JPH0824969A - Electromagnetic forming device for tube expansion and manufacture of tube-like formed product - Google Patents

Electromagnetic forming device for tube expansion and manufacture of tube-like formed product

Info

Publication number
JPH0824969A
JPH0824969A JP6156087A JP15608794A JPH0824969A JP H0824969 A JPH0824969 A JP H0824969A JP 6156087 A JP6156087 A JP 6156087A JP 15608794 A JP15608794 A JP 15608794A JP H0824969 A JPH0824969 A JP H0824969A
Authority
JP
Japan
Prior art keywords
pipe
molded
metal tube
coil
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6156087A
Other languages
Japanese (ja)
Inventor
Kazunari Ikuta
一成 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP6156087A priority Critical patent/JPH0824969A/en
Publication of JPH0824969A publication Critical patent/JPH0824969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To put a method, for forming a metal tube made after the inner shape of a metallic mold by expanding the diameter of the metal tube with Lorentz's force, to a practical use. CONSTITUTION:The metal tube K is incorporated in a metallic mold 1, and a coil 2 wound in the peripheral direction of the metal tube K is incorporated in the inner part of the metal tube K, and magnetic field Ba is formed at the outer part of the metal tube K along the axial direction of the metal tube K. A large amt. of current is allowed to flow momentarily to the coil 2 under the condition above to cause excitation and the current Ic is induced in the peripheral direction of the metal tube K by this excitation. The diameter of the metal tube K is expanded by the Lorentz's force resulting from the induction current Ic and the magnetic field Ba and is brought into press contact with the inner surface of the metallic mold 1 to form the metal tube K after the inner surface shape of the metallic mold 1. By this method, the metal tube product formed after the inner surface shape of the metallic mold can suitably be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、拡管用電磁成形器お
よび管状成形品の製造方法に関し、更に詳しくは、ロー
レンツ力により被成形管を拡径して型の内面形状に被成
形管を成形する拡管用電磁成形器および型の内面形状に
合せて成形した管状成形品を好適に製造できる管状成形
品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic molding device for expanding a pipe and a method for manufacturing a tubular molded product. More specifically, the diameter of the molded pipe is expanded by Lorentz force to mold the molded pipe into the inner surface of the mold. The present invention relates to a method for producing a tubular molded product capable of suitably producing a tubular molded product which is molded according to the electromagnetic expander for pipe expansion and the inner surface shape of the mold.

【0002】[0002]

【従来の技術】従来、図5に示すような縮管用電磁成形
器500が知られている。この縮管用電磁成形器500
は、金属管K内に挿入する金型501と、前記金属管K
を内部に収容し前記金属管Kの周方向に巻回されたコイ
ル502と、そのコイル502に給電する電源(図示省
略)とを具備して構成されている。前記電源より前記コ
イル502に瞬間的に大電流を流して励磁すると、コイ
ル502の内部に強い磁場Bbが形成される。また、金
属管Kの周方向に電流Icが誘導される。すると、前記
磁場Bbと前記誘導電流Icの間に強いローレンツ力が
働き、金属管Kが縮径され、金型501の外面に圧着す
る。この結果、金型501の外面形状に合せて金属管K
を成形することが出来る。
2. Description of the Related Art Conventionally, an electromagnetic molding device 500 for a contracted tube as shown in FIG. 5 is known. This electromagnetic forming machine for contracted tubes 500
Is a mold 501 to be inserted into the metal tube K and the metal tube K.
And a coil 502 wound in the circumferential direction of the metal tube K, and a power source (not shown) for supplying power to the coil 502. When a large current is instantaneously applied to the coil 502 from the power source for excitation, a strong magnetic field Bb is formed inside the coil 502. Further, the current Ic is induced in the circumferential direction of the metal tube K. Then, a strong Lorentz force acts between the magnetic field Bb and the induced current Ic, the diameter of the metal tube K is reduced, and the metal tube K is pressed against the outer surface of the die 501. As a result, the metal pipe K is fitted to the outer surface shape of the die 501.
Can be molded.

【0003】[0003]

【発明が解決しようとする課題】上記縮管用電磁成形器
500に対して、図6に示すような拡管用電磁成形器6
00が考えられる。この拡管用電磁成形器600は、金
属管Kを内部に収容する金型601と、前記金属管Kの
内部に収容され前記金属管Kの周方向に巻回されたコイ
ル602と、そのコイル602に給電する電源(図示省
略)とを具備して構成する。前記電源より前記コイル6
02に瞬間的に大電流を流して励磁すると、コイル60
2の外部に磁場Bbが形成される。また、金属管Kの周
方向に電流Icが誘導される。すると、前記磁場Bbと
前記誘導電流Icの間にローレンツ力が働き、金属管K
が拡径され、金型601の内面に圧着する。この結果、
金型601の内面形状に合せて金属管Kを成形できるは
ずである。
In contrast to the electromagnetic compactor 500 for contracting pipes, the electromagnetic compactor 6 for expanding pipes as shown in FIG. 6 is used.
00 can be considered. This electromagnetic expander 600 for pipe expansion has a mold 601 for accommodating a metal tube K therein, a coil 602 accommodated inside the metal tube K and wound in the circumferential direction of the metal tube K, and the coil 602. And a power supply (not shown) for supplying power to the device. The coil 6 from the power source
When a large current is instantaneously applied to 02 to be excited, the coil 60
A magnetic field Bb is formed outside of 2. Further, the current Ic is induced in the circumferential direction of the metal tube K. Then, the Lorentz force acts between the magnetic field Bb and the induced current Ic, and the metal tube K
Is expanded and pressure-bonded to the inner surface of the mold 601. As a result,
The metal tube K should be able to be molded according to the inner surface shape of the mold 601.

