JPH0824998B2 - Method and apparatus for manufacturing semi-solidified metal by electromagnetic stirring method - Google Patents

Method and apparatus for manufacturing semi-solidified metal by electromagnetic stirring method

Info

Publication number
JPH0824998B2
JPH0824998B2 JP1306436A JP30643689A JPH0824998B2 JP H0824998 B2 JPH0824998 B2 JP H0824998B2 JP 1306436 A JP1306436 A JP 1306436A JP 30643689 A JP30643689 A JP 30643689A JP H0824998 B2 JPH0824998 B2 JP H0824998B2
Authority
JP
Japan
Prior art keywords
cooling
stirring
stirring tank
core
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1306436A
Other languages
Japanese (ja)
Other versions
JPH03170629A (en
Inventor
安生 藤川
克浩 竹林
Original Assignee
株式会社レオテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レオテック filed Critical 株式会社レオテック
Priority to JP1306436A priority Critical patent/JPH0824998B2/en
Publication of JPH03170629A publication Critical patent/JPH03170629A/en
Publication of JPH0824998B2 publication Critical patent/JPH0824998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は非樹枝状初晶が金属融体中に分散した固体
−液体金属混合物(簡単のため半凝固金属と呼ぶ)を電
磁誘導攪拌方式によって製造する方法および装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an electromagnetic induction stirring method for a solid-liquid metal mixture in which non-dendritic primary crystals are dispersed in a metal melt (referred to as a semi-solid metal for simplicity). The present invention relates to a method and a device manufactured by.

半凝固金属を製造する方法としては、大別して、機械
的攪拌法と電磁誘導的攪拌法とが知られている。電磁誘
導攪拌(簡単のため電磁攪拌と呼ぶ)法は機械的攪拌法
に比べて、攪拌効率は悪いが、装置材料に対する制約が
少なく生産性も高いと云う利点があり、従来から多くの
考案がなされている。
As a method for producing a semi-solid metal, a mechanical stirring method and an electromagnetic induction stirring method are roughly classified. The electromagnetic induction stirring method (which is called electromagnetic stirring for simplicity) has a lower stirring efficiency than the mechanical stirring method, but has the advantage that it has less restrictions on equipment materials and high productivity. Has been done.

(従来の技術) 特公昭61−7148号公報および特公昭62−25464号公報
には、電磁攪拌方式により半凝固状態の金属スラリーを
連続的または半連続的に製造する方法について、また後
者の広報にはさらにそのための装置に関して開示されて
いる。
(Prior Art) Japanese Patent Publication No. 61-7148 and Japanese Patent Publication No. 62-25464 disclose methods for continuously or semi-continuously producing a metal slurry in a semi-solidified state by an electromagnetic stirring method, and the latter publication. Further discloses a device therefor.

これらの開示の内容は、2極電動機ステータ等による
回転磁界を発生させる電磁攪拌手段を用い、その内側に
冷却手段を有する鋳型を設置し、溶融金属を上方から鋳
型内に供給し、冷却すると同時に回転磁界により回転流
動させることにより、攪拌し、縮退したデンドライトの
1次固体粒子が溶融金属中に分散した半凝固金属の金属
スラリーを得るというものである。
The contents of these disclosures use electromagnetic stirring means for generating a rotating magnetic field by a two-pole motor stator or the like, and install a mold having a cooling means inside thereof, and supply molten metal from above into the mold to cool it at the same time. It is intended to obtain a metal slurry of a semi-solidified metal in which primary solid particles of dendrites which are agitated and degenerate are dispersed in a molten metal by rotating and flowing by a rotating magnetic field.

ここに良好な半凝固状態の金属スラリーをつくる条件
としては、十分に小さな固体粒子を得るための強冷却と
デンドライトを剪断するための強烈な攪拌強度が必要で
あるが、電磁攪拌方式では、この2つの条件が相反する
関係にあり、上記の従来方法および装置では必ずしも満
足できるものではない。
As conditions for producing a metal slurry in a good semi-solidified state here, strong cooling for obtaining sufficiently small solid particles and intense stirring strength for shearing dendrite are necessary. Since the two conditions are in conflict with each other, the above conventional method and apparatus are not always satisfactory.

(発明が解決しようとする課題) 従来の電磁攪拌方式による半凝固金属の製造方法およ
び装置についての問題点を以下に述べる。
(Problems to be Solved by the Invention) Problems with the conventional method and apparatus for producing semi-solidified metal by the electromagnetic stirring method will be described below.

