaN層をn型GaN層までエッチングする。この工
程で、表面の半導体層であるi型GaN層の一部がエッ
チングして除去され、内面にあるn型GaN層の一部を
表出させる。エッチング後の断面図を図10に示す。
By ion beam etching, i in the circle
The n-type GaN layer to the n-type GaN layer. In this step, a part of the i-type GaN layer which is the semiconductor layer on the surface is etched and removed, and a part of the n-type GaN layer on the inner surface is exposed. A cross-sectional view after etching is shown in FIG.

【0019】次に、フォトレジストを有機溶剤で剥離し
た後、同様にして、図11の平面図と図12の断面図に
示すように、フォトレジストで電極を設けるためのパタ
ーンを形成した。
Next, after removing the photoresist with an organic solvent, a pattern for providing electrodes with the photoresist was similarly formed as shown in the plan view of FIG. 11 and the sectional view of FIG.

【0020】最後にフォトレジストの上からAlを蒸着
し電極を形成した後、再び有機溶剤にウエハーを浸漬し
てフォトレジストを剥離し、本発明の青色発光デバイス
の電極を形成することができた。その平面図が図1であ
り、断面図が図2である。
Finally, Al was vapor-deposited on the photoresist to form an electrode, and then the wafer was again immersed in an organic solvent to remove the photoresist, whereby the electrode of the blue light emitting device of the present invention could be formed. . The plan view is FIG. 1 and the cross-sectional view is FIG.

【0021】以上の工程で製造された発光デバイスは、
図1の平面図に示す電極構造をしているが、本発明の電
極構造は、実施例に示す円形に制限されるものではな
く、図13に示すように多角形の形状をしていても良い
ことはいうまでもない。
The light emitting device manufactured by the above process is
Although the electrode structure shown in the plan view of FIG. 1 is used, the electrode structure of the present invention is not limited to the circular shape shown in the embodiment, and may have a polygonal shape as shown in FIG. Not to mention good things.

【0022】[0022]

【発明の効果】以上述べたように本発明の電極構造は、
電界を双方の電極間に集中させることなく、電圧を均一
な条件で印加することができるため、発光輝度を大きく
することができ、また破壊電圧の許容範囲が大きくなる
ことにより、より高い電圧での動作が可能となる。さら
にチップの大きさを小さくすることができ低コスト化に
もつながる。
As described above, the electrode structure of the present invention is
Since the voltage can be applied under uniform conditions without concentrating the electric field between both electrodes, the emission brightness can be increased and the allowable range of the breakdown voltage is increased, so that a higher voltage can be applied. Can be operated. Further, the size of the chip can be reduced, which leads to cost reduction.

【0023】さらにまた、この発明の発光デバイスの電
極構造は、表面の半導体層の一部がエッチング除去され
て、内面の半導体層を表出させ、内面の半導体層と表面
の半導体層とに電極を設けているので、中央部分とその
周囲に連続して、理想的な形状に一対の電極を簡単に設
けることができる特長も実現される。
Furthermore, in the electrode structure of the light emitting device according to the present invention, a part of the semiconductor layer on the surface is removed by etching to expose the semiconductor layer on the inner surface, and the semiconductor layer on the inner surface and the semiconductor layer on the surface are electroded. Since the above-mentioned structure is provided, a feature that a pair of electrodes can be easily provided in an ideal shape continuously in the central portion and its periphery is also realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る発光デバイスの電極
構造を示す平面図
FIG. 1 is a plan view showing an electrode structure of a light emitting device according to an embodiment of the present invention.

【図2】 本発明の一実施例に係る発光デバイスの電極
構造を示す断面図
FIG. 2 is a sectional view showing an electrode structure of a light emitting device according to an embodiment of the present invention.

【図3】 従来の発光デバイスの電極構造を示す断面図FIG. 3 is a sectional view showing an electrode structure of a conventional light emitting device.

【図4】 従来の青色発光デバイスの電極構造を示す断
面図
FIG. 4 is a sectional view showing an electrode structure of a conventional blue light emitting device.

【図5】 従来の青色発光デバイスの電極構造を示す断
面図
FIG. 5 is a cross-sectional view showing an electrode structure of a conventional blue light emitting device.

