JPH0623442A - Multi-stage electromagnetic plastic working method for hollow material - Google Patents

Multi-stage electromagnetic plastic working method for hollow material

Info

Publication number
JPH0623442A
JPH0623442A JP4183617A JP18361792A JPH0623442A JP H0623442 A JPH0623442 A JP H0623442A JP 4183617 A JP4183617 A JP 4183617A JP 18361792 A JP18361792 A JP 18361792A JP H0623442 A JPH0623442 A JP H0623442A
Authority
JP
Japan
Prior art keywords
hollow material
hollow
magnetic flux
stage
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4183617A
Other languages
Japanese (ja)
Inventor
Masatoshi Enomoto
正敏 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Can Corp
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP4183617A priority Critical patent/JPH0623442A/en
Publication of JPH0623442A publication Critical patent/JPH0623442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

PURPOSE:To easily form a hollow material having different cross-sectional shapes in the axial direction or asymmetrical cross-sectional shapes to the axial direction by applying multi-stage electromagnetic power on specific parts of the hollow material. CONSTITUTION:When a pulselike strong magnetic flux is generated by flowing a large current in a magnetic coil 12, an inductive current flows in the surface layer of outer circumferential part of the hollow material 14 and the material 14 is formed by receiving a shrinking plastic deformation in the radial di-rection by a repulsive interaction between the inductive current and the current in the magnetic coil 12. The thicker a part of magnetic flux concentrators (13a, 13b and 13c) is, the stronger the repulsion becomes, accordingly, the amount of deformation becomes more in compliance with thickness of the concentrator part when the part becomes thicker. Thus, the hollow material 14 is applied with deformation whose amount is correspondin9 to projecting part of the magnetic flux concentrator in each stage and finally formed to a final shape having different cross-sectional shapes in the axial direction and much amount plastic deformation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金等の
中空材から異形断面の各種部品、例えば自動車部品、産
業機器部品、輸送用機器部品等を製作する中空材の多段
式電磁塑性加工法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-stage electromagnetic plastic working method for hollow materials for producing various parts having irregular cross sections, such as automobile parts, industrial equipment parts and transportation equipment parts, from hollow materials such as aluminum alloys. It is a thing.

【0002】[0002]

【従来の技術】異形断面の中空部品を製作する方法とし
て、従来は押出加工等のよって得た中空材に、マンドレ
ルによる拡管、ロール加工による縮管等の二次加工をし
たり、また中実材からの削出しによる方法等が行われて
いる。
2. Description of the Related Art As a method for producing hollow parts having irregular cross-sections, hollow materials conventionally obtained by extrusion processing, etc. are subjected to secondary processing such as pipe expansion by a mandrel or contraction tube by roll processing, or solid materials. The method of cutting from the material is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
方法では単純な形状の中空部品を製作することはできて
も、複雑形状、例えば軸線方向で断面形状が異なるもの
や軸線に対して非対称な断面形状を有するものは極めて
加工困難であるという問題点があった。
However, although a hollow part having a simple shape can be manufactured by the above-mentioned method, a complicated shape, for example, one having a different sectional shape in the axial direction or an asymmetrical section with respect to the axial line is formed. There is a problem in that those having a shape are extremely difficult to process.

【0004】本発明は、前記問題点を解決することを目
的として、複雑形状の中空部品を製造できる中空材の多
段式電磁塑性加工法を提供しようとするものである。
The present invention is intended to solve the above-mentioned problems and to provide a multi-stage electromagnetic plastic working method of a hollow material capable of producing a hollow part having a complicated shape.

【0005】[0005]

【課題を解決するための手段】本発明の中空材の多段式
電磁塑性加工法は、前記目的を達成するために、中空材
を、その中空材(14)の所定部分に電磁力を多段階に
付与することにより成形加工することを特徴とするもの
である。
In order to achieve the above-mentioned object, the multistage electromagnetic plastic working method for a hollow material according to the present invention achieves the above object by applying a multistage electromagnetic force to a predetermined portion of the hollow material (14). It is characterized in that it is molded and processed by being applied to.