【0004】しかし、実際には、上記拡管用電磁成形器
600では、金型601の内面形状に合せて金属管Kを
成形することが出来ない問題点がある。その理由は、コ
イル602の外部ではコイル602から離れるほど急激
に磁場Bbが弱くなるため、金属管Kが少しでも拡径す
ると、急激にローレンツ力が弱くなり、金型601の内
面に圧着する程度まで金属管Kを拡径することが出来な
いためである。このため、図5に示す縮管用電磁成形器
500は実用化されているが、図6に示すような拡管用
電磁成形器600は実用化されていない。
However, in reality, the electromagnetic expanding device 600 for expanding a pipe has a problem in that the metal pipe K cannot be formed in conformity with the shape of the inner surface of the die 601. The reason is that, outside the coil 602, the magnetic field Bb weakens rapidly as the distance from the coil 602 increases, so if the diameter of the metal tube K increases even a little, the Lorentz force sharply weakens and the pressure is applied to the inner surface of the die 601. This is because the metal tube K cannot be expanded in diameter. For this reason, the electromagnetic forming machine 500 for pipe shrinking shown in FIG. 5 has been put to practical use, but the electromagnetic forming machine 600 for pipe expansion shown in FIG. 6 has not been put to practical use.

【0005】そこで、この発明の第1の目的は、ローレ
ンツ力により金属管を拡径して金型の内面形状に合せて
金属管を成形することを実用化できるようにした拡管用
電磁成形器を提供することにある。また、この発明の第
2の目的は、型の内面形状に合せて成形した管状成形品
を好適に製造できる管状成形品の製造方法を提供するこ
とにある。
Therefore, a first object of the present invention is to expand the diameter of the metal tube by Lorentz force to form a metal tube in conformity with the shape of the inner surface of the mold. To provide. A second object of the present invention is to provide a method for manufacturing a tubular molded product, which can suitably manufacture a tubular molded product molded according to the shape of the inner surface of a mold.

【0006】[0006]

【課題を解決するための手段】第1の観点では、この発
明は、被成形管(K)を内部に収容する型(1)と、前
記被成形管(K)の内部に収容され前記被成形管(K)
の周方向に巻回されたコイル(2)と、前記被成形管
(K)の外部に前記被成形管(K)の軸方向に沿って磁
場(Ba)を形成する磁場形成手段(3,3’,31)
と、前記コイル(2)に給電する電源手段(4,5,
6,7)とを具備し、前記コイル(2)に瞬間的に大電
流を流して励磁し、この励磁により前記被成形管(K)
の周方向に電流(Ic)を誘導し、この誘導電流(I
c)と前記磁場(Ba)とのローレンツ力により前記被
成形管(K)を拡径して型(1)の内面に圧着し、型
(1)の内面形状に合せて被成形管(K)を成形するこ
とを特徴とする拡管用電磁成形器(100)を提供す
る。
According to a first aspect of the present invention, a mold (1) for accommodating a pipe to be molded (K) therein, and a pipe (K) accommodated inside the pipe to be molded (K) are provided. Formed tube (K)
And a magnetic field forming means (3) for forming a magnetic field (Ba) outside the molded pipe (K) along the axial direction of the molded pipe (K). 3 ', 31)
And power supply means (4, 5, 5) for supplying power to the coil (2).
6 and 7), a large current is momentarily applied to the coil (2) to excite the coil (2), and the molded tube (K) is excited by this excitation.
A current (Ic) is induced in the circumferential direction of the
c) and the magnetic field (Ba), the diameter of the pipe to be molded (K) is expanded by the Lorentz force and pressed onto the inner surface of the mold (1), and the pipe to be molded (K) is fitted to the inner surface shape of the mold (1). (1) is provided, and an electromagnetic molding device (100) for pipe expansion is provided.

【0007】第2の観点では、この発明は、被成形管
(K)を内部に収容する型(1)と、前記被成形管
(K)の内部に収容され前記被成形管(K)の周方向に
巻回されたコイル(2)と、前記被成形管(K)の外部
に前記被成形管(K)の軸方向に沿って磁場(Ba)を
形成する永久磁石(21,22,22’)と、前記コイ
ル(2)に給電する電源手段(4,5,6,7)とを具
備し、前記コイル(2)に瞬間的に大電流を流して励磁
し、この励磁により前記被成形管(K)の周方向に電流
(Ic)を誘導し、この誘導電流(Ic)と前記磁場
(Ba)とのローレンツ力により前記被成形管(K)を
拡径して型(1)の内面に圧着し、型(1)の内面形状
に合せて被成形管(K)を成形することを特徴とする拡
管用電磁成形器(200)を提供する。
According to a second aspect, the present invention relates to a mold (1) for accommodating a molded pipe (K) inside, and a molded pipe (K) housed inside the molded pipe (K). A coil (2) wound in the circumferential direction and permanent magnets (21, 22, 22) that form a magnetic field (Ba) outside the molded tube (K) along the axial direction of the molded tube (K). 22 ') and power supply means (4, 5, 6, 7) for supplying power to the coil (2), and a large current is momentarily applied to the coil (2) to excite the coil (2). A current (Ic) is induced in the circumferential direction of the molded pipe (K), and the Lorentz force between the induced current (Ic) and the magnetic field (Ba) expands the molded pipe (K) to form a mold (1 ), The pipe forming electromagnetic molding machine (200) is characterized in that the pipe to be molded (K) is molded according to the inner surface shape of the mold (1). provide.