【図6】 従来の青色発光デバイスの電極構造を示す平
面図
FIG. 6 is a plan view showing an electrode structure of a conventional blue light emitting device.

【図7】 本発明の一工程において得られる素子の断面
FIG. 7 is a sectional view of an element obtained in one step of the present invention.

【図8】 本発明の一工程において得られる素子の平面
FIG. 8 is a plan view of an element obtained in one step of the present invention.

【図9】 図8の断面図9 is a sectional view of FIG.

【図10】 本発明の一工程において得られる素子の断
面図
FIG. 10 is a sectional view of an element obtained in one step of the present invention.

【図11】 本発明の一工程において得られる素子の平
面図
FIG. 11 is a plan view of an element obtained in one step of the present invention.

【図12】 図11の断面図FIG. 12 is a sectional view of FIG.

【図13】 本発明の他の実施例に係る発光デバイスの
電極構造を示す平面図
FIG. 13 is a plan view showing an electrode structure of a light emitting device according to another embodiment of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年12月28日[Submission date] December 28, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 発光デバイスの製造方法Title: Method for manufacturing light emitting device

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体発光デバイス
製造方法に係り、特に発光輝度、及び信頼性に優れた
特の電極構造の発光デバイスを製造する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor light emitting device .
Relates to a manufacturing method, in particular light-emitting luminance, and excellent reliability Germany
The present invention relates to a method for manufacturing a light emitting device having a special electrode structure.

【0002】[0002]

【従来の技術】青色発光デバイスの材料として、色々な
化合物半導体が提唱されているが、最近、その中でも窒
化ガリウム系化合物半導体が最も高輝度を示すことが明
らかにされ、注目されている。
2. Description of the Related Art Various compound semiconductors have been proposed as materials for blue light emitting devices. Recently, it has been clarified that gallium nitride-based compound semiconductors have the highest brightness among them, and they are attracting attention.

【0003】一般に窒化ガリウム系化合物半導体を有す
る青色発光素子は、厚さ数百μmの絶縁性基板(例えば
サファイア基板)上にMOCVD法、MBE法等を用い
て、GaXAlX-1N(0≦X≦1)の結晶をn型及びp
型、あるいはn型 及びi型に積層させることによって
得られる。
In general, a blue light emitting device having a gallium nitride-based compound semiconductor has a Ga X Al X-1 N ( 0 ≦ X ≦ 1) crystals are n-type and p-type
It can be obtained by stacking a mold, or n-type and i-type.

【0004】ところでGaAlAs、GaP等の化合物
半導体を有する赤色発光デバイス、緑色発光デバイスに
おいてはp型、n型の半導体結晶より電極を取り出す場
合、基板が既に半導体化合物であり導電性を有するた
め、電極は図3に示すように通常、上下から取り出され
ている。
In a red light emitting device or a green light emitting device having a compound semiconductor such as GaAlAs or GaP, when an electrode is taken out from a p-type or n-type semiconductor crystal, since the substrate is already a semiconductor compound and has conductivity, the electrode Are usually taken out from above and below as shown in FIG.

【0005】しかしながら、例えば窒化ガリウム系化合
物半導体を有する青色発光素子においては、上記のよう
に絶縁性基板上に、pn接合あるいはin接合の結晶を
成長させているため、上下から電極を取り出すことは不
可能である。このため、一般に図4及び図5に示すよう
な構造として電極を取り出している
However, for example, in a blue light emitting device having a gallium nitride-based compound semiconductor, since the pn junction or in junction crystal is grown on the insulating substrate as described above, it is not possible to take out the electrodes from above and below. It is impossible. Therefore, the electrodes are generally taken out as a structure as shown in FIGS.

【0006】図4は青色発光デバイスの断面図である
が、この図に示すようにn型層の側面に電極を形成する
ことは、非常に細かい作業を必要とするため歩留が悪
く、生産技術上非常に困難である。
FIG. 4 is a cross-sectional view of a blue light emitting device. Forming an electrode on the side surface of an n-type layer as shown in this figure requires a very fine work, which results in poor yield and production. It is technically very difficult.

【0007】図5も同じく青色発光デバイスの断面図で
あり、この図に示すように電極を上方から取り出すこと
は、容易であり、生産技術にも優れており有利である。
FIG. 5 is also a sectional view of a blue light emitting device. As shown in this figure, it is easy to take out the electrode from above, and it is advantageous because it is excellent in production technology.

