JPH08248259A - Method and device for assembling optical parts - Google Patents

Method and device for assembling optical parts

Info

Publication number
JPH08248259A
JPH08248259A JP7977095A JP7977095A JPH08248259A JP H08248259 A JPH08248259 A JP H08248259A JP 7977095 A JP7977095 A JP 7977095A JP 7977095 A JP7977095 A JP 7977095A JP H08248259 A JPH08248259 A JP H08248259A
Authority
JP
Japan
Prior art keywords
polarization
light
optical fiber
analyzer
maintaining optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7977095A
Other languages
Japanese (ja)
Inventor
Hiroshi Mori
浩 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP7977095A priority Critical patent/JPH08248259A/en
Publication of JPH08248259A publication Critical patent/JPH08248259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE: To make it possible to mount optical parts with good accuracy and reproducibility by fixing the optical parts at a desired angle in accordance with the intensity of the passed light measured while the optical part and analyzer are rotated around the axis of an optical fiber by changing the wavelength of light source light. CONSTITUTION: A light source 3 for generating the light which is variable in wavelength and has a finite extinction ratio is used in order to change the wavelength of the incident light on the polarization plane maintaining optical fiber 1. The optical parts 2 and the analyzer 5 are held with a prescribed angle at the exit end of the polarization plane maintaining optical fiber 1 and are mounted rotatably around the axis of the polarization plane maintaining optical fiber 1. The light from the light source 3 is made incident on the incident end 31 of the polarization plane maintaining optical fiber 1. The intensity of the light past the optical parts 2 and the analyzer 5 is measured while the wavelength of the light from the light source 3 is changed and the optical parts 2 and the analyzer 5 are rotated around the axis of the polarization plane maintaining optical fiber 1. The optical parts 2 are fixed with the desired angle to the exit end 30 of the polarization plane maintaining optical fiber 1 in accordance with the observed intensity of the light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,主に光通信,光計測分
野において使用される偏波面保存光ファイバを利用した
装置の組立及び評価に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to assembly and evaluation of an apparatus using a polarization-maintaining optical fiber mainly used in the fields of optical communication and optical measurement.

【0002】[0002]

【従来の技術】通常の光ファイバは,光の導波方向(以
下,z方向とする)に対して軸対称に屈折率が分布する
よう作製されており,直線偏波の光が導波する場合,わ
ずかな温度分布や外部からの応力などによって微妙な屈
折率分布が必ず発生し,偏波面が揺らぐという問題があ
る。このため複数の光を混合してビート信号を取り出す
ヘテロダインまたはホモダイン方式では受信感度が著し
く不安定になるという問題があった。
2. Description of the Related Art An ordinary optical fiber is manufactured so that its refractive index is distributed symmetrically with respect to the light guiding direction (hereinafter referred to as z direction), and linearly polarized light is guided. In this case, there is a problem that a slight refractive index distribution is inevitably generated due to a slight temperature distribution or external stress, and the polarization plane fluctuates. Therefore, in the heterodyne or homodyne system in which a plurality of lights are mixed to extract a beat signal, there is a problem that the reception sensitivity becomes extremely unstable.

【0003】そこで,開発されたのが,同じ波長の光で
も偏波方向によって光が感じる屈折率が異なるような構
造にした偏波面保存光ファイバである。現在では数種類
の構造が提案されているが,いずれもz軸に対して非軸
対称な構造を有している。例えば,コアが円形でなく楕
円形であるもの,コアの両側にコアを圧縮または伸張す
る応力付与部分を形成したもの,などがある。これらは
その構造に由来して,z軸に垂直な断面内に互いに直交
する2つの偏波面保存主軸(x軸とy軸)を有してお
り,この方向に偏波面を有する直線偏波の光を入射する
と,その偏波面は保存される。これは偏波方向によって
光が感じる屈折率が異なり,これが伝搬定数の異方性を
生んで光のエネルギーの縮退を解き,偏波面保存光ファ
イバのx軸方向に偏波面を持つモードとy軸方向に偏波
面を持つモードとの間のモード変換が生じにくくなるた
めである。従って,x軸方向とy軸方向との屈折率差
(B値と呼ばれる,後述)が大きいほど,偏波面保存光
ファイバとしての性能は良いことになる。当然,偏波面
保持性能の良いファイバほど,入射光の偏波面方向を偏
波面保存光ファイバの偏波面保存主軸方向に精度良く一
致させてやらなければならない。
Therefore, what has been developed is a polarization-maintaining optical fiber having a structure in which even the light of the same wavelength has a different refractive index which the light perceives depending on the polarization direction. At present, several types of structures have been proposed, but each has a structure that is non-axisymmetric with respect to the z axis. For example, the core may be oval rather than circular, or the core may be formed with stress applying portions for compressing or stretching the core on both sides. Due to their structure, they have two polarization-maintaining principal axes (x-axis and y-axis) orthogonal to each other in the cross section perpendicular to the z-axis, and a linearly polarized wave having a polarization plane in this direction. When light is incident, its plane of polarization is preserved. This is because the refractive index perceived by light differs depending on the polarization direction, which causes the anisotropy of the propagation constant to release the degeneracy of the energy of the light, and the mode with the polarization plane in the x-axis direction of the polarization-maintaining optical fiber and the y-axis. This is because mode conversion between a mode having a plane of polarization in the direction is less likely to occur. Therefore, the larger the difference in refractive index between the x-axis direction and the y-axis direction (called B value, which will be described later), the better the performance as a polarization-maintaining optical fiber. Naturally, the better the polarization maintaining performance of a fiber, the more precisely the polarization direction of the incident light must match the polarization maintaining main axis direction of the polarization maintaining optical fiber.

【0004】従って,偏波面保存光ファイバの偏波面保
存主軸がどの向きを向いているかを高い精度で把握して
おくことは,偏波面保存光ファイバの接続において非常
に重要な問題である。接続は主に融着によって行われる
場合と,コネクタを取り付けてコネクタ同士をアダプタ
部品を介して接続する場合とに分けられる。その中で,
コネクタを利用した場合は着脱が容易であり,また,最
近では高精度で耐久性の高いコネクタが開発され普及し
始めたこともあって,その利用は拡大しつつある。この
場合,コネクタの形状は偏波面保存光ファイバのz軸に
関して非軸対称な構造となっているのが通常で,円形の
外形を有する偏波面保存光ファイバの偏波面保存主軸方
向をコネクタの形状から容易に認識できる。また,コネ
クタ同士の接続時も角度の遊びが小さく,非常に高精度
に角度を制御して接続されるようになっている。このこ
とから,偏波面保存光ファイバの偏波面保存主軸を一致
させて接続させることは,偏波面保存光ファイバとコネ
クタの間の角度制御をいかに高精度に行うかに絞られ
る。
Therefore, it is a very important problem in connecting the polarization-maintaining optical fibers to know with high accuracy which direction the polarization-maintaining main axis of the polarization-maintaining optical fiber faces. Connection is divided into a case where fusion is mainly performed and a case where connectors are attached and the connectors are connected to each other through adapter parts. inside that,
When a connector is used, it can be easily attached and detached, and since the connector with high precision and high durability has been recently developed and spread, its use is expanding. In this case, the shape of the connector is usually non-axisymmetric with respect to the z-axis of the polarization-maintaining optical fiber, and the polarization-maintaining main axis direction of the polarization-maintaining optical fiber having a circular outer shape is the shape of the connector. Can be easily recognized from. Also, when the connectors are connected to each other, the angle play is small, and the angles are controlled with extremely high precision. For this reason, matching and connecting the polarization-maintaining main axes of the polarization-maintaining optical fiber is limited to how accurately the angle between the polarization-maintaining optical fiber and the connector is controlled.

【0005】従来,偏波面保存光ファイバの偏波面保存
主軸方向の把握は,顕微鏡等によって偏波面保存光ファ
イバ端面を拡大して観察し,その向きを知る方法が最も
一般的であった。 これに代わる方法としては光の干渉
縞を利用する方法がある。これは偏波面保存光ファイバ
の先端部の被覆をはがし,偏波面保存光ファイバの真横
(z軸と90゜をなす方向)から直線偏波の光を入射し
てその後方散乱光がつくる干渉縞パターンをスクリーン
に投影し,偏波面保存光ファイバをz軸に関して回転さ
せながら干渉パターンが左右対称になる位置を探すとい
うものである。側面から入射した光の入射経路が偏波面
保存光ファイバの偏波面保存主軸方向に一致したときに
干渉縞パターンが左右対称になるからである。
Conventionally, the most general method for grasping the polarization-maintaining principal axis direction of a polarization-maintaining optical fiber is to observe the end face of the polarization-maintaining optical fiber by enlarging it with a microscope or the like and to know its direction. As an alternative method, there is a method of utilizing light interference fringes. This is an interference fringe formed by stripping off the coating on the tip of a polarization-maintaining optical fiber and injecting linearly polarized light from just beside the polarization-maintaining optical fiber (direction that makes 90 ° with the z-axis). The pattern is projected on a screen, and the polarization-maintaining optical fiber is rotated about the z-axis to find the position where the interference pattern becomes symmetrical. This is because the interference fringe pattern becomes bilaterally symmetric when the incident path of light incident from the side surface coincides with the polarization-maintaining main axis direction of the polarization-maintaining optical fiber.

【0006】さらに,偏波面保存光ファイバの一端から
直線偏波の光を入射し,他端から出射される光の偏波消
光比を測定して偏波面保存軸方向を知る方法も行われて
いる。この場合,原理的には入射側の入射光の偏波方向
と偏波面保存光ファイバの偏波面保存主軸方向とが完全
に一致した時にのみ出射光の偏波消光比も無限大とな
り,入射光の偏波方向が入射端での偏波面保存光ファイ
バの偏波面保存主軸方向を,出射光の偏波方向が出射端
での偏波面保存光ファイバの偏波面保存主軸方向をそれ
ぞれ示していると考えられている。
Further, a method is known in which linearly polarized light is incident from one end of a polarization-maintaining optical fiber and the polarization extinction ratio of the light emitted from the other end is measured to determine the polarization-maintaining axis direction. There is. In this case, in principle, the polarization extinction ratio of the outgoing light becomes infinite only when the polarization direction of the incoming light on the incident side and the polarization-maintaining principal axis direction of the polarization-maintaining optical fiber completely match. The polarization direction of is the polarization-maintaining principal axis direction of the polarization-maintaining optical fiber at the entrance end, and the polarization direction of the outgoing light is the polarization-maintaining principal axis direction of the polarization-maintaining optical fiber at the exit end. It is considered.

