JPH08248341A - Light scan optical system - Google Patents

Light scan optical system

Info

Publication number
JPH08248341A
JPH08248341A JP34645795A JP34645795A JPH08248341A JP H08248341 A JPH08248341 A JP H08248341A JP 34645795 A JP34645795 A JP 34645795A JP 34645795 A JP34645795 A JP 34645795A JP H08248341 A JPH08248341 A JP H08248341A
Authority
JP
Japan
Prior art keywords
scanning direction
optical
sub
scanned
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34645795A
Other languages
Japanese (ja)
Other versions
JP3069281B2 (en
Inventor
Tetsuo Okamura
哲郎 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP34645795A priority Critical patent/JP3069281B2/en
Publication of JPH08248341A publication Critical patent/JPH08248341A/en
Application granted granted Critical
Publication of JP3069281B2 publication Critical patent/JP3069281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE: To excellently correct image and fθ characteristics in the main scan direction and image curvature in the sub-scan direction by single convex lens by constituting the surface on the surface side to be scanned of the convex lens so that a sectional shape formed by a plane parallel to a central optical axis and orthogonally crossed to the main scan direction is nearly fixed in the longitudinal direction. CONSTITUTION: This system is constituted so that luminous flux reflected on a deflecting reflection surface 1a of a rotary polygon mirror 1 constituting an optical deflector is image-formed and scanned on the surface 3a to be scanned of a photoreceptor drum 3. Then, the surface on the surface to be scanned side of the convex lens 2, that is, a light emitting surface is formed into an anamorphic surface. The anamorphic surface is constituted so that the sectional shape D2 formed by the plane D1 parallel to the central optical axis 2a and orthogonally crossed to the main scan direction is nearly fixed in the longitudinal direction, or is the same radius of curvature. Thus, the image and the fθ characteristics in the main scan direction and the image curvature in the sub-scan direction are corrected simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光源からの
光束を偏向反射面を有する光偏向器により偏向させ、該
偏向光束を光走査光学系により被走査面上に光スポット
として集光させて光走査を行なう光走査光学系に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention deflects a light beam from a laser light source by an optical deflector having a deflecting / reflecting surface and collects the deflected light beam as a light spot on a surface to be scanned by an optical scanning optical system. The present invention relates to an optical scanning optical system that performs optical scanning.

【0002】[0002]

【従来の技術】レーザ光源からの光束を回転多面鏡や回
転単面鏡、回転2面鏡等の「偏向反射面を有する光偏向
器」により等角速度的に偏向させ、偏向光束を光走査光
学系により被走査面上に光スポットとして集光させて光
走査を行なう光走査装置が、光プリンターやデジタル複
写機等において広く知られている。
2. Description of the Related Art A light beam from a laser light source is deflected at a constant angular velocity by an "optical deflector having a deflecting / reflecting surface" such as a rotating polygon mirror, a rotating single-sided mirror, or a rotating two-sided mirror, and the deflected light beam is optically scanned. 2. Description of the Related Art Optical scanning devices that perform optical scanning by condensing light spots on a surface to be scanned by a system are widely known in optical printers, digital copying machines, and the like.

【0003】この光走査装置において、回転多面鏡では
複数の偏向反射面の回転軸に対する平行度の「ばらつ
き」によって、また回転単面鏡や回転2面鏡においても
回転軸の「ぶれ」によって、光スポットの走査線位置が
副走査方向へ変動する所謂「面倒れ」の問題がある。
In this optical scanning device, in the rotating polygonal mirror, the "variation" of the parallelism of the plurality of deflecting / reflecting surfaces with respect to the rotation axis, and also in the rotating single-sided mirror or the rotating two-sided mirror, the "blur" of the rotation axis causes There is a problem of so-called “face-up” in which the scanning line position of the light spot fluctuates in the sub-scanning direction.

【0004】この面倒れを補正する有効な方法とし、従
来より光源からの光束を副走査方向に関して、偏向反射
面近傍の位置に主走査方向に線像として結像させ、光走
査光学系には副走査方向に関して偏向反射面位置と被走
査位置とを幾何光学的な共役関係とする機能を付与する
ことが行なわれている。このような光走査装置の光走査
光学系は、主走査方向のパワーと副走査方向のパワーと
が異なる「アナモフィック」な結像光学系となる。
As an effective method of correcting this surface tilt, a light beam from a light source is conventionally formed as a line image in the main scanning direction at a position near the deflecting reflection surface in the sub-scanning direction. A function of making the position of the deflecting / reflecting surface and the position to be scanned have a geometrical-optical conjugate relationship with respect to the sub-scanning direction is provided. The optical scanning optical system of such an optical scanning device is an “anamorphic” imaging optical system in which the power in the main scanning direction and the power in the sub scanning direction are different.

【0005】[0005]

【発明が解決しようとする課題】ところで光走査装置に
より良好な光走査を実現するには、「光スポット径が像
高により大きく変動しない」こと、及び「光スポットの
移動速度が等速度である」ことが必要である。このうち
「光スポット径の像高による変動」は、光走査光学系の
像面湾曲により発生するが、光スポット径に像高による
変動があると、光走査により書き込まれる画像の解像力
が均一にならない。主走査方向に関しては、光スポット
径に多少の変動があっても偏向光束に乗せる信号を電気
的に制御することにより補正が可能であるが、副走査方
向の光スポット径変動はこのような補正ができない。ま
た「光スポットの移動速さの等速性」は、光走査光学系
のfθ特性と副走査方向の像面湾曲とが良好に補正され
ていなければならない。しかしアナモフィックなレンズ
においては、fθ特性と副走査方向の像面湾曲とを同時
に良好に補正することは容易ではなく、複数枚のレンズ
を組み合わせて光走査光学系を構成している。
By the way, in order to realize good optical scanning by the optical scanning device, "the diameter of the optical spot does not largely change depending on the image height" and "the moving speed of the optical spot is constant. "It is necessary. Of these, the "variation of the light spot diameter depending on the image height" occurs due to the field curvature of the optical scanning optical system, but if the light spot diameter varies depending on the image height, the resolution of the image written by the optical scanning becomes uniform. I won't. Regarding the main scanning direction, even if there is some variation in the light spot diameter, it is possible to correct it by electrically controlling the signal to be placed on the deflected light beam, but the light spot diameter variation in the sub-scanning direction can be corrected in this way. I can't. As for the "uniform velocity of the moving speed of the light spot", the fθ characteristic of the optical scanning optical system and the field curvature in the sub-scanning direction must be well corrected. However, in an anamorphic lens, it is not easy to satisfactorily correct the fθ characteristic and the field curvature in the sub scanning direction at the same time, and a plurality of lenses are combined to form an optical scanning optical system.