【0006】前記中空材(14)への電磁力の付与は、
例えば電磁コイル(12)内部に中空材(14)を挿入
または中空材(14)内部に電磁コイル(16a,16
b)を挿入しておき、この電磁コイル(12,16a,
16b)に瞬間的に大電流を流してパルス状の強磁界を
発生させことにより行われる。
The electromagnetic force is applied to the hollow member (14) by
For example, the hollow material (14) is inserted inside the electromagnetic coil (12) or the electromagnetic coils (16a, 16) are inserted inside the hollow material (14).
b) is inserted and this electromagnetic coil (12, 16a,
16b) by instantaneously flowing a large current to generate a pulsed strong magnetic field.

【0007】また、前記中空材(14)の所定部分に付
与される電磁力の強弱分布は、前記のような場合であれ
ばコイルの巻き密度や電磁コイル(12,16a,16
b)と中空材(14)との距離の調整、または磁束集中
器(13a,13b,13c)の付加、磁束集中器(1
3a,13b,13c)の形状等によって制御できる。
なお、本発明における中空材(14)の所定部分とは、
中空材(14)の内周部または外周部、あるいは中空材
(14)の全周にわたるか否かを問わない。
In the above-mentioned case, the distribution of the intensity of the electromagnetic force applied to the predetermined portion of the hollow member (14) is the winding density of the coil or the electromagnetic coils (12, 16a, 16).
b) adjustment of the distance between the hollow member (14) or addition of magnetic flux concentrators (13a, 13b, 13c), magnetic flux concentrator (1
3a, 13b, 13c) and the like.
The predetermined portion of the hollow material (14) in the present invention means
It does not matter whether the hollow material (14) is provided on the inner peripheral portion or the outer peripheral portion, or on the entire circumference of the hollow material (14).

【0008】[0008]

【作用】例えば、電磁コイル(12)内部に中空材(1
4)を挿入しておきこの電磁コイル(12)に瞬間的に
大電流を流してパルス状の強磁界を発生させることによ
り中空材(14)に電磁力を付与すると、中空材(1
4)の外周部の表面層に誘導電流が流れる。この誘導電
流と前記磁気コイル(12)に流れる電流との間に反発
力が作用し中空材(14)は径方向に収縮するような塑
性変形を受ける。また、中空材(14)内部に電磁コイ
ル(16a,16b)を挿入した場合は中空材(14)
の内周部の表面層に誘導電流が流れて、中空材(14)
は径方向に拡張するような塑性変形を受ける。
Function: For example, the hollow member (1
4) is inserted and an electromagnetic force is applied to the hollow material (14) by momentarily flowing a large current through the electromagnetic coil (12) to generate a pulsed strong magnetic field.
An induced current flows in the surface layer of the outer peripheral part of 4). A repulsive force acts between this induced current and the current flowing through the magnetic coil (12), and the hollow member (14) is plastically deformed so as to contract in the radial direction. When the electromagnetic coil (16a, 16b) is inserted inside the hollow material (14), the hollow material (14)
Induced current flows in the surface layer of the inner peripheral part of the hollow material (14)
Undergoes plastic deformation that expands in the radial direction.

【0009】前記中空材(14)の塑性変形量は、その
変形部分に受けた電磁力の強度と相関関係がある。した
がって、中空材(14)の所定部分に例えば強弱分布の
異なる電磁力を多段階で付与することにより、中空材
(14)を複雑形状、例えば軸線方向で断面形状が異な
るものや軸線に対して非対称な断面形状を有するものに
成形加工することができる。また、同一部分に反復して
多段階に電磁力を与えることにより、1段階のみの成形
加工よりも塑性変形量を大きくすることもできる。
The amount of plastic deformation of the hollow member (14) has a correlation with the strength of the electromagnetic force received at the deformed portion. Therefore, by applying an electromagnetic force having different strength and weakness distributions to a predetermined portion of the hollow member (14) in multiple stages, the hollow member (14) can have a complicated shape, for example, a member having a different cross-sectional shape in the axial direction or an axis line. It can be molded to have an asymmetrical cross-sectional shape. Further, by repeatedly applying electromagnetic force to the same portion in multiple stages, it is possible to increase the amount of plastic deformation as compared with the forming process in only one stage.