【0008】第3の観点では、この発明は、型(1)の
内部に被成形管(K)を収容し、その被成形管(K)の
内部に当該被成形管(K)の周方向に巻回されたコイル
(2)を収容し、前記被成形管(K)の外部に当該被成
形管(K)の軸方向に沿って磁場(Ba)を形成し、そ
の状態で前記コイル(2)に瞬間的に大電流を流して励
磁し、この励磁により前記被成形管(K)の周方向に電
流(Ic)を誘導し、この誘導電流(Ic)と前記磁場
(Ba)とのローレンツ力により前記被成形管(K)を
拡径して型(1)の内面に圧着し、型(1)の内面形状
に合せて被成形管(K)を成形することを特徴とする管
状成形品の製造方法を提供する。
According to a third aspect of the present invention, in the present invention, the molded pipe (K) is housed inside the mold (1), and the molded pipe (K) is circumferentially arranged inside the molded pipe (K). The coil (2) wound around the coil (2) is housed, and a magnetic field (Ba) is formed outside the molded tube (K) along the axial direction of the molded tube (K). A large current is instantaneously applied to 2) for excitation, and a current (Ic) is induced in the circumferential direction of the molded pipe (K) by this excitation, and the induced current (Ic) and the magnetic field (Ba) are combined. A tube characterized in that the pipe to be molded (K) is expanded in diameter by Lorentz force and pressure-bonded to the inner surface of the mold (1), and the pipe to be molded (K) is molded according to the shape of the inner surface of the mold (1). A method for manufacturing a molded article is provided.

【0009】[0009]

【作用】上記第1の観点による拡管用電磁成形器(10
0)では、被成形管(K)の外部に被成形管(K)の軸
方向に沿った磁場(Ba)を形成する磁場形成手段
(3,3’)を設けた。このため、コイル(2)の外部
でコイル(2)から多少離れても、強い磁場(Ba)が
形成されている。この結果、被成形管(K)が拡径して
も強いローレンツ力が維持されるようになり、型(1)
の内面に圧着する程度まで被成形管(K)を拡径できる
ようになる。従って、型(1)の内面形状に合せて被成
形管(K)を成形できるようになる。
According to the first aspect, the electromagnetic forming device for pipe expansion (10
In 0), the magnetic field forming means (3, 3 ′) for forming the magnetic field (Ba) along the axial direction of the molded pipe (K) was provided outside the molded pipe (K). Therefore, a strong magnetic field (Ba) is formed even outside the coil (2) to some extent from the coil (2). As a result, a strong Lorentz force is maintained even when the pipe to be molded (K) is expanded in diameter, and the mold (1)
The diameter of the pipe to be molded (K) can be expanded to such an extent that it can be crimped to the inner surface of the. Therefore, the pipe (K) to be molded can be molded according to the inner surface shape of the mold (1).

【0010】上記第2の観点による拡管用電磁成形器
(200)では、被成形管(K)の外部に被成形管
(K)の軸方向に沿った磁場(Ba)を形成する永久磁
石(21,22,22’)を設けた。このため、コイル
(2)の外部でコイル(2)から多少離れても、強い磁
場(Ba)が形成されている。この結果、被成形管
(K)が拡径しても強いローレンツ力が維持されるよう
になり、型(1)の内面に圧着する程度まで被成形管
(K)を拡径できるようになる。従って、型(1)の内
面形状に合せて被成形管(K)を成形できるようにな
る。さらに、永久磁石(21,22,22’)を用いる
ため、低電力消費化を達成できる。
In the pipe expanding electromagnetic molding device (200) according to the second aspect, a permanent magnet (Ba) is formed outside the molded pipe (K) to form a magnetic field (Ba) along the axial direction of the molded pipe (K). 21, 22, 22 ') are provided. Therefore, a strong magnetic field (Ba) is formed even outside the coil (2) to some extent from the coil (2). As a result, a strong Lorentz force is maintained even if the diameter of the pipe to be molded (K) is expanded, and the diameter of the pipe to be molded (K) can be expanded to such an extent that it is pressed against the inner surface of the mold (1). . Therefore, the pipe (K) to be molded can be molded according to the inner surface shape of the mold (1). Furthermore, since the permanent magnets (21, 22, 22 ') are used, low power consumption can be achieved.

【0011】上記第3の観点による管状成形品の製造方
法では、上記作用により、型の内面形状に合せて成形し
た管状成形品を好適に製造できるようになる。
In the method for producing a tubular molded article according to the third aspect, the tubular molded article molded in conformity with the inner surface shape of the mold can be suitably produced by the above-mentioned action.