【0006】例えば、凸レンズによってfθ特性を補正
しようとした場合に、主走査方向の収差(主走査方向像
面とfθ特性)を満足させると、凸レンズの被走査面側
の面(後面)が偏向反射面側の面(前面)より曲率が大
きくなるが、このとき走査光学系を単レンズで満足させ
ようとすると、被走査面側の面(後面)をトーリック面
として偏向反射面と被走査面を共役にする必要があり、
副走査像面が補正不足になる傾向がある。このトーリッ
ク面による像面湾曲特性及びfθ特性の一例を、図5
(a)及び(b)に示す。図5(a)中の破線は主走査
方向の像面を表し、図中実線は副走査方向の像面を表し
ている。
For example, when the fθ characteristic is corrected by a convex lens and the aberration in the main scanning direction (the image plane in the main scanning direction and the fθ characteristic) is satisfied, the surface (rear surface) on the scanned surface side of the convex lens is deflected. The curvature becomes larger than that of the surface on the reflection surface side (front surface). At this time, if it is attempted to satisfy the scanning optical system with a single lens, the surface on the surface to be scanned (rear surface) is a toric surface and the deflection reflection surface and the surface to be scanned. Must be conjugated,
The sub-scanning image plane tends to be undercorrected. An example of the field curvature characteristic and the fθ characteristic due to this toric surface is shown in FIG.
(A) and (b). The broken line in FIG. 5A represents the image plane in the main scanning direction, and the solid line in the drawing represents the image plane in the sub scanning direction.

【0007】このように従来では、1枚の凸レンズで
は、主走査方向の像面及びfθ特性と副走査方向の像面
湾曲補正とを同時に良好に得ることは困難であり、例え
ば特開昭63ー210815号のように、凸レンズから
なるfθレンズに、像面を補正する補正レンズを別個に
組み合せて構成しており、そのため全体の構成が複雑化
し生産性の低下を招来している。
As described above, conventionally, it is difficult to obtain good image plane and fθ characteristics in the main scanning direction and field curvature correction in the sub scanning direction at the same time with a single convex lens. No. 210815, a f.theta. Lens composed of a convex lens is separately combined with a correction lens for correcting the image plane, which complicates the overall structure and lowers productivity.

【0008】そこで本発明は、主走査方向の像面及びf
θ特性と副走査方向の像面湾曲の補正とを、1枚の凸レ
ンズにより良好に得ることができるようにした光走査光
学系を提供することを目的とする。
Therefore, according to the present invention, the image plane in the main scanning direction and f
An object of the present invention is to provide an optical scanning optical system in which the θ characteristic and the correction of the field curvature in the sub-scanning direction can be satisfactorily obtained with one convex lens.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明は、主走査方向においてfθ機能を有するととも
に、副走査方向において偏向反射面位置と被走査面位置
とを幾何光学的に略共役な関係とすることによって、副
走査方向の面倒れを補正する補正機能を有する光走査光
学系において、上記被走査面側の面が主走査方向及び副
走査方向の両方向に凸をなす1枚の凸レンズにより構成
され、上記凸レンズの被走査面側面が、中心光軸に平行
で主走査方向に直交する平面による断面形状が長手方向
に略一定である面構成になされている。
To achieve the above object, the present invention has a function of fθ in the main scanning direction, and the deflection reflection surface position and the scan surface position are substantially conjugate in the sub-scanning direction in terms of geometrical optics. With such a relationship, in the optical scanning optical system having the correction function of correcting the surface tilt in the sub-scanning direction, one surface of the surface to be scanned is convex in both the main scanning direction and the sub-scanning direction. The convex lens has a surface configuration in which the side surface to be scanned of the convex lens has a plane shape in which a cross section of a plane parallel to the central optical axis and orthogonal to the main scanning direction is substantially constant in the longitudinal direction.

【0010】本発明においては、例えば図1(a)に示
されているように、光偏向器を構成する回転多面鏡1の
偏向反射面1aで反射された光束が、本発明にかかる光
走査光学系を形成する凸レンズ2を通して、感光体ドラ
ム3の被走査面3a上に結像・走査されるように構成さ
れており、上記光走査光学系を形成する凸レンズ2の被
走査面側の面すなわち光出射面は、上述したようなアナ
モフィック面に形成されている。このアナモフィック面
は、図1(b)に示されているように、中心光軸2aに
平行で主走査方向に直交する平面D1 による断面形状D
2 が長手方向に略一定又は同一の曲率半径である面構成
になされており、この面構成によって主査方向における
像面及びfθ特性と、副走査方向における像面湾曲の補
正とを同時に得るようになっている。なお上記凸レンズ
2の偏向面側すなわち回転多面鏡1側には、副走査方向
倍率調整用のレンズ4が配置されている。この副走査方
向倍率調整用のレンズ4は、上記凸レンズ2の主走査方
向の倍率を変えたときに副走査方向の倍率を調整するた
めのレンズであるので必ずしも設ける必要はない。
In the present invention, for example, as shown in FIG. 1A, the light beam reflected by the deflection reflection surface 1a of the rotary polygon mirror 1 constituting the optical deflector is optically scanned according to the present invention. An image is formed and scanned on the surface to be scanned 3a of the photosensitive drum 3 through the convex lens 2 forming the optical system, and the surface of the convex lens 2 forming the optical scanning optical system on the surface to be scanned side. That is, the light emitting surface is formed on the anamorphic surface as described above. As shown in FIG. 1B, the anamorphic surface has a sectional shape D formed by a plane D1 which is parallel to the central optical axis 2a and orthogonal to the main scanning direction.
2 has a surface configuration that is substantially constant or has the same radius of curvature in the longitudinal direction, and by this surface configuration, the image surface and fθ characteristics in the main scanning direction and the correction of the image surface curvature in the sub-scanning direction are simultaneously obtained. Has become. A lens 4 for adjusting the magnification in the sub-scanning direction is arranged on the deflection surface side of the convex lens 2, that is, on the rotary polygon mirror 1 side. The lens 4 for adjusting the magnification in the sub-scanning direction is a lens for adjusting the magnification in the sub-scanning direction when the magnification in the main scanning direction of the convex lens 2 is changed, and therefore is not necessarily provided.