【0007】以上のような方法で,偏波面保存光ファイ
バの偏波面保存主軸方向の把握が行われてきた。
The polarization direction preserving principal axis direction of the polarization preserving optical fiber has been grasped by the above method.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0008】しかしながら,顕微鏡等によって偏波面保
存光ファイバ端面を拡大して観察し,偏波面保存方向を
決定する方法は簡便ではあるが,高い精度は望めない。
また,偏波面保存光ファイバの側面から直線偏波の光を
入射して干渉縞を観察する方法も,干渉縞というパター
ンから判断するため定量的制御が難しく,多数回の作業
を一定の精度で行うことは困難である。さらに,偏波面
保存光ファイバの一端から直線偏波の光を入射しながら
偏波面保存光ファイバを軸方向を中心に回転させて,他
端から出射される光の偏波消光比が最大になる方向で角
度合わせをする方法は,偏波面保存光ファイバを回転さ
せるという操作によって偏波面保存光ファイバに応力が
かかり,これが偏波面保存光ファイバのB値(偏波面保
存光ファイバのx軸方向とy軸方向との屈折率差)を変
化させてしまう。後述する理由により作業中のB値の変
動は好ましくない。また,実際上では完全な直線偏波の
光,すなわち偏波消光比が無限大の光は作り出すことは
不可能に近く,有限の消光比を有する光を偏波面保存光
ファイバに入射した場合には,単一の波長のみでは,や
はり後述する理由により誤った角度に合わせてしまう可
能性があって,その取り扱いには極めて注意を要する。
However, the method of observing the end face of the polarization-maintaining optical fiber by enlarging it with a microscope and determining the polarization-preserving direction is simple, but high accuracy cannot be expected.
The method of observing the interference fringes by injecting linearly polarized light from the side surface of the polarization-maintaining optical fiber is also difficult to quantitatively control because it is judged from the pattern of the interference fringes, and many operations can be performed with a certain accuracy. Difficult to do. Furthermore, the polarization extinction ratio of the light emitted from the other end is maximized by rotating the polarization-maintaining optical fiber around the axis while injecting the linearly polarized light from one end of the polarization maintaining fiber. In the method of aligning the angles in the directions, stress is applied to the polarization-maintaining optical fiber by the operation of rotating the polarization-maintaining optical fiber. The refractive index difference from the y-axis direction) is changed. The fluctuation of the B value during the work is not preferable for the reason described below. In addition, it is practically impossible to produce completely linearly polarized light, that is, light with an infinite polarization extinction ratio, and when light with a finite extinction ratio is incident on the polarization-maintaining optical fiber. However, with only a single wavelength, there is a possibility that it will be adjusted to an incorrect angle for the reason described below, and its handling is extremely careful.

【0009】[0009]

【課題を解決するための手段】そこで,本発明では,発
明者が発見した以下の現象をもとに,上記課題の解決手
段を提示する。
Therefore, the present invention provides means for solving the above-mentioned problems based on the following phenomena discovered by the inventor.

【0010】偏波面保存光ファイバ1に光を入射し,そ
の偏波面保存光ファイバ1からの光の偏波消光比を測定
したところ,これが単純な光の波長の関数となって周期
的に変動していることががわかった。ここで,偏波消光
比とは,最も強い方向の光の強度と最も弱い方向の強度
(両者の偏波面は直交する)の比を意味する。
When light is incident on the polarization-maintaining optical fiber 1 and the polarization extinction ratio of the light from the polarization-maintaining optical fiber 1 is measured, this becomes a simple function of the wavelength of the light and periodically changes. I found out that Here, the polarization extinction ratio means the ratio of the intensity of light in the strongest direction and the intensity in the weakest direction (both polarization planes are orthogonal to each other).

【0011】また,波長の関数となっているのは偏波消
光比に限らず,もっと一般的にある角度に設定された検
光子5を通過した光の強度そのものが,波長の関数とし
て周期的に変動することもわかった(図6,図7参
照)。もちろん,検光子5をのぞいて光のトータルの強
度を検出すれば常に一定となっている。
The function of wavelength is not limited to the polarization extinction ratio, but more generally, the intensity of light passing through the analyzer 5 set at a certain angle is periodic as a function of wavelength. It was also found that the fluctuation fluctuated to (Figs. 6 and 7). Of course, if the total intensity of light is detected except for the analyzer 5, it is always constant.

【0012】さらに,波長だけでなく,偏波面保存光フ
ァイバ1の長さと,偏波面保存光ファイバ1のB値(偏
波面保存光ファイバのx軸方向とy軸方向との屈折率
差)を変数として周期的に変動を生じることも発見でき
た。
Further, not only the wavelength but also the length of the polarization-maintaining optical fiber 1 and the B value of the polarization-maintaining optical fiber 1 (the difference in refractive index between the x-axis direction and the y-axis direction of the polarization-maintaining optical fiber) are shown. It was also discovered that a variable fluctuates periodically.

【0013】さらに,また,偏波面保存光ファイバ1を
通過した光を受ける検光子の角度が偏波面保存光ファイ
バ1の偏波面保存主軸と完全に一致したときのみ検光子
5を通過した光の強度に変動が生じないことがわかっ
た。
Furthermore, the light passing through the analyzer 5 is detected only when the angle of the analyzer for receiving the light passing through the polarization-maintaining optical fiber 1 completely matches the polarization-maintaining main axis of the polarization-maintaining optical fiber 1. It was found that the strength did not fluctuate.

【0014】したがって,上記請求項に記載した発明は
すべてこの発明者が発見した偏波面保存光ファイバにお
ける波長の変化とある角度の検光子5を通過した光の強
度の相関関係を利用したものである。
Therefore, all the inventions described in the above claims utilize the correlation between the change of the wavelength in the polarization-maintaining optical fiber and the intensity of the light passing through the analyzer 5 at a certain angle, which was discovered by the present inventor. is there.

【0015】請求項1記載の発明は,上記現象を利用し
た光部品の組立方法である。まず,第1に偏波面保存光
ファイバ1に入射する光の波長を変化させるため,波長
が可変であって有限な消光比を持った光を発生する光源
3を準備する。有限な消光比をもった光とは,完全な円
偏波でも直線偏波でもない光の意味である。第2に,偏
波面保存光ファイバ1の一端(以下、出射端30とい
う。)に取り付けるべき光部品2と検光子5とを所定の
角度で保持するとともに,偏波面保存光ファイバ1の軸
の周りに回転可能に取り付ける。第3に,光源3からの
光を偏波面保存光ファイバ1の他端(以下、入射端31
という。)に入射させる。第4に,光源3からの光の波
長を変化させ,かつ偏波面保存光ファイバ1の軸の周り
に光部品2及び検光子5を回転させながら光部品2及び
検光子5を通過した光の強度を測定する。この時,光は
検光子5の角度に依存した強度変調を受けており,検光
子5の角度が偏波面保存光ファイバ1の偏波面保存主軸
14と完全に一致した時にのみ強度変調が見られない。
第5に,この観測した光の強度に基づいて偏波面保存光
ファイバ1の一端30に光部品2を所望の角度で固定す
る。
The invention described in claim 1 is an assembling method of an optical component utilizing the above phenomenon. First, in order to change the wavelength of light incident on the polarization-maintaining single-mode fiber 1, first, a light source 3 that generates light having a finite extinction ratio and a variable wavelength is prepared. Light with a finite extinction ratio means light that is neither perfectly circularly polarized nor linearly polarized. Secondly, the optical component 2 to be attached to one end of the polarization-maintaining optical fiber 1 (hereinafter referred to as the exit end 30) and the analyzer 5 are held at a predetermined angle, and the axis of the polarization-maintaining optical fiber 1 is Attach it rotatably around. Thirdly, the light from the light source 3 is supplied to the other end of the polarization-maintaining optical fiber 1 (hereinafter referred to as the incident end 31).
Say. ). Fourth, while changing the wavelength of the light from the light source 3 and rotating the optical component 2 and the analyzer 5 around the axis of the polarization-maintaining optical fiber 1, the light passing through the optical component 2 and the analyzer 5 Measure the strength. At this time, the light undergoes the intensity modulation depending on the angle of the analyzer 5, and the intensity modulation is observed only when the angle of the analyzer 5 completely coincides with the polarization-maintaining main axis 14 of the polarization-maintaining optical fiber 1. Absent.
Fifth, the optical component 2 is fixed to the one end 30 of the polarization-maintaining optical fiber 1 at a desired angle based on the observed light intensity.

【0016】請求項2記載の発明は,上記現象を利用し
た光部品の組立方法である。請求項2では,いわゆる支
持手段と検光子との角度を正確に合わせることを目的と
する。まず,第1に偏波面保存光ファイバ1に入射する
光の波長を変化させるため,波長が可変であって有限の
消光比を持った光を発生する光源3を準備する。第2
に,偏波面保存光ファイバ1の出射端30であって,且
つ偏波面保存光ファイバ1の軸の周りに光部品2を支持
する手段8を偏波面保存光ファイバ1と所定の角度で保
持しつつ取り付ける。ここで支持する手段8とは、光部
品2を支持するために用いられるホルダをいう。それと
ともに,この支持する手段8であるホルダを介して取り
付けるべき検光子5を偏波面保存光ファイバ1の軸の周
りに回転可能に取り付ける。第3に,光源3からの光を
偏波面保存光ファイバ1の入射端31に入射させる。第
4に光源3からの光の波長を変化させ,かつ偏波面保存
光ファイバ1の軸の周りに検光子5を回転させながら支
持する手段8及び検光子5を通過した光の強度を測定す
る。この時,光は検光子5の角度に依存した強度変調を
受けており,検光子5の角度が偏波面保存光ファイバ1
の偏波面保存主軸14と完全に一致した時にのみ強度変
調が見られない。第5に,この観測した光の強度に基づ
いて支持する手段8に検光子5を所望の角度で固定す
る。
A second aspect of the present invention is an optical component assembling method utilizing the above phenomenon. A second object of the present invention is to accurately match the angle between the so-called support means and the analyzer. First, in order to change the wavelength of the light incident on the polarization-maintaining optical fiber 1, first, a light source 3 that generates light having a finite extinction ratio and a variable wavelength is prepared. Second
In addition, a means 8 for supporting the optical component 2 at the exit end 30 of the polarization-maintaining optical fiber 1 and around the axis of the polarization-maintaining optical fiber 1 is held at a predetermined angle with the polarization-maintaining optical fiber 1. While installing. The means 8 for supporting here means a holder used for supporting the optical component 2. At the same time, the analyzer 5 to be attached is attached rotatably around the axis of the polarization-maintaining optical fiber 1 via the holder which is the supporting means 8. Thirdly, the light from the light source 3 is made incident on the incident end 31 of the polarization-maintaining optical fiber 1. Fourthly, the intensity of the light passing through the analyzer 8 and the means 8 for changing the wavelength of the light from the light source 3 and supporting the analyzer 5 while rotating it about the axis of the polarization-maintaining optical fiber 1 is measured. . At this time, the light is subjected to intensity modulation depending on the angle of the analyzer 5, and the angle of the analyzer 5 changes depending on the angle.
Intensity modulation is not observed only when it completely matches the polarization-maintaining principal axis 14 of. Fifth, the analyzer 5 is fixed at a desired angle to the supporting means 8 based on the observed light intensity.