(1)良好な半凝固金属を製造するためには、溶融金属
を冷却しながら強烈な攪拌効果を与える必要があるが、
電磁攪拌方式で強攪拌すなわち高速回転流動を狙うと、
溶融金属は遠心力により回転流動の中心部の湯面には大
きな渦へこみが発生し、反面外周部は嵩高となることか
ら、冷却攪拌槽上部から溶融金属の飛散、ガスの巻込み
の増大などにより、安定操業が不可能となる。したがっ
て高速回転流動すなわち強い攪拌効果を狙うことはでき
ない。
(1) In order to produce a good semi-solid metal, it is necessary to give a strong stirring effect while cooling the molten metal.
Aiming for strong stirring, that is, high-speed rotation flow, with the electromagnetic stirring method,
Due to centrifugal force, a large vortex dent is generated on the surface of the molten metal at the center of the rotational flow, while the outer periphery becomes bulky, so the molten metal is scattered from the upper part of the cooling and stirring tank, and the entrainment of gas is increased. This makes stable operation impossible. Therefore, it is not possible to aim for a high-speed rotation flow, that is, a strong stirring effect.

(2)溶融金属の回転流動の中心部は高速回転はしてい
るが、攪拌効果は殆んどなく、したがって断面内におけ
る攪拌効果が不均一である。また、溶融金属の粘性に応
じて回転速度すなわち攪拌効果が左右される特性があ
り、半凝固状態となって見掛粘性が高くなると、攪拌効
果が低下し、特に回転中心部では混合効果もなく、偏析
の発生する危険が大きくなる。
(2) The central part of the rotational flow of the molten metal is rotating at high speed, but there is almost no stirring effect, and therefore the stirring effect in the cross section is non-uniform. In addition, there is a characteristic that the rotation speed, that is, the stirring effect depends on the viscosity of the molten metal, and when the apparent viscosity becomes high in a semi-solidified state, the stirring effect decreases, and there is no mixing effect especially at the center of rotation. The risk of segregation increases.

(3)良好な半凝固金属を製造するためには、十分に小
さな固体粒子を得るための強冷却が必要であるが、電磁
攪拌方式の場合、冷却攪拌槽の内壁面すなわち冷却壁の
面積に対し、内容積が大きいため溶融金属の熱容量が大
きいことと、回転磁界によって生ずる電流による発熱が
あって、冷却速度をあまり大きくすることができない。
(3) In order to produce a good semi-solid metal, strong cooling is required to obtain sufficiently small solid particles, but in the case of the electromagnetic stirring system, the inner wall surface of the cooling stirring tank, that is, the area of the cooling wall, is required. On the other hand, since the internal volume is large, the heat capacity of the molten metal is large, and the heat generated by the electric current generated by the rotating magnetic field makes it impossible to increase the cooling rate too much.

また、内壁面に水冷銅板を採用して、強冷却を実施す
ると内壁面に凝固シエルが付着成長して回転磁界の磁束
が大きく減衰し、回転速度すなわち攪拌効果が大きく低
下することになり、内壁面の冷却強度を大きくすること
にも限界がある。
When a water-cooled copper plate is used for the inner wall surface and strong cooling is performed, solidified shells adhere and grow on the inner wall surface, the magnetic flux of the rotating magnetic field is greatly attenuated, and the rotation speed, that is, the stirring effect is greatly reduced. There is a limit to increasing the cooling strength of the wall surface.

(4)電磁攪拌方式における溶融金属の回転流動の中心
部すなわち冷却攪拌槽の中心部は、半凝固金属を製造す
ることに対してデッドスペースになっおり、有害無益で
ある。
(4) The central part of the rotational flow of the molten metal in the electromagnetic stirring system, that is, the central part of the cooling stirring tank is a dead space for producing semi-solidified metal, which is harmful and useless.

以上のように、従来の技術で残された種々の問題につ
いて、この発明はその有効な解決を目指し、溶融金属の
飛散をなくし、ガスなどの捲き込みがなく、攪拌および
冷却効果を高め、安定操業を可能とすることを重点項目
とした。
As described above, the present invention aims to effectively solve the various problems remaining in the prior art, eliminates the scattering of molten metal, does not involve gas and the like, enhances the stirring and cooling effect, and stabilizes The priority item was to enable operation.

(課題を解決するための手段) 前記問題点を解決するためには、冷却攪拌効果にほと
んど関与しない溶融金属の回転流動の中心部すなわち冷
却攪拌槽の中心部の溶融金属を排除することが最も有効
であると考え、実験研究を重ねた結果この発明に到達し
たものである。その要旨は以下のとおりである。
(Means for Solving the Problem) In order to solve the above-mentioned problems, it is most preferable to eliminate the molten metal in the central portion of the rotational flow of the molten metal, that is, the central portion of the cooling and stirring tank, which is hardly involved in the cooling and stirring effect. The present invention was achieved as a result of repeated experiments and studies, which were considered to be effective. The summary is as follows.