【0011】このように本発明によれば、主走査方向及
び副走査方向の両方向に正のパワーを有しかつ中心光軸
に平行で主走査方向に直交する平面による断面形状が長
手方向に略一定であるアナモフィック面を被走査面側に
有する1枚の凸レンズ2によって、主走査方向の像面及
びfθ特性が良好に得られると同時に、副走査方向にお
ける像面湾曲の補正が良好に行なわれる。
As described above, according to the present invention, the cross-sectional shape of a plane having positive power in both the main scanning direction and the sub-scanning direction, parallel to the central optical axis, and orthogonal to the main scanning direction is substantially in the longitudinal direction. By the one convex lens 2 having a constant anamorphic surface on the surface to be scanned, the image surface in the main scanning direction and the fθ characteristic are excellently obtained, and at the same time, the curvature of field in the sub scanning direction is well corrected. .

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を詳細に
説明する。以下述べる各実施形態は、その前提として、
レーザ光源からの光束が平行光束化された後、副走査方
向へのみ収束させられ、光偏向器の偏向反射面の近傍に
「主走査方向に長い線像」として結像される。そして光
偏向器によって等角速度的に偏向され、光走査光学系を
通して被走査面上に光スポットとして集光させられるよ
うに構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. Each of the embodiments described below has as its premise
After the light flux from the laser light source is collimated, it is converged only in the sub-scanning direction, and is imaged as a "long line image in the main scanning direction" in the vicinity of the deflective reflection surface of the optical deflector. Then, the light is deflected at a constant angular velocity by the light deflector and is condensed as a light spot on the surface to be scanned through the light scanning optical system.

【0013】従って本発明にかかる光走査光学系におい
ては、主走査方向に関して「光源側の無限遠と被走査面
の位置」とがピントの合う位置関係、すなわち共役関係
になされ、副走査方向に関して「偏向反射面の位置と被
走査面の位置」とが共役関係になされている。
Therefore, in the optical scanning optical system according to the present invention, the "infinity on the light source side and the position of the surface to be scanned" are brought into a focused positional relationship, that is, a conjugate relationship with respect to the main scanning direction, and in the sub scanning direction. The "position of the deflecting / reflecting surface and the position of the surface to be scanned" are in a conjugate relationship.

【0014】図3に示されている本発明の第1実施形態
における光走査光学系は、上述したアナモフィック面を
有する1枚の凸レンズ21から構成されている。そして
図示を省略した光偏向器の偏向反射面を符号「1」で表
し、本発明にかかる凸レンズ21の偏向反射面側の面
(前面)を符号「2」で表し、当該凸レンズ21の被走
査面側の面(後面)を符号「3」で表している。このと
きレンズ面の主走査方向における曲率半径ri (以下、
沿字iは上記各面の符号に対応する)、副走査方向にお
ける曲率半径r’i、i番目の面から(i+1)番目の
光軸上の間隔di、レーザ光源の波長780nmに対す
る屈折率ni は、それぞれ以下のような値にて構成され
ている。
The optical scanning optical system in the first embodiment of the present invention shown in FIG. 3 comprises one convex lens 21 having the anamorphic surface described above. The deflecting reflection surface of the optical deflector (not shown) is represented by reference numeral "1", the surface (front surface) of the convex lens 21 according to the present invention on the side of the deflecting reflection surface is represented by reference numeral "2", and the convex lens 21 is scanned. The surface (rear surface) on the surface side is represented by reference numeral "3". At this time, the radius of curvature ri of the lens surface in the main scanning direction (hereinafter,
The line i corresponds to the sign of each surface), the radius of curvature r'i in the sub-scanning direction, the distance di on the (i + 1) th optical axis from the i-th surface, and the refractive index ni for the wavelength 780 nm of the laser light source. Are configured with the following values, respectively.

【0015】 i ri r’i di ni 1 0.0000 0.0000 32.6000 1.00000 2 183.4000 183.4000 16.9500 1.48601 3 -64.1300 -15.4000 97.0000 1.00000 I r r'i di n i 1 0.0000 0.0000 32.6000 1.00000 2 183.4000 183.4000 16.9500 1.48601 3 -64.1300 -15.4000 97.0000 1.00000

【0016】ここで第1面は光偏向器の偏向反射面であ
り平面であるが、便宜上r1=0.0000と表してある。次
に、第2面は、 x=(1/r)y2 /{1+√[1−(1+k)y2
2 ] }+ay4 +by6 +cy8 +dy10 で表される回転非球面xとして構成されており、上式に
おける非球面係数は、 k= 0.00000E+00 a=-0.89700E-06 b= 0.27800E-09 c= 0.00000E+00 d=-0.24600E-16 但し、r=r2=r’2 a=-0.89700E-06 は -0.89700×10-6 を表す(以下
同じ)。である(尚、光軸点での曲率半径はr2=r’2
=183.4000で等しくなる)。
Here, the first surface is a deflecting / reflecting surface of the optical deflector, which is a plane, but is represented as r1 = 0.0000 for convenience. Next, the second surface is x = (1 / r) y 2 / {1 + √ [1- (1 + k) y 2 /
r 2 ]} + ay 4 + by 6 + cy 8 + dy 10 is configured as a rotating aspherical surface x, and the aspherical coefficient in the above equation is k = 0.0000E + 00 a = -0.89700E-06 b = 0.27800. E-09 c = 0.0000E + 00 d = -0.24600E-16 However, r = r2 = r'2 a = -0.89700E-06 represents -0.89700 × 10 -6 (the same applies below). (Note that the radius of curvature at the optical axis is r2 = r'2
= 183.4000).