【0017】請求項3に記載の発明は,同じく上記現象
を利用した偏波面保存光ファイバ1と光部品2との相対
角度を検出する方法である。まず,第1に,偏波面保存
光ファイバ1に入射する光の波長を変化させるため,波
長が可変であって有限の消光比を持った光を発生する光
源3を準備する。第2に,偏波面保存光ファイバ1の出
射端30に光部品2と検光子5とを所定の角度で保持す
るとともに,偏波面保存光ファイバ1に取り付ける。本
発明では,請求項1記載の発明とは異なり,偏波面保存
光ファイバ1と光部品2とを正確に位置合わせを行うこ
とを目的とせず,光部品2が偏波面保存光ファイバ1の
偏波面保存主軸14に対してどの程度ずれているかを検
出することを目的としているので,偏波面保存光ファイ
バ1の軸の周りに光部品2と検光子5とが回転可能に取
り付けられていることは要しない。第3に,光源3から
の光を偏波面保存光ファイバ1の入射端31に入射させ
る。第4に,光源3からの光の波長を変化させるととも
に光部品2及び検光子5を通過した光の強度を測定す
る。この測定した強度の変化によって偏波面保存光ファ
イバ1と光部品2との相対角度を検出できる。
The third aspect of the present invention is a method for detecting the relative angle between the polarization-maintaining optical fiber 1 and the optical component 2, which also utilizes the above phenomenon. First, in order to change the wavelength of light incident on the polarization-maintaining optical fiber 1, first, a light source 3 that generates light having a finite extinction ratio with a variable wavelength is prepared. Secondly, the optical component 2 and the analyzer 5 are held at the output end 30 of the polarization-maintaining optical fiber 1 at a predetermined angle and attached to the polarization-maintaining optical fiber 1. Unlike the invention according to claim 1, the present invention does not aim at accurately aligning the polarization-maintaining optical fiber 1 and the optical component 2, and the optical component 2 does not polarize the polarization-maintaining optical fiber 1. Since the purpose is to detect how much the wavefront-maintaining spindle 14 is deviated, the optical component 2 and the analyzer 5 are rotatably mounted around the axis of the polarization-maintaining optical fiber 1. Does not need. Thirdly, the light from the light source 3 is made incident on the incident end 31 of the polarization-maintaining optical fiber 1. Fourth, while changing the wavelength of the light from the light source 3, the intensity of the light that has passed through the optical component 2 and the analyzer 5 is measured. The relative angle between the polarization-maintaining optical fiber 1 and the optical component 2 can be detected by the change in the measured intensity.

【0018】請求項4に記載の発明は,同じく上記現象
を利用したいわゆる支持する手段8と検光子5との相対
角度を検出する方法である。まず,第1に,偏波面保存
光ファイバ1に入射する光の波長を変化させるため,波
長が可変であって有限の消光比を持った光を発生する光
源3を準備する。第2に,偏波面保存光ファイバ1の出
射端30であって,且つ偏波面保存光ファイバ1の軸の
周りに光部品2を支持する手段8を偏波面保存光ファイ
バ1と所定の角度で保持しつつ取り付ける。それととと
もに,支持する手段8を介して検光子5を偏波面保存光
ファイバ1の軸の周りに取り付ける。本発明では,請求
項2記載の発明とは異なり,支持する手段8と検光子5
とを正確に位置合わせを行うことを目的とせず,支持す
る手段8が検光子5に対してどの程度ずれているかを検
出することを目的としているので,偏波面保存光ファイ
バ1の軸の周りに支持する手段8と検光子5とが回転可
能に取り付けられていることは要しない。光源3からの
光を偏波面保存光ファイバ1の入射端31に入射させ
る。光源3からの光の波長を変化させるとともに支持す
る手段8と検光子5を通過した光の強度を測定する。こ
の測定した強度の変化によって支持する手段8と検光子
5との相対角度を検出できる。
The invention according to claim 4 is a method of detecting the relative angle between the so-called supporting means 8 and the analyzer 5, which also utilizes the above phenomenon. First, in order to change the wavelength of light incident on the polarization-maintaining optical fiber 1, first, a light source 3 that generates light having a finite extinction ratio with a variable wavelength is prepared. Secondly, the means 8 for supporting the optical component 2 around the axis of the polarization-maintaining optical fiber 1 at the exit end 30 of the polarization-maintaining optical fiber 1 is provided at a predetermined angle with the polarization-maintaining optical fiber 1. Attach while holding. At the same time, the analyzer 5 is attached around the axis of the polarization-maintaining optical fiber 1 via the supporting means 8. In the present invention, unlike the invention described in claim 2, the supporting means 8 and the analyzer 5 are provided.
Since it is not intended to accurately align and, but is intended to detect how much the supporting means 8 is displaced with respect to the analyzer 5, the rotation around the axis of the polarization-maintaining optical fiber 1 is detected. It is not necessary that the supporting means 8 and the analyzer 5 are rotatably mounted. The light from the light source 3 is made incident on the incident end 31 of the polarization-maintaining optical fiber 1. The intensity of the light passing through the means 8 for changing and supporting the wavelength of the light from the light source 3 and the analyzer 5 is measured. The relative angle between the supporting means 8 and the analyzer 5 can be detected by the change in the measured intensity.

【0019】請求項5に記載の発明は,同じく上記現象
を利用した偏波面保存光ファイバ1の特性を測定する方
法である。まず,第1に偏波面保存光ファイバ1に入射
する光の波長を変化させるため,波長が可変であって有
限の消光比を持った光を発生する光源3を準備する。第
2に,偏波面保存光ファイバ1の出射端30にかつ偏波
面保存光ファイバ1の軸の周りに所定の角度で検光子5
を取り付ける。本発明では,請求項1及び請求項2に記
載の発明とは異なり,偏波面保存光ファイバ1から出射
された光を検光子5で受けて,波長の変化による光の強
度の変化から偏波面保存光ファイバ1の特性を測定する
ことを目的としているので,光部品2は不要であり,ま
た検光子5は偏波面保存光ファイバ1の軸の周りに回転
可能に取り付けられていることは要しない。第3に,光
源3からの光を偏波面保存光ファイバ1の入射端31に
入射させる。第4に,光源3からの光の波長を変化させ
るとともに検光子5を通過した光の強度を測定する。こ
の測定した強度の変化によって偏波面保存光ファイバ1
の特性の測定する。
The invention described in claim 5 is a method for measuring the characteristics of the polarization-maintaining optical fiber 1 which also utilizes the above phenomenon. First, in order to change the wavelength of the light incident on the polarization-maintaining optical fiber 1, first, a light source 3 that generates light having a finite extinction ratio and a variable wavelength is prepared. Secondly, at the exit end 30 of the polarization-maintaining optical fiber 1 and at a predetermined angle around the axis of the polarization-maintaining optical fiber 1, the analyzer 5
Attach. In the present invention, unlike the inventions described in claims 1 and 2, the light emitted from the polarization-maintaining optical fiber 1 is received by the analyzer 5, and the polarization plane changes from the change in the light intensity due to the change in wavelength. Since the purpose is to measure the characteristics of the storage optical fiber 1, it is not necessary to use the optical component 2 and it is essential that the analyzer 5 is rotatably attached around the axis of the polarization-maintaining optical fiber 1. do not do. Thirdly, the light from the light source 3 is made incident on the incident end 31 of the polarization-maintaining optical fiber 1. Fourthly, the wavelength of the light from the light source 3 is changed and the intensity of the light passing through the analyzer 5 is measured. Due to the change in the measured intensity, the polarization-maintaining optical fiber 1
To measure the characteristics of.

【0020】請求項6に記載の発明は,同じく上記現象
を利用した光部品組立装置である。本発明の構成は以下
の通りである。波長が可変であって有限の消光比を持っ
た光を出射する光源3と,この光を入射端31に入射す
る偏波面保存光ファイバ1の出射端30に取り付けるべ
き光部品2に所定の角度で取り付けられた検光子5と,
光部品2及び検光子5とを偏波面保存光ファイバ1の出
射端30にかつ偏波面保存光ファイバ1の軸の周りに回
転可能に取り付ける手段4と,光源3からの光の波長を
変化させ,かつ偏波面保存光ファイバ1の軸の周に光部
品2及び検光子5を回転させながら光部品2及び検光子
5を通過した光の強度を測定する測定装置6と,この測
定装置6の出力信号に基づいて偏波面保存光ファイバ1
の出射端30に光部品2を所望の角度で固定する手段7
とを含む光部品組立装置である。ここで所望の角度で固
定する手段7とは、具体的な装置を意味するものではな
く、光ファイバの出射端30に光部品を接着等の方法で
固定することを意味する。また、ここで偏波面保存光フ
ァイバの軸の周りに回転可能に取り付ける手段4とは、
独立の装置を意味するものではなく、検光子の外部構造
をいう。すなわち、検光子の構造を偏波面保存光ファイ
バからの光を受ける検光子部分と、検光子の外部にあっ
て検光子をある平面に固定するその他の部分とに分けて
考えた場合、その他の部分をある平面に固定した場合、
光を受ける部分は回転可能であり、その受光部分を回転
させた場合に、検光子5は回転可能であるとし、また、
その検光子5と光部品2とは相互に結合されているの
で、光部品も回転可能であると言える。さらに、ここで
光は検光子5の角度に依存した強度変調を受けており,
検光子5の角度が偏波面保存光ファイバ1の偏波面保存
主軸14と完全に一致した時にのみ強度変調が見られな
い。
The invention described in claim 6 is an optical component assembling apparatus which also utilizes the above phenomenon. The structure of the present invention is as follows. A light source 3 that emits light having a finite extinction ratio with a variable wavelength, and an optical component 2 that should be attached to an emission end 30 of a polarization-maintaining optical fiber 1 that makes this light incident on an incident end 31 have a predetermined angle. And the analyzer 5 attached in
A means 4 for rotatably attaching the optical component 2 and the analyzer 5 to the exit end 30 of the polarization-maintaining optical fiber 1 and about the axis of the polarization-maintaining optical fiber 1, and changing the wavelength of light from the light source 3. And a measuring device 6 for measuring the intensity of light passing through the optical component 2 and the analyzer 5 while rotating the optical component 2 and the analyzer 5 around the axis of the polarization-maintaining optical fiber 1, and the measuring device 6 Polarization-maintaining optical fiber 1 based on output signal
Means 7 for fixing the optical component 2 to the emitting end 30 of the optical component 2 at a desired angle
An optical component assembling apparatus including and. Here, the means 7 for fixing at a desired angle does not mean a specific device, but means fixing an optical component to the emitting end 30 of the optical fiber by a method such as bonding. Further, here, the means 4 that is rotatably attached around the axis of the polarization-maintaining optical fiber is
It does not mean an independent device, but the external structure of the analyzer. That is, when the structure of the analyzer is divided into an analyzer part that receives light from the polarization-maintaining optical fiber and another part that is outside the analyzer and that fixes the analyzer to a certain plane, If you fix the part to a certain plane,
The light receiving portion is rotatable, and the analyzer 5 is rotatable when the light receiving portion is rotated.
Since the analyzer 5 and the optical component 2 are coupled to each other, it can be said that the optical component is also rotatable. Further, here, the light undergoes intensity modulation depending on the angle of the analyzer 5,
No intensity modulation is observed only when the angle of the analyzer 5 completely matches the polarization-maintaining main axis 14 of the polarization-maintaining optical fiber 1.