1.溶融金属を冷却攪拌槽内に収容し、冷却攪拌槽の内壁
面からの抜熱によって冷却しつつ、冷却攪拌槽の断面を
横切って働く回転磁界によって溶融金属を回転流動させ
ることによる攪拌を加えて半凝固金属を製造する方法に
おいて、溶融金属を冷却攪拌槽の中心部にそなえた非磁
性、不導電性の中子の外壁面と、冷却攪拌槽内壁面との
間で旋回流動させることを特徴とする電磁攪拌方式によ
る半凝固金属の製造方法。
1. The molten metal is stored in a cooling and stirring tank, and while cooling by heat removal from the inner wall surface of the cooling and stirring tank, stirring is performed by rotating and flowing the molten metal by a rotating magnetic field that operates across the cross section of the cooling and stirring tank. In addition, in the method for producing semi-solidified metal, the molten metal is swirled between the outer wall surface of the non-magnetic and non-conductive core provided at the center of the cooling and stirring tank and the inner wall surface of the cooling and stirring tank. A method for producing a semi-solidified metal by an electromagnetic stirring method, which comprises:

2.溶融金属を冷却する手段を有する冷却攪拌槽と、冷却
攪拌槽の断面を横切って働く回転磁界を発生する電磁誘
導コイルとをそなえ、冷却攪拌槽内に供給した溶融金属
に回転磁界による回転流動を強いることによる攪拌を加
える半凝固金属の製造装置において、冷却攪拌槽中心部
に非磁性、不導電性の中子をそなえることを特徴とする
電磁攪拌方式による半凝固金属の製造装置。
2. A cooling and stirring tank having a means for cooling the molten metal and an electromagnetic induction coil that generates a rotating magnetic field that works across the cross section of the cooling and stirring tank are provided, and the molten metal supplied into the cooling and stirring tank is rotated by the rotating magnetic field. An apparatus for producing a semi-solid metal by an electromagnetic stirring method, characterized in that a non-magnetic, non-conductive core is provided in a central portion of a cooling and agitating tank in an apparatus for producing a semi-solid metal which is agitated by forcing a flow.

上記方法は、溶融金属の旋回流動が中子の昇降移動に
よる置換流動を含むことが実施上好適であり、上記装置
は、中子を冷却攪拌槽内で繰返し昇降移動させることを
可能とすること、中子を回転可能に支持しトルク計を介
して固定すること、円筒形中子で中子の外径を冷却攪拌
槽内径の30〜60%の範囲となることなどが何れも実施上
のぞましい。
In the above method, it is preferable in practice that the swirling flow of the molten metal includes a displacement flow due to the up-and-down movement of the core, and the above-mentioned device enables the core to be repeatedly moved up and down in the cooling and stirring tank. It is preferable that the core is rotatably supported and fixed via a torque meter, and that the outer diameter of the core is within the range of 30 to 60% of the inner diameter of the cooling and stirring tank with a cylindrical core. .

なお、冷却攪拌槽内壁面形状は、円筒状が好ましい。
また中子外壁状は円筒状を基本とするが、攪拌効果の向
上などのため他の形状としてもよく、さらに中子の位置
は冷却攪拌槽の中心軸と中子の中心軸とを必ずしも合致
させなくともよい。
The shape of the inner wall surface of the cooling stirring tank is preferably cylindrical.
The outer wall of the core is basically cylindrical, but other shapes may be used to improve the stirring effect, and the position of the core does not always coincide with the center axis of the cooling stirring tank and the center axis of the core. You don't have to.

(作用) この発明においては、溶融金属を冷却および回転磁界
での回転流動による攪拌によって半凝固金属を製造する
に当って、溶融金属の回転中心部すなわち冷却攪拌槽の
中心部に、非磁性、不導電性材料、たとえば耐火材また
はセラミック製の中子をそなえることにより回転中心部
のデッドスペースから溶融金属を排除する。
(Operation) In the present invention, when the semi-solidified metal is manufactured by cooling the molten metal and stirring by the rotational flow in the rotating magnetic field, the non-magnetic, Molten metal is excluded from the dead space at the center of rotation by providing a core of non-conductive material, such as refractory or ceramic.

かくすることにより、溶融金属は中子の外壁面と冷却
攪拌槽内壁面との間で旋回流動による攪拌が行なわれ
る。この旋回流動の回転速度は中子を使用しない場合に
くらべ小さくなるが、湯面の渦へこみが実用的な範囲ま
で小さくなって溶融金属の飛散がなく安定操業が可能と
なり、さらに適正の大きさの中子を選定することによ
り、回転速度が小さくなる割には攪拌効果を低下させな
いですむことも明らかとなった。また、中子を昇降移動
させることにより置換流動による混合攪拌が行なわれ、
均質な半凝固金属を製造することができる。
By doing so, the molten metal is stirred by the swirling flow between the outer wall surface of the core and the inner wall surface of the cooling stirring tank. The rotation speed of this swirling flow is smaller than when the core is not used, but the vortex dent on the surface of the molten metal is reduced to a practical range, stable operation is possible without the molten metal scattering, and an appropriate size is achieved. It was also clarified that by selecting the core, the stirring effect does not decrease even though the rotation speed decreases. Also, by moving the core up and down, the mixing and stirring by the displacement flow is performed,
A homogeneous semi-solid metal can be produced.