【0010】[0010]

【実施例】次に、本発明の中空材の多段式塑性加工法の
2つの具体的実施例について、図面を参照しつつ説明す
る。
EXAMPLES Two specific examples of the multistage plastic working method for hollow materials according to the present invention will be described with reference to the drawings.

【0011】(第1実施例)本実施例では、中空材の外
部から電磁力を与えて、3段階で縮管方向に塑性加工す
る方法について説明する。
(First Embodiment) In this embodiment, a method of applying an electromagnetic force from the outside of the hollow material to perform plastic working in the contracted tube direction in three steps will be described.

【0012】図1および図2に示されているように、本
実施例の第1、第2、第3の各段階の加工装置におい
て、直流高圧電源(11)から瞬間的に供給される大電
流によりパルス状の強磁界を発生させる合計3個の電磁
コイル(12)は、磁束密度を高める円筒形の磁束集中
器(13a,13b,13c)に巻き付けられて形成さ
れるとともに、各電磁コイル(12)が直線状に配列さ
れている。これらの磁束集中器(13a,13b,13
c)は各段階でそれぞれ異なる形状の突起部(15a,
15b,15c)を有している。このような磁束集中器
(13a,13b,13c)の内部にはアルミニウム合
金からなる中空材(14)が遊挿されている。そして、
中空材(14)は各段階に順次搬送されて同じ部分に重
ねて塑性加工が行われる。なお、電磁コイル(12)へ
の大電流は、直流高圧電源(11)から抵抗(21)を
介してコンデンサ(22)に充電された電荷を、スイッ
チ(23)を閉じて放電させることにより発生させられ
るものとされている。また、図2において直流高圧電源
およびその付属回路は図示が省略されている。
As shown in FIGS. 1 and 2, in the processing apparatus of the first, second and third stages of this embodiment, the large voltage instantaneously supplied from the DC high voltage power source (11). A total of three electromagnetic coils (12) that generate a pulsed strong magnetic field by an electric current are formed by being wound around a cylindrical magnetic flux concentrator (13a, 13b, 13c) that enhances the magnetic flux density, and each electromagnetic coil. (12) are arranged linearly. These magnetic flux concentrators (13a, 13b, 13
c) is a projection (15a,
15b, 15c). A hollow member (14) made of an aluminum alloy is loosely inserted inside the magnetic flux concentrator (13a, 13b, 13c). And
The hollow material (14) is sequentially conveyed to each stage, and is overlapped on the same portion and subjected to plastic working. A large current to the electromagnetic coil (12) is generated by closing the switch (23) and discharging the electric charge charged in the capacitor (22) from the DC high voltage power supply (11) through the resistor (21). It is supposed to be done. Further, in FIG. 2, the DC high-voltage power supply and its associated circuit are not shown.

【0013】前述されたような構成の加工装置におい
て、前記電磁コイル(12)に大電流が流れてパルス状
の強磁界が発生すると中空材(14)の外周部の表面層
に誘導電流が流れ、この誘導電流と前記電磁コイル(1
2)に流れる電流との間に作用する反発力により前記中
空材(14)は径方向に収縮する塑性変形を受けて成形
加工される。この時、磁束集中器(13a,13b,1
3c)の厚みが大きい部分ほど前記反発力も大きくなる
ために、塑性変形量も大きくなる。その結果、中空材
(14)は各段階で各磁束集中器(13a,13b,1
3c)の突出部(15a,15b,15c)に相当する
部分にその形状に見合った量の変形が加えられ、軸線方
向で断面形状が異なり、かつ塑性変形量の大きな最終形
状にまで成形される。
In the processing apparatus having the above-mentioned structure, when a large current flows through the electromagnetic coil (12) and a pulsed strong magnetic field is generated, an induced current flows through the surface layer of the outer peripheral portion of the hollow material (14). , The induced current and the electromagnetic coil (1
The hollow material (14) is subjected to plastic deformation that contracts in the radial direction by the repulsive force acting between the hollow material (2) and the current flowing in (2), and is molded. At this time, the magnetic flux concentrators (13a, 13b, 1
The larger the thickness of 3c), the greater the repulsive force, and the greater the amount of plastic deformation. As a result, the hollow material (14) is removed from each magnetic flux concentrator (13a, 13b, 1) at each stage.
3c) a portion corresponding to the projecting portion (15a, 15b, 15c) is deformed in an amount corresponding to the shape, and the final shape having a large cross-sectional shape and a large plastic deformation amount is formed. .