【0008】[0008]

【発明が解決しようとする課題】図5の青色発光デバイ
スの平面図を図6に示す。図6に示すように、絶縁性基
板を有する発光デバイスにおいて、上方から電極を取り
出す場合、左右対称型に電極を形成することが一般的で
ある。
A plan view of the blue light emitting device of FIG. 5 is shown in FIG. As shown in FIG. 6, in a light emitting device having an insulating substrate, when the electrodes are taken out from above, it is common to form the electrodes symmetrically.

【0009】しかしながら図6のような、左右対称型電
極では双方の電極の間に大きな電界の集中が起こり下記
に示すような問題点があった。
However, in the left-right symmetric type electrode as shown in FIG. 6, a large electric field is concentrated between both electrodes, which causes the following problems.

【0010】 比較的小さい印加電圧で素子の破壊が
発生する。 局所的に電界が集中するため、結晶の劣化が起こり
寿命が短い。 発光部の面積がチップ面積に対して小さい。
The breakdown of the device occurs with a relatively small applied voltage. Since the electric field is locally concentrated, crystal deterioration occurs and the life is short. The area of the light emitting portion is smaller than the chip area.

【0011】[0011]

【課題を解決するための手段】本発明はこのような事情
を鑑みて成されたもので、電極の形状(パターン)、位
置を変えることにより、電界がチップ内にできるだけ広
がり、電界の集中が起こらないようにする発光デバイス
の製造方法を提供するものである。すなわち、本発明の
発光デバイスの製造方法は、絶縁性基板の上に半導体層
を積層し、半導体層の同一面側に一対の電極を形成す
る。
The present invention has been made in view of such circumstances, and by changing the shape (pattern) and the position of the electrode, the electric field spreads as much as possible in the chip and the electric field is concentrated. Light emitting device to prevent it from happening
The present invention provides a method for manufacturing the same. That is, the method of manufacturing the light emitting device of the present invention, a semiconductor layer laminated on the insulating substrate, to form a pair of electrodes on the same side of the semi-conductor layer
It

【0012】さらに、本発明の発光デバイスの製造方法
、絶縁性基板の上に複数層の半導体層を積層し、表面
の半導体層の一部をエッチングして除去して内面の半導
体層を表出させ、表出する内面の半導体層と、表面の半
導体層とに一対の電極を形成する
Further, the method of manufacturing the light emitting device of the present invention
Is laminated semiconductor layer of a plurality of layers on an insulating substrate, the surface
Part of the semiconductor layer of the etched to expose the semiconductor layer of the inner surface was removed and a semiconductor layer of the inner surface of exposed, to form a pair of electrodes on the semiconductor layer surface.

【0013】さらに、本発明の発光デバイスの製造方法
は、内面の半導体層と表面の半導体層とに設けられた電
極を独特の構造とする。すなわち、一方の電極の周囲を
他方の電極が囲むように一対の電極を配設する。さらに
また、一方の電極の周囲を囲む電極は、連続して設けら
れる
Further, the method for manufacturing the light emitting device of the present invention
Is an electrode provided on the semiconductor layer of the inner surface of the semiconductor layer and the surface and unique structure. That is, a pair of electrodes is arranged so that one electrode is surrounded by the other electrode. Furthermore, the electrodes surrounding the one electrode is set kicked continuously
It is .

【0014】[0014]

【作用】図1は、本発明の一実施例による青色発光デバ
イスの平面図であり、図2は同じくその断面図である。
この図の発光デバイスは、i型GaN層とn型GaN層
とに一対の電極を形成している。n型GaN層に設けた
電極の周囲を取り囲むように、i型GaN層の電極を形
する。n型GaN層の電極の外周部は、それを取り囲
むi型GaN層の電極との距離が等しいために、双方の
電極間に電界の集中が起こりにくく、印加電圧を均一に
GaN層に広げることができるため、効果的にGaN層
を発光させることができる。
1 is a plan view of a blue light emitting device according to an embodiment of the present invention, and FIG. 2 is a sectional view of the same.
The light emitting device in this figure has a pair of electrodes formed on an i-type GaN layer and an n-type GaN layer. The electrode of the i-type GaN layer is formed so as to surround the electrode provided on the n-type GaN layer . Since the outer peripheral portion of the electrode of the n-type GaN layer has the same distance from the electrode of the i-type GaN layer surrounding it, electric field concentration is unlikely to occur between both electrodes, and the applied voltage should be spread uniformly over the GaN layer. Therefore, the GaN layer can effectively emit light.