つぎに、この発明による半凝固金属の製造装置を第1
図により説明する。第1図は全体図で、冷却攪拌槽は、
冷却円筒2と水冷ジャケット3とから構成され、その外
周に電磁誘導コイル4が設置されている。冷却円筒2お
よび水冷ジャケット3は貫通する磁束の減衰をできるだ
け小さくするため、薄肉の非磁性金属板で作られてい
る。そして冷却水13を下部から給水し、冷却円筒2の外
面を高速で通水し、上部から排水13され、適当な冷却効
果を与える様設計されている。この冷却円筒2の内壁面
は適当な厚さの耐火材をコーティングすることもある。
電磁誘導コイル4は、多くの場合2極3相誘導電動機の
固定子コイルが使用され、3相交流14を通電することに
よって中心を貫通した回転磁界が得られ、その磁束密度
に比例した回転トルクにより冷却攪拌槽内の溶融金属が
回転流動し攪拌される。
Next, the first embodiment of the apparatus for producing semi-solidified metal according to the present invention
It will be described with reference to the drawings. Figure 1 is an overall view, and the cooling and stirring tank is
It is composed of a cooling cylinder 2 and a water cooling jacket 3, and an electromagnetic induction coil 4 is installed on the outer circumference thereof. The cooling cylinder 2 and the water cooling jacket 3 are made of a thin non-magnetic metal plate in order to minimize the attenuation of the magnetic flux penetrating therethrough. The cooling water 13 is supplied from the lower portion, the outer surface of the cooling cylinder 2 is passed through at a high speed, and the draining water 13 is discharged from the upper portion, so that an appropriate cooling effect is provided. The inner wall surface of the cooling cylinder 2 may be coated with a refractory material having an appropriate thickness.
In many cases, the stator coil of a two-pole three-phase induction motor is used as the electromagnetic induction coil 4, and a rotating magnetic field penetrating the center is obtained by energizing a three-phase alternating current 14, and a rotating torque proportional to the magnetic flux density. Thereby, the molten metal in the cooling stirring tank is rotatively flowed and stirred.

この冷却攪拌槽の上端には、耐火材1′を内張りした
受湯タンデイッシュ1が接続し、底部には排出ノズル5
が設けられている。
A hot water receiving tundish 1 lined with a refractory material 1'is connected to the upper end of this cooling and stirring tank, and a discharge nozzle 5 is provided at the bottom.
Is provided.

次にこの冷却攪拌槽中心部には、非磁性不導電体たと
えば耐火材製の中子6をそなえている。この中子6は図
示したように支持アーム8に軸受7を介して回転可能に
支持し、支持アーム8は支持台11に油圧シリンダー12等
の昇降手段を介して昇降可能に取付けることが好まし
い。
Next, a core 6 made of a non-magnetic non-conductive material such as a refractory material is provided at the center of the cooling and stirring tank. It is preferable that the core 6 is rotatably supported by a support arm 8 via a bearing 7 as shown in the drawing, and the support arm 8 is mounted on a support base 11 so as to be capable of moving up and down via a lifting means such as a hydraulic cylinder 12.

さらに、中子6は連結軸9を介してトルク計10に接続
して固定することがのぞましい。
Further, it is preferable that the core 6 is connected and fixed to the torque meter 10 via the connecting shaft 9.

さて、溶融金属15は連続的に受湯タンデイッシュ1に
供給され、冷却攪拌槽に流入する。この溶融金属は冷却
攪拌槽で適当な冷却作用と、電磁誘電コイル4によって
発生する回転磁界によって中子外壁面と冷却攪拌槽内壁
面との間で旋回流動による攪拌が行なわれ、生成しつつ
ある樹枝状初晶をその枝部が消失ないしは縮小して丸味
を帯びた形態に変換して半凝固金属15′として底部の排
出ノズル5から連続的に排出される。この場合中子6
は、定位置に固定してもよいが、置換流動による混合攪
拌を促進さす目的で昇降移動を行なうこともよい。ま
た、中子6に直結したトルク計10により、中子に作用す
る半凝固金属15′の粘性トルクを測定し半凝固金属の性
状および攪拌状況について推定することも可能である。
Now, the molten metal 15 is continuously supplied to the hot water receiving tundish 1 and flows into the cooling and stirring tank. This molten metal is being stirred by an appropriate cooling action in the cooling and stirring tank and is swirling between the outer wall surface of the core and the inner wall surface of the cooling stirring tank by the rotating magnetic field generated by the electromagnetic induction coil 4 and is being generated. The dendritic primary crystals are converted into a rounded form by disappearing or reducing the branches, and the semi-solidified metal 15 'is continuously discharged from the discharge nozzle 5 at the bottom. In this case, core 6
May be fixed at a fixed position, but may be moved up and down for the purpose of promoting mixing and stirring by the displacement flow. It is also possible to measure the viscous torque of the semi-solidified metal 15 ′ acting on the core by the torque meter 10 directly connected to the core 6 to estimate the properties and stirring condition of the semi-solidified metal.