【0021】請求項7に記載の発明は,同じく上記現象
を利用した光部品組立装置である。本発明の構成は以下
の通りである。波長が可変であって有限の消光比を持っ
た光を出射する光源3と,この光を入射端31に入射す
る偏波面保存光ファイバ1の出射端30に所定の角度で
取り付けられた光部品2を支持する手段8と,取り付け
るべき検光子5を支持する手段8に偏波面保存光ファイ
バ1の軸の周りに且つ回転可能に取り付ける手段4と,
光源3からの光の波長を変化させ,かつ偏波面保存光フ
ァイバ1の軸の周に検光子5を回転させながら支持する
手段8と検光子5を通過した光の強度を測定する測定装
置6と,この測定装置6の出力信号に基づいて支持する
手段8に検光子5を所望の角度で固定する手段7とを含
む光部品組立装置である。ここでも請求項6と同様に回
転可能に取り付ける手段4とは検光子の外部構造をい
う。ここで,光は検光子5の角度に依存した強度変調を
受けており,検光子5の角度が偏波面保存光ファイバ1
の偏波面保存主軸と完全に一致した時にのみ強度変調が
見られない。
The invention described in claim 7 is an optical component assembling apparatus which also utilizes the above phenomenon. The structure of the present invention is as follows. A light source 3 that emits light having a finite extinction ratio and a variable wavelength, and an optical component attached at a predetermined angle to an emission end 30 of a polarization-maintaining optical fiber 1 that injects this light into an incident end 31. 2, a means 8 for supporting 2 and a means 4 for rotatably mounting around the axis of the polarization-maintaining optical fiber 1 on the means 8 for supporting the analyzer 5 to be mounted,
Means 8 for changing the wavelength of the light from the light source 3 and supporting the analyzer 5 while rotating it around the axis of the polarization-maintaining optical fiber 1 and a measuring device 6 for measuring the intensity of the light passing through the analyzer 5. And the means 7 for fixing the analyzer 5 at a desired angle to the means 8 for supporting it based on the output signal of the measuring device 6. Here again, as in claim 6, the rotatably mounting means 4 refers to the external structure of the analyzer. Here, the light is intensity-modulated depending on the angle of the analyzer 5, and the angle of the analyzer 5 changes depending on the angle.
Intensity modulation is not observed only when it is perfectly aligned with the polarization-maintaining principal axis of.

【0022】請求項8に記載の発明は,同じく上記現象
を利用した偏波面保存光ファイバ1と光部品2との相対
角度を検出する検出装置である。本発明の構成は以下の
通りである。波長が可変であって有限の消光比を持った
光を出射する光源3と,この光を入射端31に入射する
偏波面保存光ファイバ1の出射端30に取り付けるべき
光部品2に所定の角度で取り付けられた検光子5と,光
源3からの光の波長を変化させ,かつ光部品2及び検光
子5を通過した光の強度を測定する測定装置6とを含む
偏波面保存光ファイバ1と光部品2との相対角度を検出
する検出装置である。本発明では,請求項6記載の発明
とは異なり,偏波面保存光ファイバ1と光部品2とを正
確に位置合わせを行うことを目的とせず,光部品2が偏
波面保存光ファイバ1の偏波面保存主軸に対してどの程
度ずれているかを検出することを目的とした装置であ
る。したがって,検光子5を偏波面保存光ファイバ1の
軸の周りを回転させながら強度を測定する必要はない。
The invention described in claim 8 is a detecting device for detecting the relative angle between the polarization-maintaining optical fiber 1 and the optical component 2, which also utilizes the above phenomenon. The structure of the present invention is as follows. A light source 3 that emits light having a finite extinction ratio with a variable wavelength, and an optical component 2 that should be attached to an emission end 30 of a polarization-maintaining optical fiber 1 that makes this light incident on an incident end 31 have a predetermined angle. A polarization-maintaining optical fiber 1 including an analyzer 5 attached in 1 and a measuring device 6 that changes the wavelength of light from a light source 3 and measures the intensity of light that has passed through the optical component 2 and the analyzer 5. It is a detection device that detects a relative angle with respect to the optical component 2. Unlike the invention according to claim 6, the present invention does not aim at accurately aligning the polarization-maintaining optical fiber 1 and the optical component 2, and the optical component 2 is a polarization-maintaining optical fiber 1. This is a device for detecting how much the wavefront-preserving main axis is deviated. Therefore, it is not necessary to measure the intensity while rotating the analyzer 5 around the axis of the polarization-maintaining optical fiber 1.

【0023】請求項9に記載の発明は,同じく上記現象
を利用した支持する手段8と検光子5との相対角度を検
出する検出装置である。本発明の構成は以下の通りであ
る。波長が可変であって有限の消光比を持った光を出射
する光源3と,この光を入射端31に入射する偏波面保
存光ファイバ1の出射端30であって,且つ偏波面保存
光ファイバ1の軸の周りに所定の角度で取り付けた光部
品2を支持する手段8に取り付けられた検光子5と,光
源3からの光の波長を変化させ,かつ支持する手段8と
検光子5とを通過した光の強度を測定する測定装置6と
を含む光部品を支持する手段8と検光子5との相対角度
を検出する検出装置である。本発明では,請求項6記載
の発明とは異なり,支持する手段8と検光子5との位置
合わせを行うことを目的とせず,支持する手段8と検光
子5とが偏波面保存光ファイバ1の偏波面保存主軸に対
してどの程度ずれているかを検出することを目的とした
装置である。したがって,検光子5を偏波面保存光ファ
イバ1の軸の周りを回転させながら強度を測定する必要
はない。
The invention described in claim 9 is the detection device for detecting the relative angle between the supporting means 8 and the analyzer 5, which also utilizes the above phenomenon. The structure of the present invention is as follows. A light source 3 that emits light having a finite extinction ratio with a variable wavelength, and an emission end 30 of a polarization-maintaining optical fiber 1 that enters this light into an incident end 31, and a polarization-maintaining optical fiber An analyzer 5 attached to the means 8 for supporting the optical component 2 attached at a predetermined angle around the axis of 1, and a means 8 for changing and supporting the wavelength of the light from the light source 3 and the analyzer 5. This is a detection device for detecting the relative angle between the analyzer 8 and the means 8 for supporting the optical component, including the measurement device 6 for measuring the intensity of the light passing through. In the present invention, unlike the invention described in claim 6, the supporting means 8 and the analyzer 5 are not aimed at aligning the supporting means 8 and the analyzer 5, and the supporting means 8 and the analyzer 5 have the polarization-maintaining optical fiber 1 This device is intended to detect the degree of deviation from the polarization-maintaining principal axis of. Therefore, it is not necessary to measure the intensity while rotating the analyzer 5 around the axis of the polarization-maintaining optical fiber 1.

【0024】請求項10に記載の発明は,同じく上記現
象を利用した偏波面保存光ファイバ1の特性測定装置で
ある。本発明の構成は以下通りである。波長が可変であ
って有限の消光比を持った光を出射する光源3と,この
光を入射端31に入射する偏波面保存光ファイバ1の他
端30に所定の角度で取り付けられた検光子5と,光源
3からの光の波長を変化させ,かつ検光子5を通過した
光の強度を測定する測定装置6とを含む偏波面保存光フ
ァイバ1の特性測定装置である。本発明では,請求項6
に記載の発明とは異なり,偏波面保存光ファイバ1から
出射された光を検光子5で受けて,波長の変化による光
の強度の変化から偏波面保存光ファイバ1の特性を測定
することを目的としているので,光部品2は不要であ
り,検光子5を偏波面保存光ファイバ1の軸の周りを回
転させながら強度を測定する必要はない。
A tenth aspect of the present invention is a device for measuring characteristics of a polarization-maintaining optical fiber 1 which also utilizes the above phenomenon. The configuration of the present invention is as follows. A light source 3 that emits light having a finite extinction ratio with a variable wavelength, and an analyzer attached at a predetermined angle to the other end 30 of the polarization-maintaining optical fiber 1 that makes this light enter an incident end 31. 5 is a characteristic measuring device for a polarization-maintaining optical fiber 1 including a measuring device 5 for changing the wavelength of light from the light source 3 and measuring the intensity of light passing through the analyzer 5. In the present invention, claim 6
Unlike the invention described in (1) above, the light emitted from the polarization-maintaining single-mode fiber 1 is received by the analyzer 5, and the characteristics of the polarization-maintaining single-mode fiber 1 are measured from the change in the intensity of the light due to the change in the wavelength. Since it is intended, the optical component 2 is unnecessary, and it is not necessary to measure the intensity while rotating the analyzer 5 around the axis of the polarization-maintaining optical fiber 1.

【0025】[0025]

【作用】次に、発明者が発見した原理について以下説明
する。本発明はすべてこの原理に基づくものである。
Next, the principle discovered by the inventor will be described below. The invention is all based on this principle.