【0014】本実施例においては、磁束集中器(13
a,13b,13c)の全周に一様な突起部(15a,
15b,15c)を設けたが、一部のみに突起部(15
a,15b,15c)を設けたり、また全周で突起部
(15a,15b,15c)の形状を変えたりすること
により、中空材(14)の軸線に対して非対称な断面形
状に加工することも容易にできる。
In this embodiment, the magnetic flux concentrator (13
a, 13b, 13c) have uniform protrusions (15a,
15b, 15c) are provided, but the protrusion (15
a, 15b, 15c) or by changing the shape of the protrusions (15a, 15b, 15c) over the entire circumference, to process the hollow member (14) into an asymmetric cross-sectional shape with respect to the axis. Can be done easily.

【0015】ところで、本実施例のように塑性変形量の
大きい加工をする場合、1段階の加工で所期の形状を得
るには磁束集中器(13a)の突起部(15a)を高く
すれば良いことになるが、加工開始時に磁束集中器(1
3a)の内径は中空材(14)の外径よりも大きくなけ
ればならないから必然的に磁束集中器(13a)および
電磁コイル(12)は大型化する。また、これらを大型
化したとしても塑性変形の進行にともなって磁束集中器
(13a)と中空材(14)の被加工部分との距離が大
きくなり中空材(14)に作用する電磁力は弱まるため
に、さらに中空材(14)の塑性変形を続行させるには
加工初期よりも大きな電磁力を要し、電源およびその付
属回路の大型化が必要となる。このような加工装置の大
型化は、本発明の実施には複数の加工装置が必要である
ことを考慮してもなお製造コストを上昇させる。したが
って、多段階で加工する本発明は、複雑な加工が可能で
あるばかりでなく、変形量の大きな製品の製造コストの
点でも有利である。
By the way, in the case of machining with a large amount of plastic deformation as in the present embodiment, in order to obtain the desired shape in one step of machining, the protrusion (15a) of the magnetic flux concentrator (13a) should be raised. It will be good, but at the start of processing, a magnetic flux concentrator (1
Since the inner diameter of 3a) must be larger than the outer diameter of the hollow member (14), the magnetic flux concentrator (13a) and the electromagnetic coil (12) inevitably become large. Further, even if these are enlarged, the distance between the magnetic flux concentrator (13a) and the processed portion of the hollow member (14) becomes large as the plastic deformation progresses, and the electromagnetic force acting on the hollow member (14) weakens. Therefore, in order to continue the plastic deformation of the hollow material (14), a larger electromagnetic force is required than in the initial stage of processing, and the power source and its associated circuit must be upsized. Such an increase in the size of the processing apparatus still increases the manufacturing cost even considering that a plurality of processing apparatuses are required to carry out the present invention. Therefore, the present invention in which processing is performed in multiple stages is advantageous not only in complicated processing but also in manufacturing cost of a product having a large amount of deformation.

【0016】(第2実施例)本実施例では、中空材の内
部から電磁力を与えて、2段階で拡管方向に塑性加工す
る方法について説明する。
(Second Embodiment) In this embodiment, a method of applying an electromagnetic force from the inside of the hollow material to perform plastic working in the tube expanding direction in two steps will be described.

【0017】図3に示されているように、本実施例の第
1段階の加工装置においては、一端側から他端側に漸次
的に直径が大から小に円錐状に、かつ一端側から他端側
に漸次的に密から疎に巻かれた電磁コイル(16a)が
中空材(14)内部に遊挿されている。また、第2段階
の加工装置においては、一端側から他端側に漸次的に直
径が大から小に円錐状に、かつ第1段階の電磁コイル
(16a)よりも大径の電磁コイル(16b)が中空材
(14)内部に遊挿されている。そして、中空材(1
4)は第1段階から第2段階へと搬送されて2段階で塑
性加工が行われる。なお、図3において前記電磁コイル
(16a,16b)に瞬間的に大電流を供給する直流高
圧電源およびその付属回路は図示が省略されている。
As shown in FIG. 3, in the processing apparatus of the first stage of this embodiment, the diameter gradually increases from the one end to the other end in a conical shape, and from the one end side. An electromagnetic coil (16a) that is gradually and densely wound on the other end side is loosely inserted inside the hollow member (14). Further, in the processing device of the second stage, the diameter of the electromagnetic coil (16b) gradually increases from the one end side to the other end side in the shape of a cone, and is larger than that of the electromagnetic coil (16b) of the first stage. ) Is loosely inserted inside the hollow member (14). And hollow material (1
4) is conveyed from the first stage to the second stage, and plastic working is performed in two stages. In FIG. 3, a DC high-voltage power supply for instantaneously supplying a large current to the electromagnetic coils (16a, 16b) and its associated circuit are not shown.