【0012】[0012]

【実施例】以下、図に示す実施例によりこの発明をさら
に詳細に説明する。なお、これによりこの発明が限定さ
れるものではない。
The present invention will be described in more detail with reference to the embodiments shown in the drawings. The present invention is not limited to this.

【0013】−第1実施例− 図1は、この発明の第1実施例の拡管用電磁成形器を示
す構成図である。この拡管用電磁成形器100は、軟
鉄,銅,アルミなどの金属管Kを内部に収容する鋼鉄製
の金型1と、前記金属管Kの内部に収容され前記金属管
Kの周方向に巻回されたコイル2と、前記金属管Kの軸
方向に沿って磁場Baを形成するヘルムホルツコイル
3,3’と、前記コイル2に給電する電源装置(4,
5,6,7)と、前記ヘルムホルツコイル3,3’に給
電する直流電源31と、前記電源装置(4,5,6,
7)および前記直流電源31を制御する制御部10とを
具備している。前記電源装置(4,5,6,7)は、直
流高電圧電源4と、充電スイッチ5と、コンデンサ6
と、放電スイッチ7とから構成されている。
First Embodiment FIG. 1 is a block diagram showing an electromagnetic molding device for pipe expansion according to a first embodiment of the present invention. This electromagnetic expanding device 100 for expanding a pipe is made of a steel mold 1 for containing a metal pipe K of soft iron, copper, aluminum or the like, and a metal pipe K housed inside the metal pipe K and wound in the circumferential direction of the metal pipe K. The turned coil 2, the Helmholtz coils 3 and 3 ′ that form a magnetic field Ba along the axial direction of the metal tube K, and a power supply device (4 that supplies power to the coil 2
5, 6, 7), a DC power supply 31 for feeding the Helmholtz coils 3, 3 ', and the power supply device (4,5, 6, 6).
7) and the control unit 10 for controlling the DC power supply 31. The power supply device (4,5, 6, 7) includes a DC high voltage power supply 4, a charging switch 5, and a capacitor 6.
And a discharge switch 7.

【0014】図2は、前記ヘルムホルツコイル3,3’
に流れる電流Iaおよび前記コイル2に流れる電流Ib
のタイムチャートである。まず、直流電源31からヘル
ムホルツコイル3,3’に電流Iaを供給する。電流I
aは立ち上り時間(例えば2〜3ms)の後に最大値と
なり、形成される磁場Baの強さも最大値(例えば1万
〜5万ガウス)となる。ここで、充電スイッチ5をオフ
にし且つ放電スイッチ7を短時間(例えば100μs)
だけオンし、コンデンサ6からコイル2に瞬間的に大き
な電流Ib(例えば100kA)を供給する。すると、
電流Ibにより瞬間的に磁場Bbが形成されると共に、
これを打ち消す方向に金属管Kに大きな電流Icが誘導
される。これにより、前記磁場Baと前記誘導電流Ic
の間に強いローレンツ力が働いて、金属管Kが拡径され
る。前記磁場Baは、前記ヘルムホルツコイル3,3’
により形成されているため、金属管Kが拡径されても、
弱まることはない。従って、強いローレンツ力が働き続
け、金属管Kは金型1の内面に圧着されるまで拡径され
る。すなわち、金属管Kは、金型1の内面形状に合せて
成形されることとなる。
FIG. 2 shows the Helmholtz coils 3, 3 '.
Current Ia flowing in the coil 2 and current Ib flowing in the coil 2
Is a time chart of. First, the DC power source 31 supplies the current Ia to the Helmholtz coils 3 and 3 '. Current I
a has a maximum value after a rise time (for example, 2 to 3 ms), and the strength of the magnetic field Ba formed also has a maximum value (for example, 10,000 to 50,000 gauss). Here, the charge switch 5 is turned off and the discharge switch 7 is turned on for a short time (for example, 100 μs).
Then, the capacitor 6 instantaneously supplies a large current Ib (for example, 100 kA) from the capacitor 6 to the coil 2. Then
A magnetic field Bb is instantaneously formed by the current Ib, and
A large current Ic is induced in the metal tube K in a direction to cancel it. Thereby, the magnetic field Ba and the induced current Ic
The strong Lorentz force acts between the two, and the diameter of the metal tube K is expanded. The magnetic field Ba is applied to the Helmholtz coils 3, 3 ′.
Therefore, even if the diameter of the metal pipe K is expanded,
There is no weakening. Therefore, the strong Lorentz force continues to work, and the diameter of the metal tube K is expanded until it is pressed against the inner surface of the mold 1. That is, the metal tube K is formed in conformity with the inner surface shape of the mold 1.

【0015】次に、図3に示すように、放電スイッチ7
をオフにし、且つ、充電スイッチ5をオンにして直流高
電圧電源4からコンデンサ6に充電し、次回の成形に備
える。また、直流電源31からヘルムホルツコイル3,
3’への電流Iaの供給を停止する。
Next, as shown in FIG. 3, the discharge switch 7
Is turned off and the charging switch 5 is turned on to charge the capacitor 6 from the DC high voltage power source 4 to prepare for the next molding. In addition, from the DC power supply 31 to the Helmholtz coil 3,
The supply of the current Ia to 3'is stopped.