【0026】まず,発明者は偏波面保存光ファイバ1を
用いたレーザ光の出力のモジュールにおいて、偏波消光
比(TE/TM)が波長の関数として周期的に変動する
こと、同一波長でも再現性が得られないことを発見し
た。続いて,発明者はこのような現象を後述する簡単な
計算モデルで再現し、一般的に偏波面保存光ファイバよ
り出射される光の偏波消光比は波長依存性を有すること
を明らかにした。偏波面保存主軸14と角度θiだけず
らして入射した時の出射光の出射端30での偏波方向を
示す角度をθO として,角度θO と、θO と90°をなす
方向との強度比を偏波消光比として計算した結果を図2
及び図3に示す。θiが0°からずれると当然出力側の
消光比も小さくなるが,θO が0°であれば常に一定の
値を取る。一方θO が0°からずれると消光比は波長の
関数として変動するようになり、特にθO がαに近い値
を取る時にはファイバ出力光の消光比がLD自体の消光
比を上回る値を取ることもある。また変動の原因である
δはB値やファイバ長の関数でもあるため、周囲温度の
変化やファイバにかかる応力などでも変化が生じ、変動
周期の位相がずれた様に見える。これを実際の測定デー
タに合うようにパラメータを設定し計算した例が図4で
ある。すなわち、偏波面保存光ファイバ1から出射され
る光の強度の偏波方向角度分布は、ファイバの偏波面保
存主軸14の方向以外ではB値や波長、ファイバ長の関
数として周期的に変動する。検光子5を用いて消光比を
測定する場合には、精確な角度制御を行わない限りこの
現象により消光比が変動してしまうのである。
First, in the module for outputting laser light using the polarization-maintaining optical fiber 1, the inventor has found that the polarization extinction ratio (TE / TM) fluctuates periodically as a function of wavelength, and reproduces even at the same wavelength. I found that I could not get sex. Subsequently, the inventor reproduced such a phenomenon by a simple calculation model described later, and revealed that the polarization extinction ratio of the light emitted from the polarization-maintaining optical fiber generally has wavelength dependence. . Let θ O be the angle indicating the polarization direction of the outgoing light at the outgoing end 30 when the light enters the polarization plane-maintaining axis 14 with an angle of θ i , and the intensity between the angle θ O and the direction forming 90 ° with θ O. Figure 2 shows the result of calculating the ratio as the polarization extinction ratio.
And shown in FIG. When θi deviates from 0 °, the extinction ratio on the output side naturally decreases, but when θ o is 0 °, it always takes a constant value. On the other hand, when θ O deviates from 0 °, the extinction ratio fluctuates as a function of wavelength. Especially when θ O takes a value close to α, the extinction ratio of the fiber output light takes a value exceeding the extinction ratio of the LD itself. Sometimes. Further, since δ which is the cause of the fluctuation is also a function of the B value and the fiber length, the fluctuation of the ambient temperature and the stress applied to the fiber cause a change, and the phase of the fluctuation cycle appears to be out of phase. FIG. 4 shows an example in which parameters are set and calculated so as to match actual measurement data. That is, the polarization direction angular distribution of the intensity of the light emitted from the polarization-maintaining optical fiber 1 periodically fluctuates as a function of the B value, the wavelength, and the fiber length except in the direction of the polarization-maintaining principal axis 14 of the fiber. When the extinction ratio is measured using the analyzer 5, this phenomenon causes the extinction ratio to fluctuate unless accurate angle control is performed.

【0027】以下,請求項1から請求項10までのすべ
てに共通する作用を図5を用いて説明する。ここで,説
明を簡単にするため,偏波面保存光ファイバ1及び検光
子5の消光比は無限大とし,それぞれにおける損失や端
面反射などは無視する。入射する光の消光比を以下の式
で定義する。
The operation common to all of claims 1 to 10 will be described below with reference to FIG. Here, in order to simplify the explanation, the extinction ratio of the polarization-maintaining optical fiber 1 and the analyzer 5 is set to infinity, and the loss and end face reflection in each are neglected. The extinction ratio of incident light is defined by the following formula.

【0028】[0028]

【数1】 [Equation 1]

【0029】この光が偏波面保存光ファイバ1に,偏波
面保存主軸14と角度θiだけずらして入射した時の出
射光の強度の偏波方向依存性は以下のようになる。
The polarization direction dependence of the intensity of the emitted light when this light is incident on the polarization-maintaining optical fiber 1 with an angle θi offset from the polarization-maintaining main axis 14 is as follows.

【0030】[0030]

【数2】 [Equation 2]

【0031】ここで図5に示すモデルではx軸,y軸は
偏波面保存光ファイバ1の偏波面保存主軸14に等し
い。Bは偏波面保存光ファイバ1の特性を表す固有の値
(複屈折率),Lはファイバ長,λは光の波長,θoは
出射端30での偏波方向を示す角度で,実際には検光子
の向きに相当する。損失0で無限の消光比が無限大の検
光子をθoの角度で設置した時の検光子を通過する光の
強度がP(θo)である。また,|H|≪|E|=1として
近似している。
In the model shown in FIG. 5, the x-axis and the y-axis are equal to the polarization-maintaining main axis 14 of the polarization-maintaining optical fiber 1. B is a peculiar value (birefringence index) representing the characteristics of the polarization-maintaining optical fiber 1, L is the fiber length, λ is the wavelength of light, and θo is the angle indicating the polarization direction at the exit end 30, which is actually Corresponds to the orientation of the analyzer. The intensity of light passing through the analyzer when an analyzer with zero loss and an infinite extinction ratio of infinity is installed at an angle of θo is P (θo). Moreover, it is approximated as | H | << | E | = 1.

【0032】この式を用いて計算した偏波面保存光ファ
イバ1から出射される光の強度の偏波角度分布の波長依
存性の例を図6(a)図6(b),図7(a)図7
(b)に示す。横軸は入射光の波長,縦軸は出射光の強
度で,θi=θo=0゜の時の強度を1として規格化した
相対値である。ここで入射光の消光比は40dB,ファ
イバ長は2m,偏波面保存光ファイバのB値は4.5×
10-4としてある。図7(a)は,図5における|E|
偏波面が偏波面保存光ファイバの偏波面保存主軸に完全
に一致した場合,図6(b)図7(a)図7(b)はそ
れぞれ入射光の偏波主面と偏波面保存光ファイバの偏波
面保存主軸が互いに2゜,5゜,10゜ずれている場合
の計算結果であり,それぞれ偏波面保存光ファイバの偏
波面保存軸に対して0゜,2゜,5゜,10゜傾いた検
光子を介して強度を測定したときに相当する。これらの
図から明らかなように,θo が0でない限り測定される
強度は波長の変動に伴って変動し,その変動の大きさは
θo が大きいほど大きい。θi が0゜の時は変動は小さ
いが,それでも完全になくなるわけではなく,偶然にθ
i が0゜になってしまった場合であってもこの方法は有
効である。θo がどんな角度であっても変動が生じなく
なるのはα=0,すなわちθi =0゜で,かつ入射光の
偏波消光比が無限大の時に限られ,現実にはあり得な
い。しかも偏波消光比が最も大きくとれる角度というの
は,決して偏波面保存光ファイバの偏波面保存主軸に固
定されているわけではなく,θo が0゜でない角度で最
も大きな強度が得られることもあり,単一の波長で偏波
消光比を頼りに角度合わせをすると,誤った角度に合わ
せてしまうことになる。このずれ角度はθi =0゜を中
心に最大で±αまでの値を取る。
Examples of the wavelength dependence of the polarization angle distribution of the intensity of the light emitted from the polarization-maintaining single-mode fiber 1 calculated using this equation are shown in FIGS. 6 (a), 6 (b), and 7 (a). ) Figure 7
It shows in (b). The horizontal axis represents the wavelength of the incident light, and the vertical axis represents the intensity of the emitted light, which is a relative value standardized with the intensity at θi = θo = 0 ° as 1. Here, the extinction ratio of the incident light is 40 dB, the fiber length is 2 m, and the B value of the polarization-maintaining optical fiber is 4.5 ×.
It is set as 10 -4 . FIG. 7A shows | E | in FIG.
When the planes of polarization completely match the planes of polarization-maintaining polarization-maintaining optical fiber, FIG. 6 (b), FIG. 7 (a), and FIG. The calculation results are obtained when the polarization-maintaining principal axes of the two are deviated from each other by 2 °, 5 °, and 10 °, respectively, and are 0 °, 2 °, 5 °, and 10 ° with respect to the polarization-preserving axes of the polarization-maintaining optical fiber. Corresponds to measuring the intensity via a tilted analyzer. As is clear from these figures, the measured intensity fluctuates with the wavelength fluctuation unless θo is 0, and the magnitude of the fluctuation increases as θo increases. When θi is 0 °, the fluctuation is small, but it does not completely disappear, and by chance θ
This method is effective even when i becomes 0 °. It is impossible for the angle θo to change regardless of the angle α = 0, that is, θi = 0 °, and when the polarization extinction ratio of the incident light is infinite. Moreover, the angle at which the polarization extinction ratio can be maximized is not always fixed to the polarization-maintaining main axis of the polarization-maintaining optical fiber, and the maximum intensity may be obtained when θo is not 0 °. However, if the angle is adjusted by relying on the polarization extinction ratio at a single wavelength, the wrong angle will be set. This deviation angle has a maximum value of ± α centering on θi = 0 °.

【0033】また,B値が偏波面保存光ファイバにかか
る応力や周囲温度の変動などによってわずかに変化した
場合,図6(a)図6(b),図7(a)図7(b)に
示した一連の周期的変動は,その周期の位相がずれたよ
うな特性になる。以上より,有限の偏波消光比を持ち周
波数変調された光を偏波面保存光ファイバの一端に入射
して,他端より出射された光を検光子を介して受光する
と,受光された光の強度は偏波面保存光ファイバの偏波
面保存主軸と検光子とのなす角度に依存した効率で強度
変調を受けており,偏波面保存光ファイバの偏波面保存
主軸と検光子とのなす角度が0°の時にのみ前記効率は
0となる。
Further, when the B value slightly changes due to the stress applied to the polarization-maintaining optical fiber, the fluctuation of the ambient temperature, etc., FIG. 6 (a) FIG. 6 (b), FIG. 7 (a) FIG. 7 (b) The series of periodic fluctuations shown in Figure 2 has the characteristic that the phases of the cycles are shifted. From the above, when the frequency-modulated light with a finite polarization extinction ratio is incident on one end of the polarization-maintaining optical fiber and the light emitted from the other end is received through the analyzer, the received light is The intensity is intensity-modulated with an efficiency that depends on the angle between the polarization-maintaining principal axis of the polarization-maintaining optical fiber and the analyzer, and the angle between the polarization-maintaining principal axis of the polarization-maintaining optical fiber and the analyzer is 0. The efficiency becomes 0 only when the angle is °.

【0034】[0034]

【実施例】図1(a)に本発明の全ての請求項に共通す
る実施例の構成を示す。まず,偏波面保存光ファイバ1
として,いわゆるパンダファイバを考えることにする。
以下、特に断りがないかぎりファイバ1と記載があれ
ば、偏波面保存光ファイバ1であるパンダファイバを意
味する。このパンダファイバは優れた偏波消光比特性と
低損失特性から,現在の偏波面保存光ファイバ1の主流
になりつつある。パンダファイバ16の断面形状を図8
に示す。破線15は検光子方向15を定めたものであ
る。コア11の両側にクラッド13を介在させてコア1
1に応力を与える応力付与部12を設けたもので,偏波
面保存主軸14はこれら3者が一列に並ぶ方向と,それ
と90゜をなす方向とである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A shows the configuration of an embodiment common to all claims of the present invention. First, polarization-maintaining optical fiber 1
Then, let us consider the so-called panda fiber.
Hereinafter, unless otherwise specified, the fiber 1 means a panda fiber that is the polarization-maintaining optical fiber 1. This panda fiber is becoming the mainstream of the current polarization-maintaining optical fiber 1 because of its excellent polarization extinction ratio characteristic and low loss characteristic. The cross-sectional shape of the panda fiber 16 is shown in FIG.
Shown in The broken line 15 defines the analyzer direction 15. The core 1 with the clad 13 interposed on both sides of the core 11
1 is provided with a stress applying portion 12 for applying stress, and the polarization-preserving main axis 14 is in a direction in which these three members are arranged in a line and a direction forming 90 ° with them.