【0015】以下、一実施例に基づき、図面を参照しな
がら本発明を詳説する。
The present invention will be described below in detail based on an embodiment with reference to the drawings.

【0016】[0016]

【実施例】本発明の発光デバイスの製造方法の製造工程
を図7〜図12に示す。図7の断面図に示すように、絶
縁性基板であるサファイア基板の上に、MOCVD法に
より、n型GaN層とi型GaN層を順に積層して、複
数の半導体層を積層する。
EXAMPLE A manufacturing process of a method for manufacturing a light emitting device of the present invention is shown in FIGS. As shown in the cross-sectional view of FIG. 7, an n-type GaN layer and an i-type GaN layer are sequentially laminated by MOCVD on a sapphire substrate which is an insulating substrate, and a plurality of semiconductor layers are laminated.

【0017】さらに、図8の平面図と図9の断面図に示
すように、表面の半導体層であるi型GaN層の表面
に、フォトレジストをしてエッチングパターンを形成す
る。フォトレジストは、図8と図9に示すように、中心
部を残して、半導体層の外周部全面に設けられる。
Further, as shown in the plan view of FIG. 8 and the sectional view of FIG. 9, a photoresist is formed on the surface of the i-type GaN layer which is the semiconductor layer on the surface to form an etching pattern. As shown in FIGS. 8 and 9, the photoresist is provided on the entire outer peripheral portion of the semiconductor layer, leaving the central portion.

【0018】イオンビームエッチングにより、円内のi
型GaN層をn型GaN層までエッチングする。この工
程で、表面の半導体層であるi型GaN層の一部がエッ
チングして除去され、内面にあるn型GaN層の一部を
表出させる。エッチング後の断面図を図10に示す。
By ion beam etching, i in the circle
The n-type GaN layer to the n-type GaN layer. In this step, a part of the i-type GaN layer which is the semiconductor layer on the surface is etched and removed, and a part of the n-type GaN layer on the inner surface is exposed. A cross-sectional view after etching is shown in FIG.

【0019】次に、フォトレジストを有機溶剤で剥離し
た後、同様にして、図11の平面図と図12の断面図に
示すように、フォトレジストで電極を設けるためのパタ
ーンを形成した。
Next, after removing the photoresist with an organic solvent, a pattern for providing electrodes with the photoresist was similarly formed as shown in the plan view of FIG. 11 and the sectional view of FIG.

【0020】最後にフォトレジストの上からAlを蒸着
し電極を形成した後、再び有機溶剤にウエハーを浸漬し
てフォトレジストを剥離し、本発明の青色発光デバイス
の電極を形成することができた。その平面図が図1であ
り、断面図が図2である。
Finally, Al was vapor-deposited on the photoresist to form an electrode, and then the wafer was again immersed in an organic solvent to remove the photoresist, whereby the electrode of the blue light emitting device of the present invention could be formed. . The plan view is FIG. 1 and the cross-sectional view is FIG.

【0021】以上の工程で製造された発光デバイスは、
図1の平面図に示す電極構造をしているが、本発明の電
極構造は、実施例に示す円形に制限されるものではな
く、図13に示すように多角形の形状をしていても良い
ことはいうまでもない。
The light emitting device manufactured by the above process is
Although the electrode structure shown in the plan view of FIG. 1 is used, the electrode structure of the present invention is not limited to the circular shape shown in the embodiment, and may have a polygonal shape as shown in FIG. Not to mention good things.