操業が終了した場合、中子6は油圧シリンダー12によ
って支持アーム8を介して上方に退避し、更に支持アー
ム8が旋回して、冷却攪拌槽の保守点検を便利ならしめ
ている。
When the operation is completed, the core 6 is retracted upward by the hydraulic cylinder 12 via the support arm 8, and the support arm 8 is further swung to facilitate maintenance and inspection of the cooling and stirring tank.

つぎに攪拌作用の特徴について説明する。第2図は従
来の電磁攪拌方式、第3図はこの発明による電磁攪拌方
式の攪拌作用を示す原理図であり、第4図はその攪拌効
果を数値化したグラフを示す。第2、3図において、金
属製冷却円筒2と水冷ジャケット3から構成された冷却
攪拌槽とその外周に配置した電磁誘導コイル4は共通し
ているが、第3図には中子6を冷却攪拌槽内にもうけて
いる。第2図に示す従来装置においては、回転磁界によ
り強力に攪拌すればするほど、冷却攪拌槽中の溶融金属
15は高速で回転し、その回転速度(Ω)は第4図に示す
通り、中心部で最大となり、遠心力によって中心に大き
な渦へこみ(Ho)を発生することになる。この渦へこみ
(Ho)が大きくなり過ぎると、冷却攪拌槽上部からの溶
融金属の飛散、ガスの巻込みなどの問題が発生し、実用
的に成り立たなくなる。なお、中心部は非常に高速で回
転しているが、樹枝状晶の変化に必要なせん断力は小さ
い、すなわち、攪拌効果はほとんどないという欠点を有
する。そこでこの発明においては第3図に示す様に、冷
却攪拌槽の中央に半径r1の円筒状で耐火材製の中子6を
もうけている。この発明方法に、従来方法と同じ強さの
回転磁界を作用させたとすると、溶融金属15に生ずる旋
回流動の回転速度(Ω)は、冷却円筒2の内壁面と中子
6の外壁面とで0となり、最高回転速度も小さくなる。
そのため遠心力による渦へこみ(Hoは相当小さくなり、
実用的な問題点が解消される。そして断面内に発生する
攪拌効果、すなわちせん断応力は、従来方法にくらべ、
回転速度が小さくなっているにもかかわらず、断面内平
均値としてはほぼ同一であり、有効に攪拌効果を与えて
いることになる。
Next, the characteristics of the stirring action will be described. FIG. 2 is a principle diagram showing the stirring action of the conventional electromagnetic stirring system, and FIG. 3 is a principle diagram showing the stirring action of the electromagnetic stirring system according to the present invention, and FIG. 4 is a graph showing the stirring effect numerically. In FIGS. 2 and 3, the cooling and stirring tank composed of the metal cooling cylinder 2 and the water cooling jacket 3 and the electromagnetic induction coil 4 arranged on the outer circumference thereof are common, but in FIG. 3, the core 6 is cooled. It is in the stirring tank. In the conventional apparatus shown in FIG. 2, the stronger the stirring by the rotating magnetic field, the more molten metal in the cooling stirring tank.
15 rotates at a high speed, and its rotation speed (Ω) becomes maximum at the center as shown in Fig. 4, and a large vortex dent (H o ) is generated at the center by the centrifugal force. If this vortex dent (H o ) becomes too large, problems such as the scattering of molten metal from the upper part of the cooling and stirring tank and the entrainment of gas will occur, and it will not be practically applicable. Although the central portion rotates at a very high speed, it has a drawback that the shearing force necessary for changing the dendrites is small, that is, there is almost no stirring effect. Therefore, in the present invention, as shown in FIG. 3, a core 6 made of a refractory material having a cylindrical shape with a radius r 1 is provided in the center of the cooling and stirring tank. When the rotating magnetic field having the same strength as that of the conventional method is applied to the method of the present invention, the rotational speed (Ω) of the swirling flow generated in the molten metal 15 is different between the inner wall surface of the cooling cylinder 2 and the outer wall surface of the core 6. It becomes 0, and the maximum rotation speed also decreases.
Therefore, vortex dent due to centrifugal force (H o becomes considerably small,
Practical problems are solved. And the stirring effect generated in the cross section, that is, the shear stress, is
Even though the rotation speed is low, the average value in the cross section is almost the same, which means that the stirring effect is effectively given.

また、電磁攪拌方式においては、溶融金属内に発生す
る電磁誘導の回転力で溶融金属自ら回転するため、溶融
金属または半凝固金属の回転速度すなわち攪拌効果自体
が、溶融金属または半凝固金属の粘性によって左右され
るという特徴を有し、回転速度すなわち攪拌効果の把握
が困難であったが、中子6に直結したトルク計による粘
性トルクから攪拌効果を推定可能にしたこともこの発明
の大きな利点である。
In the electromagnetic stirring method, the rotating speed of the molten metal or the semi-solidified metal, that is, the stirring effect itself, is the viscosity of the molten metal or the semi-solidified metal because the molten metal itself rotates by the rotational force of electromagnetic induction generated in the molten metal. Although it is difficult to grasp the rotation speed, that is, the stirring effect, it is possible to estimate the stirring effect from the viscous torque by the torque meter directly connected to the core 6, which is a great advantage of the present invention. Is.