【0035】次に,光部品2であるコネクタ2として,
現在広く使用されているSCコネクタ2を考えることと
する。以下、断りがないかぎりコネクタ2と記載があれ
ば、光部品2であるSCコネクタを意味する。SCコネ
クタ2は光の出射方向であるz軸に垂直な断面がほぼ長
方形をしており,長辺をなす2面のうちの片方に突起が
あって非対称な形状を形成している。
Next, as the connector 2 which is the optical component 2,
Consider the SC connector 2 which is widely used at present. Hereinafter, unless otherwise noted, the term “connector 2” means the SC connector which is the optical component 2. The SC connector 2 has a substantially rectangular cross section perpendicular to the z-axis which is the light emission direction, and has a projection on one of the two long sides to form an asymmetrical shape.

【0036】さらに,波長が可変であって有限な消光比
を持った光を出射する光源3(以下,波長可変光源3と
する。)としては,一般には外部共振器型とよばれる方
式の装置が広く使用されており,本発明においても使用
可能であるが,多電極型の分布帰還型半導体レーザ(以
下,DFB−LDという。)や多電極型の分布ブラッグ
反射型半導体レーザ(以下,DBR−LDという。)な
ども使用可能であり,本実施例では,波長可変光源3と
して,DBR−LDを考えることとする。多電極型のD
BR−LDや多電極型のDFB−LDは注入電流値によ
って波長が変わるので,波長シフトのスピードが早く,
測定が短時間で済むため作業性が良くなる。このため,
多数回の測定を繰り返して平均化して,精度を更に向上
させることも容易である。特に多電極型のDBR−LD
は発振波長と発振出力とを独立に制御しやすく,出力を
一定に保ったまま周波数変調のみを印加するのに適して
いる。
Further, as a light source 3 (hereinafter, referred to as a wavelength variable light source 3) that emits light having a tunable extinction ratio with a variable wavelength, a device generally called an external resonator type is used. Is widely used and can be used in the present invention, a multi-electrode type distributed feedback semiconductor laser (hereinafter, referred to as DFB-LD) and a multi-electrode distributed Bragg reflection semiconductor laser (hereinafter, DBR). -LD) is also usable, and in this embodiment, the DBR-LD is considered as the wavelength variable light source 3. Multi-electrode type D
In BR-LD and multi-electrode type DFB-LD, the wavelength changes depending on the injection current value, so the wavelength shift speed is fast,
Workability improves because measurement can be completed in a short time. For this reason,
It is easy to improve the accuracy further by averaging by repeating the measurement many times. Especially multi-electrode type DBR-LD
Is easy to control the oscillation wavelength and oscillation output independently, and is suitable for applying only frequency modulation while keeping the output constant.

【0037】(請求項1の発明の動作の実施例)まず,
上述の波長可変光源3を準備する。この波長可変光源3
は,波長が可変であるとともに,有限の消光比を持った
光を発生する。次に,ファイバ1の出射端30に,コネ
クタ2と検光子5とをファイバ1の周りに所定の角度で
取り付ける。このコネクタ2と検光子5とのファイバ1
の出射端30への取付けは具体的には以下の通りであ
る。すなわち,取り付けられる場所はファイバ1の導波
軸上であること,ファイバ1の伝搬光がコネクタ2,検
光子5の順に通過する位置関係にあること,さらにこの
ファイバ1の導波軸とコネクタ2及び検光子5の光軸と
が同一であることが必要である。またコネクタ2と検光
子5とは支持する手段8を介して正確に角度制御されて
いることが前提である。その後,波長可変光源3からの
光をファイバ1の入射端31に入射させる。波長可変光
源3より出射された光はファイバ1内を伝搬して出射端
30に至る。さらに,波長可変光源3からの光の波長を
変化させ,ファイバ1の軸の周りにコネクタ2及び検光
子5を回転させながらコネクタ2及び検光子5を通過し
た光の強度を測定装置6を構成する受光器60で測定す
る。ここで,軸の周りにとは,具体的には,ファイバ1
の導波軸を中心に回転させることを意味する。また,検
光子5はファイバ1の出射端30から出射される光を受
け,検光子5の向きと一致する向きの偏波面を持つ光の
みを透過させる。そして,最後に受光器60で検出した
光の強度に基づいてファイバ1の出射端30にコネクタ
2を所望の角度で固定する。
(Embodiment of the operation of the invention of claim 1) First,
The variable wavelength light source 3 described above is prepared. This variable wavelength light source 3
Generates light with a finite extinction ratio as well as a variable wavelength. Next, the connector 2 and the analyzer 5 are attached to the emitting end 30 of the fiber 1 around the fiber 1 at a predetermined angle. Fiber 1 of this connector 2 and analyzer 5
Specifically, the attachment to the emission end 30 is as follows. That is, the place of attachment is on the waveguide axis of the fiber 1, the propagating light of the fiber 1 is in a positional relationship of passing through the connector 2 and the analyzer 5 in this order, and the waveguide axis of the fiber 1 and the connector 2 are arranged. And the optical axis of the analyzer 5 must be the same. Further, it is premised that the angle between the connector 2 and the analyzer 5 is accurately controlled via the supporting means 8. Then, the light from the variable wavelength light source 3 is made incident on the incident end 31 of the fiber 1. The light emitted from the variable wavelength light source 3 propagates in the fiber 1 and reaches the emission end 30. Further, the measuring device 6 is configured to change the wavelength of the light from the variable wavelength light source 3 and rotate the connector 2 and the analyzer 5 around the axis of the fiber 1 while measuring the intensity of the light passing through the connector 2 and the analyzer 5. Measurement is performed by the light receiver 60. Here, around the axis is specifically the fiber 1
This means rotating around the waveguide axis of. Further, the analyzer 5 receives the light emitted from the emitting end 30 of the fiber 1 and transmits only the light having the polarization plane in the direction that coincides with the direction of the analyzer 5. Finally, the connector 2 is fixed to the emitting end 30 of the fiber 1 at a desired angle based on the intensity of light detected by the light receiver 60.

【0038】波長可変光源3で入射光の波長を変化させ
ると,作用で述べた原理により,検光子5を通過した光
の強度は波長に関する周期的変動を示す。検光子5の角
度を変えると強度の変動の振幅も変わり,入射光の全強
度が波長の変化に対して常に一定であるならば,ある角
度で変動が全く検出されなくなる。この時,検光子5の
角度とファイバ1の偏波面保存主軸14との角度が一致
していることになり,この位置で光部品2をファイバ1
の出射端30に接着剤を流し込むなどして固定すればよ
い。
When the wavelength of the incident light is changed by the variable wavelength light source 3, the intensity of the light passing through the analyzer 5 exhibits a periodic fluctuation with respect to the wavelength according to the principle described in the operation. When the angle of the analyzer 5 is changed, the amplitude of the fluctuation of the intensity also changes, and if the total intensity of the incident light is always constant with respect to the change of the wavelength, the fluctuation cannot be detected at a certain angle at all. At this time, the angle of the analyzer 5 and the angle of the polarization-maintaining main axis 14 of the fiber 1 are the same, and the optical component 2 is connected to the fiber 1 at this position.
It may be fixed by pouring an adhesive to the emitting end 30 of the.

【0039】以上は主に手動によって操作する場合の例
であるが,図1(b)に示すように,データ処理・装置
制御手段10及び検光子角度制御手段9を利用すること
も可能である。すなわち,データ処理・装置制御手段1
0は波長可変光源3へ波長制御信号を送り,受光器60
から送られる強度の値を読みとって波長と強度の変動の
振幅を求める。次いで検光子角度制御手段9へ検光子5
の角度制御信号を送り,再び強度の変動の振幅を求め
る。この操作を繰り返し,最も強度の変動の振幅が小さ
くなる角度でコネクタ2を固定すればよい。
Although the above is an example of the case of manual operation, it is also possible to use the data processing / device control means 10 and the analyzer angle control means 9 as shown in FIG. 1 (b). . That is, the data processing / device control means 1
0 sends a wavelength control signal to the wavelength tunable light source 3, and the light receiver 60
The intensity value sent from is read to determine the amplitude of the wavelength and intensity variations. Next, the analyzer 5 is moved to the analyzer angle control means 9.
The angle control signal of is sent and the amplitude of intensity fluctuation is calculated again. By repeating this operation, the connector 2 may be fixed at an angle at which the amplitude of the fluctuation of the intensity becomes the smallest.

【0040】さらに,波長可変光源3に多電極型のDF
B−LDや多電極型のDBR−LDを用いた場合はμ秒
以下の高速な波長シフトが可能であり,本例のような自
動制御であれば角度合わせは極めて高速に行うことが可
能となる。
Further, a multi-electrode type DF is used for the variable wavelength light source 3.
When a B-LD or a multi-electrode DBR-LD is used, a wavelength shift of μ seconds or less is possible at a high speed, and the angle control can be performed at an extremely high speed by the automatic control as in this example. Become.