【0016】以上の拡管用電磁成形器100によれば、
ローレンツ力により金属管Kを拡径して金型1の内面に
圧着し、金型1の内面形状に合せて金属管Kを成形する
ことを実用化できるようになる。すなわち、金型1の内
面形状に合せて成形した金属管成形品を好適に製造でき
るようになる。
According to the above electromagnetic expander 100 for pipe expansion,
The metal tube K can be put into practical use by expanding the diameter of the metal tube K by the Lorentz force and press-bonding the metal tube K to the inner surface of the mold 1 so as to match the inner surface shape of the mold 1. That is, it becomes possible to suitably manufacture a metal tube molded product that is molded according to the inner surface shape of the mold 1.

【0017】−第2実施例− 図4は、この発明の第2実施例の拡管用電磁成形器を示
す構成図である。この拡管用電磁成形器200は、第1
実施例の拡管用電磁成形器100におけるヘルムホルツ
コイル3,3’および直流電源31の代りに、金属管K
の外部に当該金属管Kの軸方向に沿って磁場Baを形成
するように永久磁石21および強磁性体ヨーク22,2
2’を配置した構成である。この拡管用電磁成形器20
0によっても、ローレンツ力により金属管Kを拡径して
金型1の内面に圧着し、金型1の内面形状に合せて金属
管Kを成形することを実用化できるようになる。すなわ
ち、金型1の内面形状に合せて成形した金属管成形品を
好適に製造できるようになる。なお、永久磁石21を用
いるため、磁界Baを形成するための電力が不要とな
り、低電力消費化を達成できる利点もある。
-Second Embodiment- FIG. 4 is a block diagram showing an electromagnetic molding device for pipe expansion according to a second embodiment of the present invention. This electromagnetic expander 200 for pipe expansion has a first
Instead of the Helmholtz coils 3, 3 ′ and the DC power supply 31 in the electromagnetic expanding device 100 for expanding a pipe of the embodiment, a metal pipe K is used.
Of the permanent magnet 21 and the ferromagnetic yokes 22, 2 so as to form the magnetic field Ba along the axial direction of the metal tube K outside the
2'is arranged. This electromagnetic expander 20 for pipe expansion
Even with 0, it becomes possible to practically expand the diameter of the metal tube K by Lorentz force, press-fit it to the inner surface of the mold 1, and mold the metal tube K according to the shape of the inner surface of the mold 1. That is, it becomes possible to suitably manufacture a metal tube molded product that is molded according to the inner surface shape of the mold 1. Since the permanent magnet 21 is used, there is no need of electric power for forming the magnetic field Ba, and there is an advantage that low power consumption can be achieved.

【0018】[0018]

【発明の効果】この発明の拡管用電磁成形器によれば、
ローレンツ力により被成形管を拡径して型の内面形状に
合せて成形することを実用化できるようになる。また、
この発明の管状成形品の製造方法によれば、型の内面形
状に合せて成形した管状成形品を好適に製造できるよう
になる。従って、自動車の配気管の製造などに特に有用
である。
According to the electromagnetic expander for pipe expansion of the present invention,
It becomes possible to practically expand the diameter of the pipe to be molded by Lorentz force and mold it according to the inner surface shape of the mold. Also,
According to the method for manufacturing a tubular molded product of the present invention, it is possible to preferably manufacture a tubular molded product molded according to the shape of the inner surface of the mold. Therefore, it is particularly useful for manufacturing air pipes of automobiles.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例の拡管用電磁成形器を示
す構成図である。
FIG. 1 is a configuration diagram showing an electromagnetic molding device for pipe expansion according to a first embodiment of the present invention.

【図2】図1の拡管用電磁成形器における給電のタイミ
ングを示すタイムチャート図である。
FIG. 2 is a time chart showing the timing of power supply in the pipe expanding electromagnetic molding device of FIG.

【図3】この発明の第1実施例の拡管用電磁成形器を示
す別の構成図である。
FIG. 3 is another configuration diagram showing the electromagnetic expander for pipe expansion of the first embodiment of the present invention.

【図4】この発明の第2実施例の拡管用電磁成形器を示
す構成図である。
FIG. 4 is a configuration diagram showing an electromagnetic molding device for pipe expansion according to a second embodiment of the present invention.

【図5】従来の縮管用電磁成形器を示す構成図である。FIG. 5 is a configuration diagram showing a conventional electromagnetic forming device for a contracted tube.