【0018】前述されたような構成の加工装置におい
て、前記電磁コイル(16a,16b)に大電流が流れ
てパルス状の強磁界が発生すると中空材(14)内周部
の表面層に誘導電流が流れ、この誘導電流と前記電磁コ
イル(16a,16b)に流れる電流との間に作用する
反発力により前記中空材(14)は径方向に拡張する塑
性変形を受けて成形加工される。この時、前記電磁コイ
ル(16a,16b)と中空材(14)の内周面との距
離が小さいほど、また前記電磁コイル(16a,16
b)が密に巻かれているほど前記反発力は中空材(1
4)に大きく作用するために、塑性変形量も大きくな
る。その結果、中空材(14)は円錐状に成形され、か
つ2段階でより大きな勾配を有する円錐状に成形され
る。このように、中空材(14)に挿入可能な電磁コイ
ル(16a,16b)の径寸法に限度あって1段階の加
工で目的の形状を得られない場合でも、2段階またはそ
れ以上の多段階で加工することにより塑性変形量を増大
させることができる。また、1段階では加工困難な複雑
形状の加工品も、多段階で加工することにより製造可能
となる。
In the processing apparatus having the above-described structure, when a large current flows through the electromagnetic coils (16a, 16b) to generate a pulsed strong magnetic field, an induced current is generated in the surface layer on the inner peripheral portion of the hollow material (14). Flow, and the hollow member (14) undergoes plastic deformation that expands in the radial direction by the repulsive force acting between this induced current and the current flowing through the electromagnetic coils (16a, 16b), and is formed. At this time, the smaller the distance between the electromagnetic coil (16a, 16b) and the inner peripheral surface of the hollow member (14), the more the electromagnetic coil (16a, 16b).
The closer the b) is wound, the more repulsive force the hollow material (1
The large amount of plastic deformation also increases the amount of plastic deformation. As a result, the hollow material (14) is shaped like a cone and has a greater gradient in two steps. In this way, even if the diameter of the electromagnetic coil (16a, 16b) that can be inserted into the hollow member (14) is limited and the desired shape cannot be obtained by one-step processing, there are two or more steps. The amount of plastic deformation can be increased by processing with. Further, a processed product having a complicated shape that is difficult to process in one step can be manufactured by processing in multiple steps.

【0019】なお、本実施例においては、中空材(1
4)の内部に電磁コイル(16a,16b)のみを挿入
設置したが、電磁コイル(16a,16b)の形状を保
ち中空材(14)への挿入作業の容易性から、電磁コイ
ル(16a,16b)を所定形状の円錐形支持軸に線材
を巻き付けるようにして形成しても良い。
In this embodiment, the hollow material (1
Although only the electromagnetic coils (16a, 16b) are inserted and installed in the inside of 4), the electromagnetic coils (16a, 16b) can be easily inserted into the hollow member (14) while maintaining the shape of the electromagnetic coils (16a, 16b). ) May be formed by winding a wire around a conical support shaft having a predetermined shape.