【0041】(請求項2の実施例)次に請求項2に記載
の、光部品を支持する手段8と検光子5との角度合わせ
の方法について実施例を説明する。支持する手段8はS
Cコネクタ用ホルダとする。以下,断りがないかぎりホ
ルダ8と記載があれば、支持する手段8であるSCコネ
クタ用ホルダを意味する。SCコネクタはもう一つの主
流であるFCコネクタと異なりホルダに嵌入させるだけ
で固定され、導波軸を中心とした回転の自由度がほとん
どなく、偏波面保存光ファイバには特に適しているが、
その分ホルダの取付角度の制御に精度が要求される。本
実施例は、ファイバ1とそのファイバ1に精度良く固定
されたコネクタ2を利用して、検光子5と検光子5に固
定して付属させるホルダ8の角度合わせに関するもので
ある。まず一端に精度良く固定されたコネクタ2を備え
たファイバ1を用意し、取り付けるべきホルダ8にコネ
クタ2を嵌入させて保持する。この状態のまま検光子5
の光入射位置に回転可能に仮留めし、ファイバ1の他端
から有限の消光比を持った波長可変光源3の光を入射さ
せる。ファイバ1はできるだけ固定する。そしてファイ
バ1中を伝搬して一端に至りコネクタ2及びホルダ8を
通過した後,検光子5を通してある特定の偏波面を持つ
成分のみとなった光の強度を受光器60で検出する。次
いで波長を変化させながら、光の強度がどのように変化
するかを観察する。検光子5の向きとファイバ1の偏波
面保存主軸14との向きが一致しないときは検出される
光の強度が波長に依存した周期的変動を示す。ここでは
ファイバ1の偏波面保存主軸14とコネクタ2の向きは
完全に一致していると見なせるので、コネクタ2によっ
て角度が保持されているホルダ8もまたファイバ1の偏
波面保存主軸14とは角度があっている。従って検光子
5を回転し、光の強度が変動しなくなる角度を探して、
その位置でホルダ8を固定すれば、検光子5とホルダ8
との角度は極めて精度良く取り付けることが出来る。こ
れらの段階は、請求項1で説明したと同じく、回転を制
御するステップモータやパーソナルコンピュータ等の演
算・制御手段を利用すれば、高速で且つ正確な作業が可
能となる。また偏波消光比測定モジュ−ル等のように検
光子5をホルダ8に対して自由に回転させる装置で、そ
の絶対角度基準とホルダ8の向きとを精度良く合わせる
必要がある用途では、上記の手順よりも、以下の手順の
方が簡便である。すなわち、ある一つの波長に対して検
光子5を回転させて数式2のP(θo)に相当する強度
の検光子角度依存性を測定し、次いで別の波長でもう一
度検光子5を回転させて同じく光の強度を測定する。横
軸を検光子5の暫定角度、縦軸を強度にとったグラフを
描いて2つの曲線の交点を探せば、その暫定角度が検光
子の真の角度を示している。従ってその向きを0゜とし
て角度目盛を表示すれば良い。さらに、偏光子などを用
いてファイバ1の入射端側でも入射角度を制御するよう
にすれば、なお精度を上げることができる。
(Embodiment of Claim 2) Next, an embodiment of the method of aligning the angle between the means 8 for supporting the optical component and the analyzer 5 will be described. The means 8 for supporting is S
Use as a C connector holder. Hereinafter, unless stated otherwise, the term holder 8 means the SC connector holder that is the means 8 for supporting. Unlike another mainstream FC connector, the SC connector is fixed by simply inserting it into a holder and has almost no freedom of rotation around the waveguide axis, which makes it particularly suitable for polarization-maintaining optical fibers.
Therefore, accuracy is required to control the mounting angle of the holder. The present embodiment relates to the angle alignment of the analyzer 5 and the holder 8 fixedly attached to the analyzer 5 by using the fiber 1 and the connector 2 fixed to the fiber 1 with high accuracy. First, a fiber 1 having a connector 2 fixed at one end with high precision is prepared, and the connector 2 is fitted and held in a holder 8 to be attached. Analyzer 5 in this state
Tentatively rotatably fixed to the light incident position, and light from the variable wavelength light source 3 having a finite extinction ratio is incident from the other end of the fiber 1. The fiber 1 is fixed as much as possible. Then, after propagating in the fiber 1 to reach one end and passing through the connector 2 and the holder 8, the intensity of the light, which is only the component having a specific polarization plane through the analyzer 5, is detected by the photodetector 60. Then, while changing the wavelength, observe how the light intensity changes. When the direction of the analyzer 5 and the direction of the polarization-maintaining main axis 14 of the fiber 1 do not match, the intensity of the detected light shows a periodic fluctuation depending on the wavelength. Here, it can be considered that the polarization preserving main axis 14 of the fiber 1 and the connector 2 are completely in the same direction. Is correct. Therefore, rotate the analyzer 5 to find the angle at which the light intensity does not change,
If the holder 8 is fixed at that position, the analyzer 5 and the holder 8
The angle with can be attached with extremely high accuracy. As in the case of the first aspect, these steps can be performed at high speed and accurately by using arithmetic / control means such as a step motor for controlling the rotation or a personal computer. Further, in a device such as a polarization extinction ratio measurement module that freely rotates the analyzer 5 with respect to the holder 8, and in the application where the absolute angle reference and the orientation of the holder 8 need to be accurately matched, The following procedure is simpler than the procedure of. That is, the analyzer 5 is rotated with respect to a certain wavelength to measure the analyzer angle dependence of the intensity corresponding to P (θo) in Formula 2, and then the analyzer 5 is rotated again with another wavelength. Also measure the light intensity. Drawing a graph with the horizontal axis representing the tentative angle of the analyzer 5 and the vertical axis representing the intensity and searching for the intersection of the two curves, the tentative angle indicates the true angle of the analyzer. Therefore, the angle scale may be displayed with the direction set to 0 °. Furthermore, if the incident angle side of the fiber 1 is controlled by using a polarizer or the like, the accuracy can be further improved.

【0042】(請求項3の動作の実施例)次いで請求項
3の、偏波面保存光ファイバ1と光部品2の相対角度の
検出方法の実施例について述べる。本実施例において
は、ファイバ1の出射端30とコネクタ2とは同一光軸
上に且つ検出すべきある角度をもって取り付けられてお
り、コネクタ2を支持する手段8と検光子5とは正確に
角度制御されている。互いの位置関係は上述した請求項
1の実施例と同様である。有限の消光比を持った光はフ
ァイバ1を伝搬し、コネクタ2と検光子5とを順次通過
して、検光子5の角度によって決まるある特定の偏波面
を持った光のみが受光器60でその強度を検出される。
ここでファイバ1に入射する光の波長を変化させると、
受光器60で受光される光の強度は一般に波長の関数と
して周期的に変動する。その振幅は、入射した光の消光
比、光がファイバ1に入射するときの偏波面とファイバ
の偏波面保存主軸14との角度(前述したθi)、及び
主軸と検光子5との角度(前述したθo)とによって決
定される。これらのうちθoが0の時のみ数式2に従っ
て振幅が0になるため、検光子5とファイバ1の偏波面
保存主軸14との向きが合っていることがわかり、既に
把握している支持する手段8と検光子5とのなす角度か
らコネクタ2とファイバ1の偏波面保存主軸14とのな
す角度がわかる。さらにθiを自由に制御できるように
すれば、より精度の高い測定が可能になることも明らか
である。
(Example of Operation of Claim 3) Next, an example of a method of detecting the relative angle between the polarization-maintaining optical fiber 1 and the optical component 2 of Claim 3 will be described. In this embodiment, the output end 30 of the fiber 1 and the connector 2 are mounted on the same optical axis and at a certain angle to be detected, and the means 8 for supporting the connector 2 and the analyzer 5 are accurately angled. Controlled. The mutual positional relationship is similar to that of the embodiment of claim 1 described above. Light having a finite extinction ratio propagates through the fiber 1 and sequentially passes through the connector 2 and the analyzer 5, and only the light having a certain plane of polarization determined by the angle of the analyzer 5 is received by the photodetector 60. Its intensity is detected.
Here, if the wavelength of the light incident on the fiber 1 is changed,
The intensity of the light received by the light receiver 60 generally varies periodically as a function of wavelength. The amplitude is determined by the extinction ratio of the incident light, the angle between the polarization plane when the light enters the fiber 1 and the polarization-maintaining main axis 14 of the fiber (θi described above), and the angle between the main axis and the analyzer 5 (previously described). Θo) and the Of these, the amplitude becomes 0 according to the formula 2 only when θo is 0. Therefore, it can be seen that the analyzer 5 and the polarization-maintaining main axis 14 of the fiber 1 are aligned with each other, and the supporting means already known The angle formed by the connector 2 and the polarization-maintaining main axis 14 of the fiber 1 can be known from the angle formed by 8 and the analyzer 5. Further, if θi can be freely controlled, it is clear that more accurate measurement can be performed.

【0043】また本発明の思想に基づいて、波長を変え
るのでなく振幅をファイバの温度や応力の関数として、
さらにファイバ長の関数として自由に制御することが出
来れば、数式2に従って同様の現象を生じさせることも
可能である。
Based on the idea of the invention, instead of changing the wavelength, the amplitude is a function of the temperature and stress of the fiber,
Further, if it can be freely controlled as a function of the fiber length, it is possible to cause the same phenomenon according to Equation 2.

【0044】(請求項4の実施例)次に請求項4に記載
の、光部品を支持する手段8と検光子5との角度評価方
法について実施例を説明する。精度良く固定されたSC
コネクタを一端に有するPANDAファイバを用いて、検光
子に取り付けられたSCコネクタ用ホルダの角度を検出
するものとする。上記請求項Aの実施例と同じ手順を取
り、波長可変光源の光をファイバの他端から入射し、検
光子を通過した後の光の強度を受光器60で検出する。
波長の変化に対応した強度の変動が見られればホルダと
検光子の角度がずれていることがわかる。どの程度ずれ
ているかを見積もるには、入射側の角度を精確に制御す
るかあるいは入射角度を掃引させてやれば、数式2から
θoがわかり、θoが角度のずれの大きさを示している。
また偏波消光比測定モジュ−ル等の場合には、2つ以上
の波長に対して強度の検光子角度依存性を測定し、波長
が変わっても検出強度が変わらない角度が角度基準と合
っているかどうかを調べる。
(Embodiment of Claim 4) Next, an embodiment of an angle evaluation method between the means 8 for supporting the optical component and the analyzer 5 described in Claim 4 will be described. SC fixed accurately
The angle of the SC connector holder attached to the analyzer shall be detected using a PANDA fiber having a connector at one end. The same procedure as in the embodiment of claim A is performed, and the light of the variable wavelength light source is incident from the other end of the fiber, and the intensity of the light after passing through the analyzer is detected by the light receiver 60.
If the intensity changes corresponding to the wavelength change, the angle between the holder and the analyzer is deviated. In order to estimate the degree of deviation, if the angle on the incident side is accurately controlled or the incident angle is swept, then θo can be found from Equation 2, and θo indicates the magnitude of the angular deviation.
In the case of a polarization extinction ratio measurement module, etc., the dependence of the intensity on the analyzer angle is measured for two or more wavelengths, and the angle at which the detected intensity does not change even when the wavelength changes matches the angle reference. Find out if

【0045】(請求項5の動作の実施例)次に請求項5
に記載されている偏波面保存光ファイバ1の特性の測定
方法の実施例を説明する。ここでは特性を測定すべきフ
ァイバ1と検光子5はファイバ1の偏波面保存主軸14
と検光子5との角度が0にならないような角度で固定す
る。コネクタ2の有無は問わない。ファイバ1を伝搬し
た光が検光子を通過して受光器60で受光されるのは請
求項1及び2の実施例と同じである。入射光の波長を変
化させると検光子5を通過した光の出力が周期的に変化
するのも前述した通りであるが、本実施例においては波
長に対する出力の変動の周期に注目する。すなわち、偏
波面保存光ファイバ1の特性として最も重要なB値を知
るには、ファイバ長Lを精密に測定しておけば、上記出
力変動の1周期分の波長差を測定することでB値を精確
に知ることができる。これは前記波長差が、BとLの積
になっていることが前述の数式2より明らかだからであ
る。レーザの波長測定では既にフェムトメートル(10
-15 m)の精度が得られており、ファイバ長の測定精度
次第でB値の測定精度も向上させることができる。一
方、あるB値を持つことがわかっているファイバがあっ
て、そのファイバ長Lを測定したい場合も、上記方法で
BとLの積が求まれば、ファイバ長Lの値を知ることが
できる。
(Example of operation of claim 5) Next, claim 5
An example of the method for measuring the characteristics of the polarization-maintaining single-mode fiber 1 described in 1) will be described. Here, the fiber 1 and the analyzer 5 whose characteristics are to be measured are the polarization plane-maintaining spindle 14 of the fiber 1.
And the analyzer 5 are fixed at an angle such that they do not become zero. The presence or absence of the connector 2 does not matter. The light propagating through the fiber 1 passes through the analyzer and is received by the photodetector 60, which is the same as the first and second embodiments. As described above, when the wavelength of the incident light is changed, the output of the light passing through the analyzer 5 changes periodically, but in the present embodiment, attention is paid to the cycle of the output fluctuation with respect to the wavelength. That is, in order to know the most important B value as the characteristic of the polarization-maintaining single-mode fiber 1, if the fiber length L is precisely measured, the B value can be obtained by measuring the wavelength difference for one cycle of the output fluctuation. You can know exactly. This is because it is clear from Equation 2 above that the wavelength difference is the product of B and L. For laser wavelength measurement, the femtometer (10
The accuracy of -15 m) is obtained, and the measurement accuracy of the B value can be improved depending on the measurement accuracy of the fiber length. On the other hand, even if there is a fiber that is known to have a certain B value and it is desired to measure the fiber length L, the value of the fiber length L can be known if the product of B and L is obtained by the above method. .