【0017】また焦点距離FLは、FL=100.003 であ
る。次に、第3面は凸レンズ21の被走査面側の面(後
面)であり、r3=-64.1300,r’3=-15.4000で表され
るように、主走査方向及び副走査方向の両方向に正のパ
ワー(集束性)を有しており、かつ中心光軸に平行で主
走査方向に直交する平面による断面を見たとき、その断
面形状が長手方向、即ち、主走査方向のどの点で見ても
同一の曲率半径である一定の面形状になっている。
The focal length FL is FL = 100.003. Next, the third surface is the surface (rear surface) on the surface to be scanned of the convex lens 21, and is represented by both r3 = -64.1300 and r'3 = -15.4000 in both the main scanning direction and the sub scanning direction. When a cross section of a plane having positive power (focusing property) and parallel to the central optical axis and orthogonal to the main scanning direction is seen, the cross-sectional shape is the longitudinal direction, that is, at which point in the main scanning direction. Even if seen, it has a constant surface shape with the same radius of curvature.

【0018】また図2に示されているように、光偏向器
1の回転中心をO、光偏向器1の内接円半径をPr 、光
偏向器1の偏向反射面1aと光走査光学系の凸レンズ2
の光軸2aとの交差点すなわち光偏向器1の偏向反射面
1aに対する入射光軸2bの入射点をA、その入射点A
において入射光軸2bが光軸2aとなす角度をθ、上記
入射点Aから光偏向器1の回転中心Oに至る光軸方向及
び光軸直交方向の各距離をPx 及びPy としたとき、上
記第1実施形態においては、 Pr =13.2 θ =80° Px =10.17 Py = 8.82 である。
As shown in FIG. 2, the center of rotation of the optical deflector 1 is O, the radius of the inscribed circle of the optical deflector 1 is Pr, the deflective reflection surface 1a of the optical deflector 1 and the optical scanning optical system. Convex lens 2
Of the incident optical axis 2b with respect to the deflective reflecting surface 1a of the optical deflector 1 is A, and its incident point A
Where θ is the angle formed by the incident optical axis 2b with the optical axis 2a, and Px and Py are the distances from the incident point A to the rotation center O of the optical deflector 1 in the optical axis direction and the optical axis orthogonal direction. In the first embodiment, Pr = 13.2 θ = 80 ° Px = 10.17 Py = 8.82.

【0019】このような第1実施形態にかかる像面湾曲
特性及びfθ特性を、図4(a)及び(b)に示す。こ
のうち図4(a)中の破線は主走査方向の像面を表し、
図中実線は副走査方向の像面を表している。
The field curvature characteristic and the fθ characteristic according to the first embodiment are shown in FIGS. 4 (a) and 4 (b). Of these, the broken line in FIG. 4A represents the image plane in the main scanning direction,
The solid line in the figure represents the image plane in the sub-scanning direction.

【0020】次に図6に示されている本発明の第2実施
形態における光走査光学系も、上述したアナモフィック
面を有する1枚の凸レンズ22から構成されているが、
上記凸レンズ22の偏向面側すなわち回転多面鏡側に
は、副走査方向倍率を下げたときに副走査方向の像面を
主走査方向の像面に一致させるための倍率調整レンズ2
3が配置されている。
Next, the optical scanning optical system according to the second embodiment of the present invention shown in FIG. 6 also comprises one convex lens 22 having the anamorphic surface described above.
On the deflection surface side of the convex lens 22, that is, on the rotary polygon mirror side, a magnification adjusting lens 2 for matching the image surface in the sub-scanning direction with the image surface in the main scanning direction when the magnification in the sub-scanning direction is lowered.
3 are arranged.

【0021】そして図示を省略した光偏向器の偏向反射
面を符号「1」で表し、倍率調整レンズ23の偏向反射
面側の面(前面)及び被走査面側の面(後面)を符号
「2」及び「3」でそれぞれ表し、本発明にかかる凸レ
ンズ22の偏向反射面側の面(前面)及び被走査面側の
面(後面)を符号「4」及び「5」でそれぞれ表してお
り、レンズ面の主副各方向における曲率半径ri ,r’
i、i番目の面から(i+1)番目の光軸上の間隔di
、波長780nmに対する屈折率ni は、以下のよう
な値にて構成されている。
The deflecting reflecting surface of the optical deflector (not shown) is represented by reference numeral "1", and the deflecting reflecting surface side (front surface) and the surface to be scanned side (rear surface) of the magnification adjusting lens 23 are indicated by reference numeral "1". 2 and 3 respectively, and the surfaces of the convex lens 22 according to the present invention on the side of the deflective reflection surface (front surface) and the surface on the side of the scanned surface (rear surface) are represented by reference numerals “4” and “5”, respectively. , Radiuses of curvature ri, r'in the main and sub directions of the lens surface
Distance di on the (i + 1) th optical axis from the i, i-th surface
, The refractive index ni with respect to the wavelength of 780 nm is constituted by the following values.

【0022】 i ri r’i di ni 1 0.0000 0.0000 16.9000 1.00000 2 0.0000 0.0000 2.0000 1.48601 3 0.0000 6.8000 13.5000 1.00000 4 127.4000 127.4000 16.9000 1.48601 5 -75.1700 -12.3800 95.7000 1.00000 I r r'i di n i 1 0.0000 0.0000 16.9000 1.00000 2 0.0000 0.0000 2.0000 1.48601 3 0.0000 6.8000 13.5000 1.00000 4 127.4000 127.4000 16.9000 1.48601 5 -75.1700 -12.3800 95.7000 1.00000

【0023】第4面は、上記第1実施形態と同様な非球
面xからなり、非球面係数は、 k= 0.00000E+00 a=-0.10728E-05 b= 0.35661E-09 c= 0.00000E+00 d=-0.44641E-16 である。
The fourth surface is composed of the same aspherical surface x as in the first embodiment, and the aspherical surface coefficient is k = 0.0000E + 00 a = -0.10728E-05 b = 0.35661E-09 c = 0.0000E. It is +00 d = -0.44641E-16.

【0024】また焦点距離FLは、 FL=100.002 であり、 Pr =13.1 θ =80° Px =10.12 Py = 8.89 である。The focal length FL is FL = 100.002 and Pr = 13.1 θ = 80 ° Px = 10.112 Py = 8.89.