【0020】前記各実施例においては全加工段階を電磁
力のみによって成形加工する構成としたが、特に最終加
工段階でダイスを併用しても良い。例えば、図4に示さ
れているように、電磁コイル(17)が遊挿された中空
材(14)の外側にダイス(18)を配置すれば、電磁
力によって拡張される中空材(14)の塑性変形量を規
制し、加工品をダイス(18)に倣った形状で寸法精度
の高いものとすることができる。また、ダイス(18)
の併用により複雑形状の成形加工も容易になる。なお、
図4において符号(19)は電磁コイル(17)の保形
性を維持するための支持軸を示している。
In each of the above-mentioned embodiments, all the processing steps are formed by the electromagnetic force only. However, a die may be used together in the final processing step. For example, as shown in FIG. 4, if a die (18) is arranged outside the hollow member (14) in which the electromagnetic coil (17) is loosely inserted, the hollow member (14) expanded by electromagnetic force. It is possible to regulate the amount of plastic deformation of, and to make the processed product with a shape following the die (18) with high dimensional accuracy. Also, the dice (18)
Combined use also facilitates molding of complex shapes. In addition,
In FIG. 4, reference numeral (19) indicates a support shaft for maintaining the shape retention of the electromagnetic coil (17).

【0021】以上のような塑性加工は冷間、熱間を問わ
ず行うことができるが、付与すべき電磁力が小さくてす
み加工装置の簡略化が可能である点で、中空材の塑性変
形性に富む熱間で行う方が好ましい。
The above-mentioned plastic working can be carried out both cold and hot. However, since the electromagnetic force to be applied is small and the corner working device can be simplified, the plastic deformation of the hollow material is possible. It is preferable to carry out the heat while rich in nature.

【0022】また、中空材を押出後、ストレッチ処理終
了時に本発明の成形加工を行うことによって加工エネル
ギーの低下を図ることができる。
Further, after the hollow material is extruded, the molding energy of the present invention is applied at the end of the stretch treatment, whereby the processing energy can be reduced.

【0023】[0023]

【発明の効果】本発明によれば、電磁力を多段階に付与
することにより中空材の成形加工を行うから、例えば電
磁力の強弱分布を変えることにより、従来のような中空
材の軸線方向に一様な拡管、縮管等にとどまらず、軸線
方向で断面形状が異なるものや軸線に対して非対称な断
面形状の中空材を容易に成形加工できる。さらに、本発
明の塑性加工法は電磁力によって非接触で行われるため
に、工具との摩擦で生じる発熱、機械的衝撃等による加
工品の品質劣化の危険性がない。
According to the present invention, since the hollow material is molded by applying electromagnetic force in multiple stages, for example, by changing the strength and weakness distribution of the electromagnetic force, the axial direction of the conventional hollow material can be changed. In addition to uniform expansion and contraction, it is possible to easily form hollow materials having a different cross-sectional shape in the axial direction and a hollow material having a cross-sectional shape asymmetric with respect to the axial line. Further, since the plastic working method of the present invention is performed in a non-contact manner by an electromagnetic force, there is no risk of deterioration of the quality of the processed product due to heat generation caused by friction with the tool, mechanical shock, or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の加工装置における3個の
電磁コイルの内の1個を示す概略図である。
FIG. 1 is a schematic view showing one of three electromagnetic coils in a processing apparatus according to a first embodiment of the present invention.

【図2】本発明の第1実施例における各段階の加工装置
および加工過程の要部縦断面である。
FIG. 2 is a longitudinal sectional view of a main part of a processing apparatus and a processing process at each stage in the first embodiment of the present invention.

【図3】本発明の第2実施例における各段階の加工装置
および加工過程の要部縦断面である。
FIG. 3 is a longitudinal cross-sectional view of a main part of a processing device and a processing process at each stage in the second embodiment of the present invention.

【図4】本発明の実施例の変形例を示す要部縦断面であ
る。
FIG. 4 is a longitudinal sectional view of a main part showing a modified example of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

12、16a,16b…電磁コイル 13a,13b,13c…磁束集中器 14…中空材 15a,15b,15c…突起部 12, 16a, 16b ... Electromagnetic coil 13a, 13b, 13c ... Magnetic flux concentrator 14 ... Hollow material 15a, 15b, 15c ... Protrusion