つぎに、有効な攪拌効果を与えるための冷却攪拌槽内
径(冷却同筒2)と中子外径との関係について述べる。
内径170mmの冷却攪拌槽に600ガウスの回転磁界を与え、
冷却攪拌槽の円筒内面の中心軸と中子の円筒外面中心軸
を合致させて中子を冷却攪拌槽にそなえた場合の計算結
果を第5図(a),(b)および第6図に示す。第5図
(a),(b)はそれぞれ、中子半径と冷却攪拌槽内壁
面および中子外壁面におけるせん断歪速度を固相率fs
パラメーターとして示し、第6図は、中子半径と中子外
壁面における渦へこみHoとの関係を固相率fsをパラメー
ターとして示した。これらの図の斜線部分は渦へこみが
小さく実用的であり、かつせん断歪速度が大きい最適中
子半径範囲を示したもので、この範囲は中子の外径が冷
却攪拌槽内径の30〜60%に相当する。
Next, the relationship between the inner diameter of the cooling stirring tank (cooling cylinder 2) and the outer diameter of the core for giving an effective stirring effect will be described.
A rotating magnetic field of 600 Gauss is applied to a cooling stirring tank with an inner diameter of 170 mm,
Figures 5 (a), 5 (b) and 6 show the calculation results when the center axis of the inner surface of the cylinder of the cooling and stirring tank and the center axis of the outer surface of the cylinder of the core are aligned and the core is provided in the cooling and stirring tank. Show. 5 (a) and 5 (b) respectively show the core radius and the shear strain rate on the inner wall surface of the cooling and stirring tank and the outer wall surface of the core with the solid fraction f s as a parameter, and FIG. 6 shows the core radius. the relationship between the vortex dent H o in the core outer wall surface showed solid fraction f s as a parameter. The shaded area in these figures shows the optimum core radius range where the vortex dent is small and is practical, and the shear strain rate is large. In this range, the outer diameter of the core is 30 to 60 of the cooling stirring tank inner diameter. Equivalent to%.

(実施例) 内径170mm(r2=85mm)を有する円筒状冷却攪拌槽に
2極3相の攪拌コイルによって、中心磁束密度800ガウ
スの回転磁界を発生させた場合について述べる。
(Example) A case will be described in which a rotating magnetic field having a central magnetic flux density of 800 gauss is generated by a 2-pole 3-phase stirring coil in a cylindrical cooling stirring tank having an inner diameter of 170 mm (r 2 = 85 mm).

従来方法では、溶融金属の回転速度は中心部で最大10
00r.p.m.となり、回転中心部の渦へこみHoは1200mmに達
する。
In the conventional method, the rotation speed of the molten metal is 10 at maximum at the center.
00r.pm next, eddy dent H o of the rotation center portion reaches 1200 mm.

これに対し、外径100mm(r1=50mm)の円筒状中子を
そなえたこの発明方法においては、溶融金属の回転速度
は中子外面と冷却攪拌槽内面の中間点で最大となり200
r.p.m.程度、中子表面での最大へこみHoは70mmに激減
し、安定操業が可能となった。
On the other hand, in the method of the present invention provided with a cylindrical core having an outer diameter of 100 mm (r 1 = 50 mm), the rotation speed of the molten metal becomes maximum at the midpoint between the outer surface of the core and the inner surface of the cooling stirring tank.
about rpm, the maximum indentation H o in the core surface is depleted in 70 mm, it has become possible stable operation.

さらに、攪拌効果をせん断歪速度で表わして理論推定
計算を行うと、従来方法による場合は冷却攪拌相内面で
最大250sec-1で回転中心部は0になるのに対し、この発
明方法による場合は冷却攪拌相内壁面と中子外壁面で最
大230sec-1が発生することが明らかとなり、有効な攪拌
効果を与えている。
Furthermore, when the theoretical estimation calculation is performed by expressing the stirring effect in terms of shear strain rate, in the case of the conventional method, the center of rotation becomes 0 at a maximum of 250 sec −1 on the inner surface of the cooling stirring phase, whereas in the case of the method of the present invention, It was clarified that a maximum of 230 sec -1 is generated on the inner wall surface of the cooling and stirring phase and the outer wall surface of the core, which gives an effective stirring effect.

(発明の効果) 電磁攪拌方式による半凝固金属の製造において、この
発明の方法および装置を用いることにより、以下の効果
が期待される。
(Effects of the Invention) The following effects are expected by using the method and apparatus of the present invention in the production of semi-solidified metal by the electromagnetic stirring method.