【0025】尚、第5面は凸レンズ22の被走査面側の
面(後面)であり、r5=-75.1700,r’5=-12.3800で
表されるように、主走査方向及び副走査方向の両方向に
正のパワーを有し、かつ中心光軸に平行で主走査方向に
直交する平面による断面が主走査方向に一定である面形
状を備えている。このような第2実施形態にかかる像面
湾曲特性及びfθ特性を、図7(a)及び(b)にそれ
ぞれ示す。このうち図7(a)中の破線は主走査方向の
像面を表し、図中実線は副走査方向の像面を表してい
る。
The fifth surface is the surface (rear surface) on the surface to be scanned of the convex lens 22. As shown by r5 = -75.1700 and r'5 = -12.3800, the fifth surface is in the main scanning direction and the sub-scanning direction. It has a positive power in both directions, and has a surface shape in which a cross section by a plane parallel to the central optical axis and orthogonal to the main scanning direction is constant in the main scanning direction. The field curvature characteristic and the fθ characteristic according to the second embodiment are shown in FIGS. 7A and 7B, respectively. Of these, the broken line in FIG. 7A represents the image plane in the main scanning direction, and the solid line in the figure represents the image plane in the sub scanning direction.

【0026】なおこの第2実施形態における倍率調整レ
ンズ23は、r2=r’2=0.0000,r3=0.0000,r’3
=6.8000で表されるシリンドリカル凹レンズからなり、
副走査方向の焦点距離を短くすることによって副走査方
向の変動を小さく抑えようとするときに主走査方向と副
走査方向の像面を一致させる機能を有している。
The magnification adjusting lens 23 in the second embodiment is r2 = r'2 = 0.0000, r3 = 0.0000, r'3.
= Cylindrical concave lens represented by 6.8000,
It has a function of matching the image planes in the main scanning direction and the sub scanning direction when the fluctuation in the sub scanning direction is suppressed to be small by shortening the focal length in the sub scanning direction.

【0027】次に図8に示されている本発明の第3実施
形態における光走査光学系は、上述したアナモフィック
面を有する1枚の凸レンズ24から構成されているが、
上記凸レンズ24の偏向面側すなわち回転多面鏡側に、
副走査方向倍率を下げるための倍率調整レンズ25が配
置されている。
Next, the optical scanning optical system in the third embodiment of the present invention shown in FIG. 8 is composed of one convex lens 24 having the anamorphic surface described above.
On the deflection surface side of the convex lens 24, that is, on the rotary polygon mirror side,
A magnification adjusting lens 25 for reducing the magnification in the sub-scanning direction is arranged.

【0028】そして図示を省略した光偏向器の偏向反射
面を符号「1」で表し、倍率調整レンズ25の偏向反射
面側の面(前面)及び被走査面側の面(後面)を符号
「2」及び「3」でそれぞれ表し、本発明にかかる凸レ
ンズ24の偏向反射面側の面(前面)及び被走査面側の
面(後面)を符号「4」及び「5」でそれぞれ表したと
き、レンズ面の主副各方向における曲率半径ri ,r’
i、i番目の面から(i+1)番目の光軸上の間隔di
、波長780nmに対する屈折率ni は、以下のよう
な値にて構成されている。
The deflecting reflection surface of the optical deflector (not shown) is represented by reference numeral "1", and the surface on the deflection reflection surface side (front surface) and the surface on the scanned surface side (rear surface) of the magnification adjusting lens 25 are represented by reference numeral "1". 2 "and" 3 "respectively, and the surfaces of the convex lens 24 according to the present invention on the side of the deflective reflection surface (front surface) and the surface on the side of the scanned surface (rear surface) are represented by reference numerals" 4 "and" 5 ", respectively. , Radiuses of curvature ri, r'in the main and sub directions of the lens surface
Distance di on the (i + 1) th optical axis from the i, i-th surface
, The refractive index ni with respect to the wavelength of 780 nm is constituted by the following values.

【0029】 i ri r’i di ni 1 0.0000 0.0000 14.6000 1.00000 2 -36.4600 -36.4600 2.2000 1.48601 3 -36.4600 7.3000 10.9000 1.00000 4 256.0000 256.0000 16.0000 1.48601 5 -61.8500 -11.0800 99.2000 1.00000 I r i r'i di n i 1 0.0000 0.0000 14.6000 1.00000 2 -36.4600 -36.4600 2.2000 1.48601 3 -36.4600 7.3000 10.9000 1.00000 4 256.0000 256.0000 16.0000 1.48601 5 -61.8500 -11.0800 99.2000 1.00000

【0030】第1面は、光偏向器の偏向反射面であり、
第3面はr3=-36.4600,r’3=7.3000であるアナモフ
ィック面である。また第2面及び第4面は、以下の式で
表される回転非球面xからなり、 x=(1/r)y2 /{1+√[1−(1+k)y2
2 ] }+ay4 +by6 +cy8 +dy10+ey12 但し、r=r2 =r’2 又は r=r4 =r’4 第2面における非球面係数は、 k= 0.00000E+00 a= 0.00000E+00 b= 0.12132E-08 c= 0.00000E+00 d= 0.00000E+00 e=-0.00000E+00 第4面における非球面係数は、 k= 0.00000E+00 a=-0.77407E-06 b= 0.24264E-09 c= 0.00000E+00 d=-0.22321E-16 e= 0.00000E+00 である。
The first surface is a deflecting / reflecting surface of the optical deflector,
The third surface is an anamorphic surface with r3 = -36.4600 and r'3 = 7.3000. Further, the second surface and the fourth surface are composed of a rotational aspherical surface x represented by the following formula, and x = (1 / r) y 2 / {1 + √ [1- (1 + k) y 2 /
r 2 ]} + ay 4 + by 6 + cy 8 + dy 10 + ey 12 However, r = r 2 = r ′ 2 or r = r 4 = r ′ 4 The aspherical surface coefficient on the second surface is k = 0.0000E + 00 a = 0.0000E +00 b = 0.12132E-08 c = 0.00000E + 00 d = 0.00000E + 00 e = -0.00000E + 00 The aspherical surface coefficient on the 4th surface is k = 0.00000E + 00 a = -0.777407E-06 b = 0.24264E-09 c = 0.00000E + 00 d = -0.22321E-16 e = 0.00000E + 00.