【0022】[0022]

【発明の効果】以上述べたように本発明の方法で製造さ
れた発光デバイスは、電界を双方の電極間に集中させる
ことなく、電圧を均一な条件で印加することができるた
め、発光輝度を大きくすることができ、また破壊電圧の
許容範囲が大きくなることにより、より高い電圧での動
作が可能となる。さらにチップの大きさを小さくするこ
とができ低コスト化にもつながる。
As described above , it is manufactured by the method of the present invention.
In such a light emitting device , the voltage can be applied under uniform conditions without concentrating the electric field between both electrodes, so that the light emission brightness can be increased and the allowable range of the breakdown voltage can be increased. This enables operation at a higher voltage. Further, the size of the chip can be reduced, which leads to cost reduction.

【0023】さらにまた、この発明の発光デバイスの製
造方法は、表面の半導体層の一部をエッチング除去して
内面の半導体層を表出させ、内面の半導体層と表面の半
導体層とに電極を設けるので、中央部分とその周囲に連
続して、理想的な形状に一対の電極を簡単に設けること
ができる特長も実現される。
Furthermore, the light emitting device of the present invention is manufactured.
Granulation method, a part of the semiconductor layer of the surface is removed by ET etching removal
To expose the semiconductor layer of the inner surface, Runode provided with an electrode on the semiconductor layer of the inner surface of the semiconductor layer and the surface, successively Chuo portion and its surroundings, simply provided that the pair of electrodes in an ideal shape The feature that can be realized is also realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る方法で製造された発
光デバイスの平面図
Flat face view of the origination <br/> optical device manufactured by the method according to an embodiment of the present invention; FIG

【図2】 本発明の一実施例に係る方法で製造された発
光デバイスの断面図
Cross-sectional view of the origination <br/> optical device manufactured by the method according to an embodiment of the present invention; FIG

【図3】 従来の発光デバイスを示す断面図3 is a cross-sectional view showing a conventional light emitting device

【図4】 従来の青色発光デバイスを示す断面図Cross-sectional view illustrating a conventional blue light emitting device FIG. 4

【図5】 従来の青色発光デバイスを示す断面図Figure 5 is a sectional view showing a conventional blue light emitting devices

【図6】 従来の青色発光デバイスを示す平面図6 is a plan view illustrating a conventional blue light emitting devices

【図7】 本発明の一工程において得られる素子の断面
FIG. 7 is a sectional view of an element obtained in one step of the present invention.

【図8】 本発明の一工程において得られる素子の平面
FIG. 8 is a plan view of an element obtained in one step of the present invention.

【図9】 図8の断面図9 is a sectional view of FIG.

【図10】 本発明の一工程において得られる素子の断
面図
FIG. 10 is a sectional view of an element obtained in one step of the present invention.

【図11】 本発明の一工程において得られる素子の平
面図
FIG. 11 is a plan view of an element obtained in one step of the present invention.

【図12】 図11の断面図FIG. 12 is a sectional view of FIG.

【図13】 本発明の他の実施例に係る発光デバイス
製造方法を示す平面図
[13] The light emitting device according to another embodiment of the present invention
Plan view showing the manufacturing method

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板の上に半導体層が積層されて
おり、半導体層の同一面側に一対の電極が形成されてな
る発光デバイスの電極構造において、 絶縁性基板の上に複数層の半導体層が積層されており、
積層された半導体層は、表面の半導体層の一部がエッチ
ング除去されて内面の半導体層が表出しており、内面の
半導体層と表面の半導体層とに一対の電極が形成されて
おり、 さらに、内面の半導体層と表面の半導体層とに設けられ
た電極は、一方の電極の周囲を他方の電極が囲むように
配設されており、さらに、一方の電極の周囲を囲む電極
は連続して設けられていることを特徴とする発光デバイ
スの電極構造。
1. An electrode structure of a light emitting device, comprising: a semiconductor layer laminated on an insulating substrate; and a pair of electrodes formed on the same side of the semiconductor layer, wherein a plurality of layers are formed on the insulating substrate. Semiconductor layers are stacked,
In the stacked semiconductor layers, a part of the semiconductor layer on the surface is removed by etching to expose the semiconductor layer on the inner surface, and a pair of electrodes are formed on the semiconductor layer on the inner surface and the semiconductor layer on the surface. The electrodes provided on the semiconductor layer on the inner surface and the semiconductor layer on the surface are arranged such that one electrode is surrounded by the other electrode, and further, the electrodes surrounding the one electrode are continuous. An electrode structure of a light-emitting device, characterized in that the electrode structure is provided.
JP35383695A 1995-12-28 1995-12-28 Manufacturing of light-emitting device Pending JPH08250770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35383695A JPH08250770A (en) 1995-12-28 1995-12-28 Manufacturing of light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35383695A JPH08250770A (en) 1995-12-28 1995-12-28 Manufacturing of light-emitting device