【図6】図5の縮管用電磁成形器を変形した拡管用電磁
成形器を示す構成図である。
FIG. 6 is a configuration diagram showing an electromagnetic molding device for expanding a tube obtained by modifying the electromagnetic molding device for a contracted pipe of FIG. 5;

【符号の説明】[Explanation of symbols]

100,200 拡管用電磁成形器 1 金型 2 コイル 3,3’ ヘルムホルツコイル 31 直流電源 4 直流高電圧電源 5 充電スイッチ 6 コンデンサ 7 放電スイッチ 21 永久磁石 22,22’ 強磁性体ヨーク 100,200 Electromagnetic forming device for tube expansion 1 Mold 2 Coil 3,3 'Helmholtz coil 31 DC power supply 4 DC high voltage power supply 5 Charge switch 6 Capacitor 7 Discharge switch 21 Permanent magnet 22, 22' Ferromagnetic yoke

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被成形管(K)を内部に収容する型
(1)と、前記被成形管(K)の内部に収容され前記被
成形管(K)の周方向に巻回されたコイル(2)と、前
記被成形管(K)の外部に前記被成形管(K)の軸方向
に沿って磁場(Ba)を形成する磁場形成手段(3,
3’,31)と、前記コイル(2)に給電する電源手段
(4,5,6,7)とを具備したことを特徴とする拡管
用電磁成形器(100)。
1. A mold (1) for accommodating a molded pipe (K) therein, and a coil housed in the molded pipe (K) and wound in the circumferential direction of the molded pipe (K). (2) and a magnetic field forming means (3) for forming a magnetic field (Ba) along the axial direction of the molded pipe (K) outside the molded pipe (K).
3 ', 31) and a power supply means (4,5, 6, 7) for supplying power to the coil (2), an electromagnetic forming machine (100) for pipe expansion.
【請求項2】 被成形管(K)を内部に収容する型
(1)と、前記被成形管(K)の内部に収容され前記被
成形管(K)の周方向に巻回されたコイル(2)と、前
記被成形管(K)の外部に前記被成形管(K)の軸方向
に沿って磁場(Ba)を形成する永久磁石(21,2
2,22’)と、前記コイル(2)に給電する電源手段
(4,5,6,7)とを具備したことを特徴とする拡管
用電磁成形器(100)。
2. A mold (1) containing a molded pipe (K) inside, and a coil housed inside the molded pipe (K) and wound in the circumferential direction of the molded pipe (K). (2) and permanent magnets (21, 2) that form a magnetic field (Ba) along the axial direction of the molded pipe (K) outside the molded pipe (K).
2, 22 ') and power supply means (4,5, 6, 7) for supplying power to the coil (2), the electromagnetic expander for pipe expansion (100).
【請求項3】 型(1)の内部に被成形管(K)を収容
し、その被成形管(K)の内部に当該被成形管(K)の
周方向に巻回されたコイル(2)を収容し、前記被成形
管(K)の外部に当該被成形管(K)の軸方向に沿って
磁場(Ba)を形成し、その状態で前記コイル(2)に
瞬間的に大電流を流して励磁し、この励磁により前記被
成形管(K)の周方向に電流(Ic)を誘導し、この誘
導電流(Ic)と前記磁場(Ba)とのローレンツ力に
より前記被成形管(K)を拡径して型(1)の内面に圧
着し、型(1)の内面形状に合せて被成形管(K)を成
形することを特徴とする管状成形品の製造方法。
3. A molded pipe (K) is housed inside a mold (1), and a coil (2) wound inside the molded pipe (K) in the circumferential direction of the molded pipe (K). ) Is accommodated, a magnetic field (Ba) is formed outside the molded pipe (K) along the axial direction of the molded pipe (K), and in that state, a large current is momentarily applied to the coil (2). To excite a current (Ic) in the circumferential direction of the pipe to be molded (K), and the Lorentz force between the induced current (Ic) and the magnetic field (Ba) causes the pipe to be formed ( A method for producing a tubular molded article, which comprises expanding the diameter of K) and crimping it on the inner surface of the mold (1), and molding the pipe to be molded (K) according to the inner surface shape of the mold (1).
JP6156087A 1994-07-07 1994-07-07 Electromagnetic forming device for tube expansion and manufacture of tube-like formed product Pending JPH0824969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6156087A JPH0824969A (en) 1994-07-07 1994-07-07 Electromagnetic forming device for tube expansion and manufacture of tube-like formed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6156087A JPH0824969A (en) 1994-07-07 1994-07-07 Electromagnetic forming device for tube expansion and manufacture of tube-like formed product

Publications (1)

Publication Number Publication Date
JPH0824969A true JPH0824969A (en) 1996-01-30

Family

ID=15620025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6156087A Pending JPH0824969A (en) 1994-07-07 1994-07-07 Electromagnetic forming device for tube expansion and manufacture of tube-like formed product

Country Status (1)