【0031】また焦点距離FLは、 FL=99.99 であり、 Pr =16.06 θ =80° Px =12.49 Py =11.42 である。The focal length FL is FL = 99.99 and Pr = 16.06 θ = 80 ° Px = 12.49 Py = 11.42.

【0032】また、第5面は凸レンズ24の被走査面側
の面(後面)であり、r5=-61.8500,r’5=-11.0800
で表される、主走査方向及び副走査方向の両方向に正の
パワーを有し、かつ中心光軸に平行で主走査方向に直交
する平面による断面が長手方向に一定である面形状とな
っている。このような第3実施形態にかかる像面湾曲特
性及びfθ特性を、図9(a)及び(b)にそれぞれ示
す。このうち図9(a)中の破線は、主走査方向の像面
を表し、図中実線は副走査方向の像面を表している。
The fifth surface is the surface (rear surface) on the scanned surface side of the convex lens 24, and r5 = -61.8500, r'5 = -11.0800.
The cross-section of a plane that has positive power in both the main scanning direction and the sub-scanning direction and that is parallel to the central optical axis and is orthogonal to the main scanning direction is a surface shape that is constant in the longitudinal direction. There is. The field curvature characteristic and the fθ characteristic according to the third embodiment are shown in FIGS. 9A and 9B, respectively. Of these, the broken line in FIG. 9A represents the image plane in the main scanning direction, and the solid line in the figure represents the image plane in the sub scanning direction.

【0033】なおこの第3実施形態における倍率調整レ
ンズ25は、符号3で示す面が副走査方向に負のパワー
(発散性)を持つトーリックレンズからなり、副走査方
向の焦点距離を短くすることによって副走査方向の変動
を小さく抑えるときに主走査方向と副走査方向の像面を
一致させる機能を有している。
The magnification adjusting lens 25 in the third embodiment is a toric lens whose surface indicated by reference numeral 3 has a negative power (divergence) in the sub-scanning direction, and the focal length in the sub-scanning direction should be shortened. Has a function of matching the image planes in the main scanning direction and the sub scanning direction when suppressing the fluctuation in the sub scanning direction.

【0034】さらに図10に示されている本発明の第4
実施形態における光走査光学系も、上述したアナモフィ
ック面を有する1枚の凸レンズ26から構成されている
が、上記凸レンズ26の偏向面側すなわち回転多面鏡側
に、副走査方向倍率を下げるための倍率調整レンズ27
が配置されている。
Further, a fourth aspect of the present invention shown in FIG.
The optical scanning optical system in the embodiment is also composed of one convex lens 26 having the anamorphic surface described above. However, a magnification for reducing the magnification in the sub-scanning direction is provided on the deflection surface side of the convex lens 26, that is, on the rotary polygon mirror side. Adjustment lens 27
Is arranged.

【0035】そして図示を省略した光偏向器の偏向反射
面を符号「1」で表し、倍率調整レンズ25の偏向反射
面側の面(前面)及び被走査面側の面(後面)を符号
「2」及び「3」でそれぞれ表し、本発明にかかる凸レ
ンズ26の偏向反射面側の面(前面)及び被走査面側の
面(後面)を符号「4」及び「5」でそれぞれ表したと
き、レンズ面の主副各方向における曲率半径ri ,r’
i、i番目の面から(i+1)番目の光軸上の間隔di
、波長780nmに対する屈折率ni は、以下のよう
な値にて構成されている。
The deflecting reflection surface of the optical deflector (not shown) is indicated by reference numeral "1", and the deflection reflection surface side (front surface) and the surface to be scanned side (rear surface) of the magnification adjusting lens 25 are indicated by reference numeral "1". 2 "and" 3 ", respectively, and when the surface of the convex lens 26 according to the present invention on the side of the deflection reflection surface (front surface) and the surface on the side of the surface to be scanned (rear surface) are represented by reference numerals" 4 "and" 5 ", respectively. , Radiuses of curvature ri, r'in the main and sub directions of the lens surface
Distance di on the (i + 1) th optical axis from the i, i-th surface
, The refractive index ni with respect to the wavelength of 780 nm is constituted by the following values.

【0036】 i ri r’i di ni 1 0.0000 0.0000 19.0000 1.00000 2 -50.6400 -50.6400 2.2000 1.48601 3 -51.3200 15.8000 3.3000 1.00000 4 280.0000 280.0000 16.0200 1.48601 5 -58.8000 -10.0000 99.5819 1.00000 I r i r'i d i ni 1 0.0000 0.0000 19.0000 1.00000 2 -50.6400 -50.6400 2.2000 1.48601 3 -51.3200 15.8000 3.3000 1.00000 4 280.0000 280.0000 16.0200 1.48601 5 -58.8000 -10.0000 99.5819 1.00000

【0037】このとき上記第2面における非球面及び第
3面におけるアナモフィック面の主走査平面内の形状x
は、 x=(1/r)y2 /{1+√[1−(1+k)y2
2 ] }+ay4 +by6 +cy8 +dy10+ey12 で表され、第2面における非球面係数は、 k= 0.00000E+00 a=-0.16800E-05 b= 0.60300E-09 c=-0.16600E-10 d=0.987000E-13 e=-0.12800E-17 第3面における非球面係数は、 k= 0.00000E+00 a= 0.00000E+00 b= 0.00000E+00 c= 0.00000E+00 d= 0.38000E-13 e= 0.00000E+00 である。
At this time, the shape x in the main scanning plane of the aspherical surface on the second surface and the anamorphic surface on the third surface
Is x = (1 / r) y 2 / {1 + √ [1- (1 + k) y 2 /
r 2 ]} + ay 4 + by 6 + cy 8 + dy 10 + ey 12 and the aspherical surface coefficient on the second surface is k = 0.000E + 00 a = -0.16800E-05 b = 0.60300E-09 c = -0.16600 E-10 d = 0.987000E-13 e = -0.12800E-17 The aspherical surface coefficient on the 3rd surface is k = 0.0000E + 00 a = 0.0000E + 00 b = 0.0000E + 00 c = 0.0000E + 00 d = 0.38000E-13e = 0.00000E + 00.