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中空材(14)を、その中空材(14)
の所定部分に電磁力を多段階に付与することにより成形
加工することを特徴とする中空材の多段式電磁塑性加工
法。
1. A hollow material (14) is provided with the hollow material (14).
A multi-stage electromagnetic plastic working method for a hollow material, characterized by performing a forming process by applying an electromagnetic force to a predetermined portion of the hollow member in multiple stages.
JP4183617A 1992-07-10 1992-07-10 Multi-stage electromagnetic plastic working method for hollow material Pending JPH0623442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4183617A JPH0623442A (en) 1992-07-10 1992-07-10 Multi-stage electromagnetic plastic working method for hollow material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4183617A JPH0623442A (en) 1992-07-10 1992-07-10 Multi-stage electromagnetic plastic working method for hollow material

Publications (1)

Publication Number Publication Date
JPH0623442A true JPH0623442A (en) 1994-02-01

Family

ID=16138918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4183617A Pending JPH0623442A (en) 1992-07-10 1992-07-10 Multi-stage electromagnetic plastic working method for hollow material

Country Status (1)

Country Link
JP (1) JPH0623442A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7441335B2 (en) 2003-09-04 2008-10-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Methods of electromagnetic forming aluminum alloy wheel for automotive use
CN108405700A (en) * 2018-04-02 2018-08-17 三峡大学 A kind of coupling cooled pipe fitting flexibility electromagnetic forming method and device
CN108838271A (en) * 2018-05-23 2018-11-20 华中科技大学 A kind of manufacturing process and device based on air core coil
WO2019077789A1 (en) 2017-10-20 2019-04-25 三菱重工業株式会社 Electromagnetic forming device
WO2019111538A1 (en) 2017-12-05 2019-06-13 三菱重工業株式会社 Molding device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7441335B2 (en) 2003-09-04 2008-10-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Methods of electromagnetic forming aluminum alloy wheel for automotive use
WO2019077789A1 (en) 2017-10-20 2019-04-25 三菱重工業株式会社 Electromagnetic forming device
WO2019111538A1 (en) 2017-12-05 2019-06-13 三菱重工業株式会社 Molding device
CN108405700A (en) * 2018-04-02 2018-08-17 三峡大学 A kind of coupling cooled pipe fitting flexibility electromagnetic forming method and device
CN108405700B (en) * 2018-04-02 2024-04-19 三峡大学 Flexible electromagnetic forming method and device for coupling cooling type pipe fitting
CN108838271A (en) * 2018-05-23 2018-11-20 华中科技大学 A kind of manufacturing process and device based on air core coil
CN108838271B (en) * 2018-05-23 2019-10-25 华中科技大学 A kind of manufacturing process and device based on air core coil

Similar Documents

Publication Publication Date Title
US2989785A (en) Method of forming plastic containers
EP1784843B1 (en) Method of manufacturing a coil
EP0964770A1 (en) Electromagnetically forming a tubular workpiece
US7487655B2 (en) Process for producing tubular ring with beads and die for use therein
JPH0824969A (en) Electromagnetic forming device for tube expansion and manufacture of tube-like formed product
US20030127453A1 (en) Method for performing a magnetic pulse welding operation
US5964127A (en) Process and apparatus for manufacturing metallic hollow bodies with structural bulges
PT1995001E (en) Method and device for producing pipe connections
JPH0623442A (en) Multi-stage electromagnetic plastic working method for hollow material
JPS5837051B2 (en) Coil for electromagnetic forming
JPH0788566A (en) Method for forming corrugated tube and device therefor
US3251974A (en) Metal forming apparatus
JP4744339B2 (en) Electromagnetic forming coil
US3797088A (en) Method of manufacturing cylindrical blanks
US5461767A (en) Manufacturing method of metal bellows
US6253597B1 (en) Body-necking a wall-ironed can
WO2006071766A2 (en) Method and apparatus for magnetic pulse forming
US20070143988A1 (en) Method for molding vehicular wheel rim
DE2339707A1 (en) METHOD AND DEVICE FOR WELDING METAL LAYERS CONTAINING COMPOSITE FILMS TO HILL BODIES
CN105665513B (en) A kind of forming method of processed complex variable cross-section small-sized tube
JP4026844B2 (en) Electromagnetic expansion coil
JP2004351457A (en) Electromagnetic forming coil, and electromagnetic forming method
JP2005095982A (en) Aluminum alloy-made wheel rim for automobile, and method for manufacturing the same
US7287406B2 (en) Transition forming machine
KR20100076653A (en) Hydroforming system and method