Country Link
JP (1) JPH0824969A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026596A1 (en) * 2002-09-17 2004-04-01 Bridgestone Corporation Runflat tire support body and method of producing the same, and runflat tire
WO2004028720A1 (en) * 2002-09-27 2004-04-08 Kabushiki Kaisha Kobe Seiko Sho Process for producing tubular ring with beads and die for use therein
JP2004203202A (en) * 2002-12-25 2004-07-22 Kobe Steel Ltd Energy absorption member for vehicle body
JP2007075899A (en) * 2002-09-27 2007-03-29 Kobe Steel Ltd Process for producing tubular ring with beads
US7441335B2 (en) 2003-09-04 2008-10-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Methods of electromagnetic forming aluminum alloy wheel for automotive use
JP2010131636A (en) * 2008-12-04 2010-06-17 Kobe Steel Ltd Electromagnetic forming apparatus
EP2198987A1 (en) * 2008-12-09 2010-06-23 Metal Industries Research & Development Centre Device and method for manufacturing a plate having patterns with a tubular material applying magnetic forces
JP2013530045A (en) * 2010-04-08 2013-07-25 カリフォルニア インスティチュート オブ テクノロジー Electromagnetic metallic glass formation using capacitor discharge and magnetic field
CN103406418A (en) * 2013-08-05 2013-11-27 三峡大学 Method and device for electromagnetically forming metal pipe fitting in radial and axial loading mode
CN103861931A (en) * 2014-04-01 2014-06-18 湖南大学 Device and method for machining composite energy absorption tube
CN103894472A (en) * 2014-04-01 2014-07-02 湖南大学 Composite corrugated pipe forming device based on electromagnetic forming
US8961716B2 (en) 2008-03-21 2015-02-24 California Institute Of Technology Sheet forming of metallic glass by rapid capacitor discharge
US9067258B2 (en) 2008-03-21 2015-06-30 California Institute Of Technology Forming of metallic glass by rapid capacitor discharge forging
US9297058B2 (en) 2008-03-21 2016-03-29 California Institute Of Technology Injection molding of metallic glass by rapid capacitor discharge
US9309580B2 (en) 2008-03-21 2016-04-12 California Institute Of Technology Forming of metallic glass by rapid capacitor discharge
US9393612B2 (en) 2012-11-15 2016-07-19 Glassimetal Technology, Inc. Automated rapid discharge forming of metallic glasses
CN106694681A (en) * 2017-03-06 2017-05-24 华中科技大学 Electromagnetic forming device and method of metal pipe
CN106944527A (en) * 2017-04-01 2017-07-14 三峡大学 A kind of pipe forming device and method based on electromagnetic attraction
US9845523B2 (en) 2013-03-15 2017-12-19 Glassimetal Technology, Inc. Methods for shaping high aspect ratio articles from metallic glass alloys using rapid capacitive discharge and metallic glass feedstock for use in such methods
US10022779B2 (en) 2014-07-08 2018-07-17 Glassimetal Technology, Inc. Mechanically tuned rapid discharge forming of metallic glasses
US10029304B2 (en) 2014-06-18 2018-07-24 Glassimetal Technology, Inc. Rapid discharge heating and forming of metallic glasses using separate heating and forming feedstock chambers
CN109201842A (en) * 2018-11-02 2019-01-15 安徽工业大学 A kind of tee tube electromagnetic pulse Compound Forming of Bulging device and expanding method
US10213822B2 (en) 2013-10-03 2019-02-26 Glassimetal Technology, Inc. Feedstock barrels coated with insulating films for rapid discharge forming of metallic glasses
US10273568B2 (en) 2013-09-30 2019-04-30 Glassimetal Technology, Inc. Cellulosic and synthetic polymeric feedstock barrel for use in rapid discharge forming of metallic glasses
US10632529B2 (en) 2016-09-06 2020-04-28 Glassimetal Technology, Inc. Durable electrodes for rapid discharge heating and forming of metallic glasses
US10682694B2 (en) 2016-01-14 2020-06-16 Glassimetal Technology, Inc. Feedback-assisted rapid discharge heating and forming of metallic glasses
CN111468587A (en) * 2020-04-13 2020-07-31 三峡大学 Pipe fitting electromagnetic bulging device and method based on inner and outer side bidirectional loading
CN113182446A (en) * 2021-05-13 2021-07-30 中南大学 Current-assisted metal pipe electromagnetic forming device and forming method