【0038】また焦点距離FLは、 FL=100.07 であり、 Pr =11.6 θ =80° Px =8.97 Py =7.96 である。The focal length FL is FL = 100.07, and Pr = 11.6 θ = 80 ° Px = 8.97 Py = 7.96.

【0039】このような第4実施形態にかかる像面湾曲
特性及びfθ特性を、図11(a)及び(b)にそれぞ
れ示す。このうち図11(a)中の破線は主走査方向の
像面を表し、図中実線は副走査方向の像面を表してい
る。
The field curvature characteristics and the fθ characteristics according to the fourth embodiment are shown in FIGS. 11 (a) and 11 (b), respectively. Of these, the broken line in FIG. 11A represents the image plane in the main scanning direction, and the solid line in the figure represents the image plane in the sub scanning direction.

【0040】なおこの第4実施形態における倍率調整レ
ンズ27の符号3で示す面は、中心光軸に平行で主走査
方向に直交する平面による断面が長手方向に一定である
面形状を持ち副走査方向に負のパワーを持つアナモフィ
ックレンズからなり、副走査方向の焦点距離を短くする
ことによって副走査方向の変動を小さく抑えるときに主
走査方向と副走査方向の像面を一致させる機能を有して
いる。
The surface indicated by reference numeral 3 of the magnification adjusting lens 27 in the fourth embodiment has a surface shape in which the cross section by a plane parallel to the central optical axis and orthogonal to the main scanning direction is constant in the longitudinal direction, and the sub scanning is performed. It consists of an anamorphic lens with negative power in the direction, and has a function to match the image plane in the main scanning direction and the image surface in the sub scanning direction when the fluctuation in the sub scanning direction is kept small by shortening the focal length in the sub scanning direction. ing.

【0041】以上本発明者によってなされた発明を実施
形態に基づき具体的に説明したが、本発明は上記実施形
態に限定されるものではなく、その要旨を逸脱しない範
囲で種々変形可能であるというのはいうまでもない。例
えば、光偏向器としては、上記各実施形態のようなポリ
ゴンミラー等の回転多面鏡に限定されることはなく、回
転単面鏡や回転2面鏡等のように等角速度的に偏向させ
るものであれば同様に適用することが可能である。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, the optical deflector is not limited to the rotary polygon mirror such as the polygon mirror as in each of the above-described embodiments, but the one deflecting at a constant angular velocity such as a rotary single-sided mirror or a rotary two-sided mirror. If so, the same can be applied.

【0042】[0042]

【発明の効果】以上述べたように本発明にかかる光走査
光学系は、被走査面側面が主走査方向及び副走査方向の
両方向に正のパワー(発散性)を有し、かつ中心光軸に
平行で主走査方向に直交する平面による断面形状が長手
方向に略一定であるアナモフィック面を有する1枚の凸
レンズによって構成したものであるから、主走査方向の
像面及びfθ特性と副走査方向の像面湾曲の補正とを、
1枚の凸レンズにより得ることができ、光走査光学系の
構成を簡素化し、生産性を向上させることができる。
As described above, in the optical scanning optical system according to the present invention, the side surface of the surface to be scanned has a positive power (divergence) in both the main scanning direction and the sub scanning direction, and the central optical axis. The image plane in the main scanning direction and the fθ characteristic and the sub-scanning direction are formed by a single convex lens having an anamorphic surface whose cross-sectional shape in a plane parallel to and parallel to the main scanning direction is substantially constant in the longitudinal direction. Correction of the field curvature of
Since it can be obtained by one convex lens, the structure of the optical scanning optical system can be simplified and the productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した光走査光学系の原理的構成を
表した平面説明図である。
FIG. 1 is an explanatory plan view showing a principle configuration of an optical scanning optical system to which the present invention is applied.

【図2】本発明の定義部位を表した原理的構成説明図で
ある。
FIG. 2 is an explanatory diagram of a principle configuration showing defined portions of the present invention.

【図3】本発明の第1実施形態における光走査光学系を
表した平面説明図である。
FIG. 3 is an explanatory plan view showing an optical scanning optical system according to the first embodiment of the invention.

【図4】図3に表した第1実施形態による像面湾曲特性
(a)及びfθ特性(b)を表した線図である。
FIG. 4 is a diagram showing field curvature characteristics (a) and fθ characteristics (b) according to the first embodiment shown in FIG. 3.

【図5】トーリック単レンズによる像面湾曲特性(a)
及びfθ特性(b)の一例を表した線図である。
FIG. 5: Field curvature characteristic by a toric single lens (a)
FIG. 3 is a diagram showing an example of the fθ characteristic (b).

【図6】本発明の第2実施形態における光走査光学系を
表した平面説明図である。
FIG. 6 is an explanatory plan view showing an optical scanning optical system according to a second embodiment of the present invention.

【図7】図6に表した第2実施形態による像面湾曲特性
(a)及びfθ特性(b)を表した線図である。
FIG. 7 is a diagram showing field curvature characteristics (a) and fθ characteristics (b) according to the second embodiment shown in FIG. 6;

【図8】本発明の第3実施形態における光走査光学系を
表した平面説明図である。
FIG. 8 is an explanatory plan view showing an optical scanning optical system according to a third embodiment of the invention.

【図9】図8に表した第3実施形態による像面湾曲特性
(a)及びfθ特性(b)を表した線図である。
9 is a diagram showing field curvature characteristics (a) and fθ characteristics (b) according to the third embodiment shown in FIG. 8. FIG.

【図10】本発明の第4実施形態における光走査光学系
を表した平面説明図である。
FIG. 10 is a plan view showing an optical scanning optical system according to a fourth embodiment of the invention.