(1)強力な旋回流動による攪拌を与えても渦へこみが
小さく、溶融金属の冷却攪拌槽上部からの飛散の危険が
なく、安定した実用的な操業が可能になる。
(1) Vortex dents are small even when agitated by a powerful swirling flow, and there is no danger of molten metal splashing from the upper part of the cooling and stirring tank, and stable and practical operation is possible.

(2)同じ回転磁界に対し、回転速度は低下しても、攪
拌効果はほぼ同じであり、むしろ従来方法では回転中心
部がほとんど攪拌効果がないデッドスペースとなるのに
対し、この発明ではほぼ均一な攪拌効果が得られる。
(2) For the same rotating magnetic field, the stirring effect is almost the same even if the rotating speed is reduced. Rather, in the conventional method, the rotating center portion becomes a dead space with almost no stirring effect. A uniform stirring effect can be obtained.

(3)溶融金属中の中子の体積に見合う量の溶融金属が
排除され、この分の熱容量が小さくなるため同じ冷却能
力でも溶融金属の冷却速度が向上し、より粒径の小さい
半凝固金属を製造できる。
(3) The amount of molten metal corresponding to the volume of the core in the molten metal is eliminated, and the heat capacity corresponding to this is reduced, so the cooling rate of the molten metal is improved even with the same cooling capacity, and the semi-solidified metal with a smaller particle size is used. Can be manufactured.

以上この発明により、電磁攪拌方式による半凝固金属
製造の実用化に大いに役立つものである。
As described above, the present invention is very useful for practical application of semi-solidified metal production by the electromagnetic stirring system.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の構成全体を断面で示す説明図、 第2図は従来の電磁攪拌方式の攪拌作用を示す原理図、 第3図はこの発明による電磁攪拌方式の攪拌作用を示す
原理図、 第4図は従来方式およびこの発明の攪拌効果を数値化し
たグラフ、 第5図(a),(b)は中子の半径と、冷却攪拌槽内壁
面および中子外壁面側におけるせん断歪速度との関係、
また第6図は中子半径と渦へこみの関係を示すグラフで
ある。 1……受湯タンデイッシュ 1′……内張耐火材、2……冷却円筒 3……水冷ジャケット、4……電磁誘導コイル 5……排出ノズル、6……中子 7……軸受、9……連結軸 10……トルク計、11……支持台 12……油圧シリンダー
FIG. 1 is an explanatory view showing the entire structure of the present invention in cross section, FIG. 2 is a principle diagram showing the stirring action of a conventional electromagnetic stirring system, and FIG. 3 is a principle diagram showing the stirring action of the electromagnetic stirring system according to the present invention. Fig. 4 is a graph showing the stirring effect of the conventional method and the present invention in numerical form, and Figs. 5 (a) and 5 (b) are core radii and shear strains on the inner wall surface of the cooling stirring tank and the outer wall surface of the core. Relationship with speed,
FIG. 6 is a graph showing the relationship between the core radius and the vortex depression. 1 ... Receiving hot water tundish 1 '... Lined refractory material 2 ... Cooling cylinder 3 ... Water cooling jacket 4 ... Electromagnetic induction coil 5 ... Discharge nozzle, 6 ... Core 7 ... Bearing, 9 ...... Coupling shaft 10 …… Torque meter, 11 …… Support base 12 …… Hydraulic cylinder