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100387447C (en) * 2002-09-17 2008-05-14 株式会社普利司通 Runflat tire support body and method of producing the same, and runflat tire
WO2004026596A1 (en) * 2002-09-17 2004-04-01 Bridgestone Corporation Runflat tire support body and method of producing the same, and runflat tire
US7487655B2 (en) 2002-09-27 2009-02-10 Kobe Steel, Ltd Process for producing tubular ring with beads and die for use therein
JP2007075899A (en) * 2002-09-27 2007-03-29 Kobe Steel Ltd Process for producing tubular ring with beads
WO2004028720A1 (en) * 2002-09-27 2004-04-08 Kabushiki Kaisha Kobe Seiko Sho Process for producing tubular ring with beads and die for use therein
JP2004203202A (en) * 2002-12-25 2004-07-22 Kobe Steel Ltd Energy absorption member for vehicle body
US7441335B2 (en) 2003-09-04 2008-10-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Methods of electromagnetic forming aluminum alloy wheel for automotive use
US9067258B2 (en) 2008-03-21 2015-06-30 California Institute Of Technology Forming of metallic glass by rapid capacitor discharge forging
US9745641B2 (en) 2008-03-21 2017-08-29 California Institute Of Technology Forming of metallic glass by rapid capacitor discharge
US9463498B2 (en) 2008-03-21 2016-10-11 California Institute Of Technology Sheet forming of metallic glass by rapid capacitor discharge
US9309580B2 (en) 2008-03-21 2016-04-12 California Institute Of Technology Forming of metallic glass by rapid capacitor discharge
US9297058B2 (en) 2008-03-21 2016-03-29 California Institute Of Technology Injection molding of metallic glass by rapid capacitor discharge
US8961716B2 (en) 2008-03-21 2015-02-24 California Institute Of Technology Sheet forming of metallic glass by rapid capacitor discharge
JP2010131636A (en) * 2008-12-04 2010-06-17 Kobe Steel Ltd Electromagnetic forming apparatus
EP2198987A1 (en) * 2008-12-09 2010-06-23 Metal Industries Research & Development Centre Device and method for manufacturing a plate having patterns with a tubular material applying magnetic forces
JP2013530045A (en) * 2010-04-08 2013-07-25 カリフォルニア インスティチュート オブ テクノロジー Electromagnetic metallic glass formation using capacitor discharge and magnetic field
US9393612B2 (en) 2012-11-15 2016-07-19 Glassimetal Technology, Inc. Automated rapid discharge forming of metallic glasses
US9845523B2 (en) 2013-03-15 2017-12-19 Glassimetal Technology, Inc. Methods for shaping high aspect ratio articles from metallic glass alloys using rapid capacitive discharge and metallic glass feedstock for use in such methods
CN103406418A (en) * 2013-08-05 2013-11-27 三峡大学 Method and device for electromagnetically forming metal pipe fitting in radial and axial loading mode
US10273568B2 (en) 2013-09-30 2019-04-30 Glassimetal Technology, Inc. Cellulosic and synthetic polymeric feedstock barrel for use in rapid discharge forming of metallic glasses
US10213822B2 (en) 2013-10-03 2019-02-26 Glassimetal Technology, Inc. Feedstock barrels coated with insulating films for rapid discharge forming of metallic glasses
CN103861931A (en) * 2014-04-01 2014-06-18 湖南大学 Device and method for machining composite energy absorption tube
CN103894472A (en) * 2014-04-01 2014-07-02 湖南大学 Composite corrugated pipe forming device based on electromagnetic forming
US10029304B2 (en) 2014-06-18 2018-07-24 Glassimetal Technology, Inc. Rapid discharge heating and forming of metallic glasses using separate heating and forming feedstock chambers
US10022779B2 (en) 2014-07-08 2018-07-17 Glassimetal Technology, Inc. Mechanically tuned rapid discharge forming of metallic glasses
US10682694B2 (en) 2016-01-14 2020-06-16 Glassimetal Technology, Inc. Feedback-assisted rapid discharge heating and forming of metallic glasses
US10632529B2 (en) 2016-09-06 2020-04-28 Glassimetal Technology, Inc. Durable electrodes for rapid discharge heating and forming of metallic glasses
CN106694681A (en) * 2017-03-06 2017-05-24 华中科技大学 Electromagnetic forming device and method of metal pipe
CN106944527A (en) * 2017-04-01 2017-07-14 三峡大学 A kind of pipe forming device and method based on electromagnetic attraction
CN106944527B (en) * 2017-04-01 2019-06-25 三峡大学 A kind of pipe forming device and method based on electromagnetic attraction
CN109201842A (en) * 2018-11-02 2019-01-15 安徽工业大学 A kind of tee tube electromagnetic pulse Compound Forming of Bulging device and expanding method
CN109201842B (en) * 2018-11-02 2023-12-15 安徽工业大学 Electromagnetic pulse compound bulging device and bulging method for three-way pipe
CN111468587A (en) * 2020-04-13 2020-07-31 三峡大学 Pipe fitting electromagnetic bulging device and method based on inner and outer side bidirectional loading
CN113182446A (en) * 2021-05-13 2021-07-30 中南大学 Current-assisted metal pipe electromagnetic forming device and forming method

Similar Documents

Publication Publication Date Title
JPH0824969A (en) Electromagnetic forming device for tube expansion and manufacture of tube-like formed product
US6990840B2 (en) Conjoining apparatus using electromagnetic forming
US4150927A (en) Mold for the production of anisotropic permanent magnets
WO1998030354A1 (en) Electromagnetically forming a tubular workpiece
JP2000507159A (en) Electromagnetic integration or coupling of metal objects
ATE335928T1 (en) PROPULSION SYSTEM FOR SPACE VEHICLES
CN111633103B (en) Electro-hydraulic-electromagnetic composite forming system and forming method
JPS5837051B2 (en) Coil for electromagnetic forming
US5357232A (en) Magnetostrictive element
WO2005097400A1 (en) Member attaching/detaching device
US3210509A (en) Method of and apparatus for electromagnetically deforming metal
JP2004351457A (en) Electromagnetic forming coil, and electromagnetic forming method
JP4026844B2 (en) Electromagnetic expansion coil
JPH08317626A (en) Cylindrical linear motor and manufacture of cylindrical linear motor
RU2203760C1 (en) Apparatus for magnetic pulse shaping of axially symmetrical envelopes
JPH0623442A (en) Multi-stage electromagnetic plastic working method for hollow material
JP2794126B2 (en) Hose joint fastening method
CN101422084A (en) Discharge lamp lighting device
JP2615243B2 (en) Manufacturing method of magnetized material
JP3119915B2 (en) Power generator
KR200174315Y1 (en) Stator for a motor
JP2019130534A (en) Electromagnetic molding method
SU555934A1 (en) Method for high-frequency welding of ferromagnetic pipes
EP2046096A1 (en) Discharge lamp lighting device
JP2000182822A (en) Device of generating magnetic field and device of manufacturing permanent magnet