【図11】図10に表した第3実施形態による像面湾曲
特性(a)及びfθ特性(b)を表した線図である。
11 is a diagram showing field curvature characteristics (a) and fθ characteristics (b) according to the third embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

1 回転偏向器 1a 偏向反射面 2 アナモフィック凸レンズ 3 感光体ドラム 3a 被走査面 DESCRIPTION OF SYMBOLS 1 rotary deflector 1a deflection reflection surface 2 anamorphic convex lens 3 photoconductor drum 3a scanned surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 主走査方向においてfθ機能を有すると
ともに、副走査方向において偏向反射面位置と被走査面
位置とを幾何光学的に略共役な関係とすることによっ
て、副走査方向の面倒れを補正する機能を備えた光走査
光学系において、 上記被走査面側の面が主走査方向及び副走査方向の両方
向に凸をなす1枚の凸レンズを有し、 上記凸レンズの被走査面側の面が、中心光軸に平行でか
つ主走査方向に直交する平面による断面形状が主走査方
向に略一定の面形状を備えていることを特徴とする光走
査光学系。
1. A surface tilt in the sub-scanning direction is obtained by having an fθ function in the main scanning direction and by making the position of the deflective reflection surface and the scanned surface position substantially geometrically conjugate in the sub-scanning direction. In the optical scanning optical system having a correcting function, the surface on the side to be scanned has one convex lens convex in both the main scanning direction and the sub-scanning direction, and the surface on the surface to be scanned side of the convex lens. However, the optical scanning optical system is characterized in that a cross-sectional shape of a plane parallel to the central optical axis and orthogonal to the main scanning direction has a substantially constant surface shape in the main scanning direction.
【請求項2】 請求項1記載の光走査光学系において、 請求項1記載の凸レンズの偏向面側に、副走査方向に負
のパワーを有する副走査方向の倍率調整用のレンズを配
置してなることを特徴とする光走査光学系。
2. The optical scanning optical system according to claim 1, wherein a lens for adjusting magnification in the sub-scanning direction having negative power in the sub-scanning direction is arranged on the deflection surface side of the convex lens according to claim 1. An optical scanning optical system characterized in that
【請求項3】 レーザ光源からの光束を偏向反射面を有
する光偏向器により等角速度的に偏向させ、上記光偏向
器により偏向された偏向光束を光走査光学系により被走
査面上に光スポットとして集光させて光走査を行なう光
走査光学系において、 上記光走査光学系は、上記被走査面側の面が主走査方向
及び副走査方向の両方向に凸をなす1枚の凸レンズを有
し、上記凸レンズの被走査面側の面は、主走査方向及び
副走査方向の両方向に正のパワーを有し、かつ上記凸レ
ンズの中心光軸に平行で主走査方向に直交する平面によ
る断面形状が上記主走査方向に略一定の面形状を備えて
いることを特徴とする光走査光学系。
3. A light beam from a laser light source is deflected at an equal angular velocity by an optical deflector having a deflecting reflection surface, and the deflected light beam deflected by the optical deflector is spotted on a surface to be scanned by an optical scanning optical system. In the optical scanning optical system for condensing and performing optical scanning, the optical scanning optical system has one convex lens whose surface on the scanned surface side is convex in both the main scanning direction and the sub scanning direction. The surface of the convex lens on the surface to be scanned has a positive power in both the main scanning direction and the sub-scanning direction, and has a cross-sectional shape of a plane parallel to the central optical axis of the convex lens and orthogonal to the main scanning direction. An optical scanning optical system having a substantially constant surface shape in the main scanning direction.
【請求項4】 請求項3記載の光走査光学系において、
前記凸レンズの偏向面側に、副走査方向の倍率調整用の
レンズを配置してなることを特徴とする光走査光学系。
4. The optical scanning optical system according to claim 3,
An optical scanning optical system, wherein a lens for adjusting magnification in the sub-scanning direction is arranged on the deflecting surface side of the convex lens.
【請求項5】 請求項1又は3記載の光走査光学系にお
いて、前記凸レンズの被走査面側の面は、走査光の中心
光軸に平行で主走査方向に直交する平面による断面形状
が上記主走査方向に関して同一の曲率半径であることを
特徴とする光走査光学系。
5. The optical scanning optical system according to claim 1, wherein the surface of the convex lens on the surface to be scanned has a sectional shape of a plane parallel to the central optical axis of the scanning light and orthogonal to the main scanning direction. An optical scanning optical system having the same radius of curvature in the main scanning direction.
JP34645795A 1994-12-26 1995-12-12 Optical scanning optical system Expired - Fee Related JP3069281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34645795A JP3069281B2 (en) 1994-12-26 1995-12-12 Optical scanning optical system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-337327 1994-12-26
JP33732794 1994-12-26
JP34645795A JP3069281B2 (en) 1994-12-26 1995-12-12 Optical scanning optical system

Publications (2)

Publication Number Publication Date
JPH08248341A true JPH08248341A (en) 1996-09-27
JP3069281B2 JP3069281B2 (en) 2000-07-24

Family

ID=26575744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34645795A Expired - Fee Related JP3069281B2 (en) 1994-12-26 1995-12-12 Optical scanning optical system

Country Status (1)

Country Link
JP (1) JP3069281B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365574A (en) * 2001-06-08 2002-12-18 Canon Inc Optical scanner and imaging device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365574A (en) * 2001-06-08 2002-12-18 Canon Inc Optical scanner and imaging device using the same
JP4684470B2 (en) * 2001-06-08 2011-05-18 キヤノン株式会社 Optical scanning device and image forming apparatus using the same

Also Published As

Publication number Publication date
JP3069281B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
JP3072061B2 (en) Optical scanning device
JPH06123844A (en) Optical scanner
JPH06118325A (en) Optical scanner
JP2563260B2 (en) Optical beam scanning device
JP3303558B2 (en) Scanning optical device
JP3104618B2 (en) Optical scanning device and optical lens
JPH08248340A (en) Laser beam scanner
JP2550153B2 (en) Optical scanning device
JP5269169B2 (en) Scanning optical device and laser beam printer having the same
JP2000081584A (en) Scanning optical device
EP0857991B1 (en) Scanning optical system
US6670980B1 (en) Light-scanning optical system
JPH08248345A (en) Optical scanner
JP3627781B2 (en) Laser scanner
JP3069281B2 (en) Optical scanning optical system
US5768028A (en) Scanning optics
JP3198750B2 (en) Optical scanning device
JP3320239B2 (en) Scanning optical device
JPH10260371A (en) Scanning optical device
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
JPH0968664A (en) Optical system for light beam scanning
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JP3558847B2 (en) Multi-beam scanner
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JPH116954A (en) Line image forming lens and optical scanner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000502

LAPS Cancellation because of no payment of annual fees