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】溶融金属を冷却攪拌槽内に収容し、冷却攪
拌槽の内壁面からの抜熱によって冷却しつつ、冷却攪拌
槽の断面を横切って働く回転磁界によって溶融金属を回
転流動させることによる攪拌を加えて半凝固金属を製造
する方法において、溶融金属を冷却攪拌槽の中心部にそ
なえた非磁性、不導電性の中子の外壁面と、冷却攪拌槽
内壁面との間で旋回流動させることを特徴とする電磁攪
拌方式による半凝固金属の製造方法。
1. A molten metal is contained in a cooling and stirring tank, and while being cooled by removing heat from the inner wall surface of the cooling and stirring tank, the molten metal is rotatively fluidized by a rotating magnetic field that operates across a cross section of the cooling and stirring tank. In the method of producing semi-solidified metal by adding the stirring by the method, the molten metal is swirled between the outer wall surface of the non-magnetic and non-conductive core with the central portion of the cooling stirring tank and the inner wall surface of the cooling stirring tank. A method for producing a semi-solid metal by an electromagnetic stirring method, which is characterized by flowing.
【請求項2】溶融金属の旋回流動が中子の昇降運動によ
る置換流動を含むことからなる請求項第1項に記載した
電磁攪拌による半凝固金属の製造方法。
2. The method for producing a semi-solid metal by electromagnetic stirring according to claim 1, wherein the swirling flow of the molten metal includes a displacement flow caused by a lifting motion of the core.
【請求項3】溶融金属を冷却する手段を有する冷却攪拌
槽と、冷却攪拌槽の断面を横切って働く回転磁界を発生
する電磁誘導コイルとをそなえ、冷却攪拌槽内に供給し
た溶融金属に回転磁界による回転流動を強いることによ
る攪拌を加える半凝固金属の製造装置において、冷却攪
拌槽中心部に非磁性、不導電性の中子をそなえることを
特徴とする電磁攪拌方式による半凝固金属の製造装置。
3. A cooling and stirring tank having a means for cooling the molten metal, and an electromagnetic induction coil for generating a rotating magnetic field that works across the cross section of the cooling and stirring tank, and rotating the molten metal supplied into the cooling and stirring tank. In a semi-solid metal manufacturing apparatus that applies stirring by forcing a rotational flow by a magnetic field, a semi-solid metal is manufactured by an electromagnetic stirring method characterized by having a non-magnetic, non-conductive core in the center of a cooling and stirring tank. apparatus.
【請求項4】中子を冷却攪拌槽内で繰返し昇降移動可能
に配置した請求項第3項に記載した電磁攪拌方式による
半凝固金属の製造装置。
4. An apparatus for producing a semi-solid metal by an electromagnetic stirring system according to claim 3, wherein the core is arranged so as to be able to repeatedly move up and down in the cooling stirring tank.
【請求項5】中子を回転可能に支持し、トルク計を介し
て固定することを特徴とする請求項第3項または第4項
に記載した電磁攪拌方式による半凝固金属の製造装置。
5. An apparatus for producing a semi-solidified metal by an electromagnetic stirring system according to claim 3 or 4, wherein the core is rotatably supported and is fixed via a torque meter.
【請求項6】中子が円筒形で、その外径が冷却攪拌槽内
径の30〜60%の範囲であることを特徴とする請求項第3
項、第4項又は第5項に記載した電磁攪拌方式による半
凝固金属の製造装置。
6. The core according to claim 3, wherein the core has a cylindrical shape and the outer diameter thereof is in the range of 30 to 60% of the inner diameter of the cooling and stirring tank.
An apparatus for producing a semi-solid metal by the electromagnetic stirring method described in the item 4, item 4 or item 5.
JP1306436A 1989-11-28 1989-11-28 Method and apparatus for manufacturing semi-solidified metal by electromagnetic stirring method Expired - Lifetime JPH0824998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1306436A JPH0824998B2 (en) 1989-11-28 1989-11-28 Method and apparatus for manufacturing semi-solidified metal by electromagnetic stirring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1306436A JPH0824998B2 (en) 1989-11-28 1989-11-28 Method and apparatus for manufacturing semi-solidified metal by electromagnetic stirring method

Publications (2)

Publication Number Publication Date
JPH03170629A JPH03170629A (en) 1991-07-24
JPH0824998B2 true JPH0824998B2 (en) 1996-03-13

Family

ID=17956990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1306436A Expired - Lifetime JPH0824998B2 (en) 1989-11-28 1989-11-28 Method and apparatus for manufacturing semi-solidified metal by electromagnetic stirring method

Country Status (1)

Country Link
JP (1) JPH0824998B2 (en)

Also Published As

Publication number Publication date
JPH03170629A (en) 1991-07-24

Similar Documents

Publication Publication Date Title
US4434837A (en) Process and apparatus for making thixotropic metal slurries
EP0071822B1 (en) Mold for use in metal or metal alloy casting systems and process for mixing a molten metal or metal alloy
US4465118A (en) Process and apparatus having improved efficiency for producing a semi-solid slurry
US6637927B2 (en) Method and apparatus for magnetically stirring a thixotropic metal slurry
CA1176819A (en) Process and apparatus for making thixotropic metal slurries
CN103600045B (en) The metal continuous cast technique that electromagnetic exciting composite machine stirs and device for casting of metal
MX2010010410A (en) Modulated electromagnetic stirring of metals at advanced stage of solidification.
US4457355A (en) Apparatus and a method for making thixotropic metal slurries
AU2001264711A1 (en) Method and apparatus for magnetically stirring a thixotropic metal slurry
CA1176820A (en) Apparatus for making thixotropic metal slurries
JPS6143146B2 (en)
EP0492761B1 (en) Method and apparatus for the production of semi-solidified metal composition
US4607682A (en) Mold for use in metal or metal alloy casting systems
JPH0824998B2 (en) Method and apparatus for manufacturing semi-solidified metal by electromagnetic stirring method
US5205981A (en) Method and apparatus for the production of semi-solidified metal composition
JPH081281A (en) Method and apparatus for producing semi-solidified metallic material
CN215063652U (en) Device for preparing aluminum alloy semi-solid slurry by bidirectional permanent magnet stirring
JP2581850B2 (en) Method and apparatus for producing semi-solid metal by electromagnetic stirring
JPH06328199A (en) Manufacture of continuous semi-solidified metallic slurry
JPH07112596B2 (en) Metal slurry manufacturing equipment