Publications (1)

Publication Number Publication Date
JPH08250770A true JPH08250770A (en) 1996-09-27

Family

ID=18433549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35383695A Pending JPH08250770A (en) 1995-12-28 1995-12-28 Manufacturing of light-emitting device

Country Status (1)

Country Link
JP (1) JPH08250770A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275934A (en) * 1997-03-28 1998-10-13 Rohm Co Ltd Semiconductor light-emitting element
JP2002353503A (en) * 2001-05-29 2002-12-06 Seiwa Electric Mfg Co Ltd Gallium-nitride based compound semiconductor light- emitting element
JP2003179263A (en) * 2002-11-11 2003-06-27 Seiwa Electric Mfg Co Ltd Gallium nitride semiconductor light emitting element
KR20040003640A (en) * 2002-07-03 2004-01-13 주식회사 에이티씨 Light emitting diode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017186A (en) * 1973-06-13 1975-02-22
JPS546787A (en) * 1977-06-17 1979-01-19 Matsushita Electric Ind Co Ltd Luminous element
JPS58166779A (en) * 1982-03-10 1983-10-01 シ−メンス・アクチエンゲゼルシヤフト Light emitting diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017186A (en) * 1973-06-13 1975-02-22
JPS546787A (en) * 1977-06-17 1979-01-19 Matsushita Electric Ind Co Ltd Luminous element
JPS58166779A (en) * 1982-03-10 1983-10-01 シ−メンス・アクチエンゲゼルシヤフト Light emitting diode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275934A (en) * 1997-03-28 1998-10-13 Rohm Co Ltd Semiconductor light-emitting element
JP2002353503A (en) * 2001-05-29 2002-12-06 Seiwa Electric Mfg Co Ltd Gallium-nitride based compound semiconductor light- emitting element
KR20040003640A (en) * 2002-07-03 2004-01-13 주식회사 에이티씨 Light emitting diode
JP2003179263A (en) * 2002-11-11 2003-06-27 Seiwa Electric Mfg Co Ltd Gallium nitride semiconductor light emitting element

Similar Documents

Publication Publication Date Title
US8242530B2 (en) Light emitting device and method for fabricating the same
US7361521B2 (en) Method of manufacturing vertical GaN-based light emitting diode
JP2005108863A (en) Vertical gallium nitride light emitting diode and its manufacturing method
JP2005183909A (en) High output flip chip light emitting diode
JPH06314822A (en) Gallium nitride compound semiconductor light emitting element and electrode formation thereof
US8587017B2 (en) Light emitting device and method of fabricating a light emitting device
JPH08153892A (en) Semiconductor light emitting element and fabrication thereof
CN110164900B (en) LED chip, preparation method thereof, chip wafer and Micro-LED display device
TW202139452A (en) Iii-nitride multi-wavelength led arrays
JPH08250770A (en) Manufacturing of light-emitting device
US11784210B2 (en) Light-emitting device and manufacturing method thereof
KR100858322B1 (en) Manufacturing method of vertically structured gan led device
JP2003023180A (en) Compound semiconductor light emitting element and its manufacturing method
US7981705B2 (en) Method of manufacturing a vertical type light-emitting diode
US20230019308A1 (en) Light emitting diode precursor and its fabrication method
US12002842B2 (en) Light emitting device and manufacturing method thereof
CN108281532B (en) Flexible LED chip and manufacturing method and packaging method thereof
JPH04103666U (en) Electrode of blue light emitting device
CN112909136A (en) Light emitting diode, display panel, display device and preparation method
US20230387371A1 (en) Display panel and manufacturing method thereof
KR102563505B1 (en) Led device and method of manufacturing the same
TWI750838B (en) Display panel and method for manufacturing the same
EP3888130B1 (en) Method of fabricating micro light emitting diode array substrate
US20240234191A1 (en) Method for manufacturing support assembly and method for manufacturing micro led display
JP2011138836A (en) Manufacturing method for light-emitting element