【0046】(請求項6の実施例)次に、請求項6に記
載の光部品組立装置の実施例について説明する。構成は
請求項1に列記したものと同じである。波長可変光源3
から入射した光はファイバ1中を伝搬して、コネクタ
2、検光子5の順に通過し、検光子5の角度によって決
まるある偏波面を持つ光のみが検光子5を通過して受光
器60によって受光され、その強度が検出される。検光
子5にはホルダ8が精確な角度制御のもとに取り付けら
れ、ホルダ8で保持されたコネクタ2が検光子5と一体
になってファイバ1の導波軸を中心に回転できるように
なっている。そこで波長可変光源3の出射する光の波長
を変化させると、検出される強度は波長の関数として周
期的に変動する。この時はB値が温度や応力によって変
化しないよう、できるだけ固定して短時間に操作を行う
事が望ましい。波長可変光源3として多電極DBR−L
Dを用いれば、波長はLDの各電極に注入する電流の組
み合わせを変えることで出力とは独立に制御することが
でき、波長の連続掃引も可能で、さらに波長シフトも1
μ秒以内に完了することができるので、図6、図7に掲
げたデータを瞬時に測定することが可能である。検光子
5をある角度にしてこの測定を行い、その振幅を把握し
たら、次に検光子5をわずかに回転させて違う角度に設
定し、再び波長と出力の関係を調べる。この時振幅がよ
り大きくなっていたなら検光子5を逆方向に回転し、小
さくなっていたなら同じ方向にさらに回転させる。この
作業を繰り返すと、最終的に振幅が0になる角度に収束
する。これがθo=0゜の状態であり、この状態でファ
イバ1とコネクタ2の接合部に接着剤を注入すれば、フ
ァイバ1の偏波面保存主軸14とコネクタ2の方向とが
一致したコネクタ付きファイバが作製できる。一連の操
作は図1(b)に示すように、検光子5の回転を通信機
能付きのステップモータを使用し、受光器60及び波長
可変光源3も通信機能を介した制御が可能なものを使用
すれば、パーソナルコンピュータなどの演算・制御手段
を利用して、波長の設定を送信して光源を制御し、その
時の波長に対する受光器60からの光の強度信号を受信
して振幅を計算し、ステップモータを回転させて振幅の
変化を調べ、振幅が最小になるまでこれらの動作を繰り
返させて自動的に角度合わせを行うことも可能である。
(Embodiment of claim 6) Next, an embodiment of the optical component assembling apparatus according to claim 6 will be described. The configuration is the same as that listed in claim 1. Variable wavelength light source 3
The light incident from propagates through the fiber 1, passes through the connector 2 and the analyzer 5 in this order, and only light having a certain polarization plane determined by the angle of the analyzer 5 passes through the analyzer 5 and is received by the photodetector 60. The light is received and its intensity is detected. A holder 8 is attached to the analyzer 5 under precise angle control so that the connector 2 held by the holder 8 can be rotated together with the analyzer 5 about the waveguide axis of the fiber 1. ing. Therefore, when the wavelength of the light emitted from the variable wavelength light source 3 is changed, the detected intensity changes periodically as a function of the wavelength. At this time, it is desirable that the B value is fixed as much as possible and operated in a short time so that the B value does not change due to temperature or stress. Multi-electrode DBR-L as variable wavelength light source 3
If D is used, the wavelength can be controlled independently of the output by changing the combination of currents injected into the electrodes of the LD, continuous wavelength sweeping is possible, and the wavelength shift is 1
Since it can be completed within μ seconds, the data shown in FIGS. 6 and 7 can be instantaneously measured. This measurement is performed by setting the analyzer 5 at a certain angle, and when the amplitude is grasped, the analyzer 5 is then slightly rotated to set a different angle, and the relationship between the wavelength and the output is examined again. At this time, if the amplitude is larger, the analyzer 5 is rotated in the opposite direction, and if it is smaller, it is further rotated in the same direction. When this work is repeated, the angle finally converges to 0. This is the state of θo = 0 °, and if an adhesive is injected into the joint between the fiber 1 and the connector 2 in this state, a polarization-preserving main shaft 14 of the fiber 1 and a connector-attached fiber in which the directions of the connector 2 are aligned are obtained. Can be made. As shown in FIG. 1B, a series of operations uses a step motor with a communication function to rotate the analyzer 5, and the light receiver 60 and the wavelength tunable light source 3 can also be controlled through the communication function. If it is used, the calculation / control means such as a personal computer is used to transmit the setting of the wavelength to control the light source, receive the intensity signal of the light from the light receiver 60 for the wavelength at that time, and calculate the amplitude. It is also possible to rotate the step motor to check the change in the amplitude, and repeat these operations until the amplitude is minimized to automatically adjust the angle.

【0047】(請求項7の実施例)次に請求項7に記載
の、光部品を支持する手段8と検光子5とを角度制御良
く組み立てる装置について、実施例を説明する。構成は
請求項2に列記したものと同じである。すなわち、精度
良く固定されたコネクタ2を出射端30に有するファイ
バ1を取り付けるべきホルダ8に嵌入させて全体を固定
し、ホルダ8を検光子5に回転可能に仮留めする。つい
で波長可変光源3の光をファイバ1の入射端31から入
射し、検光子5を通過した光の強度が波長に対してどの
ように変動するかを観察して、波長に対する周期的な変
動がなくなる角度で検光子5とホルダ8とを固定する。
あるいは2つ以上のある波長に対して検光子5を回転さ
せ、検出された強度が等しくなる角度に合わせてホルダ
8を固定する。
(Embodiment of Claim 7) Next, an embodiment of an apparatus for assembling the optical component supporting means 8 and the analyzer 5 with good angle control will be described. The configuration is the same as that listed in claim 2. That is, the connector 2 fixed accurately is fitted into the holder 8 to which the fiber 1 having the emitting end 30 is to be attached to fix the whole, and the holder 8 is rotatably temporarily fixed to the analyzer 5. Then, the light of the variable wavelength light source 3 is made incident from the incident end 31 of the fiber 1, and it is observed how the intensity of the light passing through the analyzer 5 changes with respect to the wavelength. The analyzer 5 and the holder 8 are fixed at such an angle.
Alternatively, the analyzer 5 is rotated with respect to two or more certain wavelengths, and the holder 8 is fixed according to the angle at which the detected intensities become equal.

【0048】(請求項8の実施例)次に請求項8に記載
の偏波面保存光ファイバ1と光部品2の角度評価装置の
例について述べる。主たる構成要件は請求項3に挙げた
ものと等しい。ただし本例ではファイバ1の入射端31
から波長可変光源3の光を入射して、出力端30に取り
付けられたコネクタ2とファイバ1との偏波面保存主軸
14との角度ズレを評価するものとする。検光子5には
正確に角度制御されたホルダ8が取り付けられており、
このホルダ8に保持されたコネクタ2は検光子5との角
度と正確に一致しているものとする。波長可変光源3か
ら入射された光は、検光子5によってある特定の偏波面
を持った光のみが受光器60によって受光され、その強
度が検出される。波長可変光源3を制御して波長を変え
ると、検出される光の強度が変化し、波長の関数として
周期的に変動することは前述の通りである。変動の振幅
が0であればファイバの偏波面保存主軸14とコネクタ
2との向きとは完全に一致していることがわかり、0で
なければずれていることになる。ずれの大きさを見積も
るには、検光子5とホルダ8との角度を正確な制御の下
で変化させ、振幅が0になる角度を探し、元の角度との
差を調べればそれが偏波面保存主軸14とコネクタ2と
のズレを示している。また波長可変光源3の入射端31
での光の偏波方向とファイバ1との偏波面保存主軸14
の方向との角度を回転微動台などにより制御して、θi
を掃引することでもθoを見積もることができる。両者
を組み合わせればより誤差の少ない正確な測定が可能と
なる。また,いずれの方法にしても、回転部を通信機能
を有するステップモータで制御し、波長可変光源3や受
光器60も通信機能を有するものを使用してパーソナル
コンピュータ等の演算・制御手段でこれらを制御すれ
ば、高速で精確な作業が可能となることは言うまでもな
い。
(Embodiment of claim 8) Next, an example of an angle evaluation apparatus for the polarization-maintaining optical fiber 1 and the optical component 2 according to claim 8 will be described. The main constituent elements are the same as those recited in claim 3. However, in this example, the incident end 31 of the fiber 1 is
The light of the variable wavelength light source 3 is incident from the above, and the angular deviation between the connector 2 attached to the output end 30 and the polarization preserving main axis 14 of the fiber 1 is evaluated. A holder 8 whose angle is accurately controlled is attached to the analyzer 5,
It is assumed that the connector 2 held by the holder 8 exactly matches the angle with the analyzer 5. Of the light incident from the variable wavelength light source 3, only light having a specific polarization plane is received by the light receiver 60 by the analyzer 5, and the intensity thereof is detected. As described above, when the wavelength tunable light source 3 is controlled to change the wavelength, the intensity of the detected light changes and the light intensity periodically changes as a function of the wavelength. If the amplitude of the fluctuation is 0, it can be seen that the polarization preserving main axis 14 of the fiber and the direction of the connector 2 are completely the same, and if they are not 0, they are deviated. In order to estimate the magnitude of the deviation, the angle between the analyzer 5 and the holder 8 is changed under precise control, the angle at which the amplitude becomes 0 is searched for, and the difference from the original angle is checked to determine the polarization plane. The misalignment between the storage spindle 14 and the connector 2 is shown. Further, the incident end 31 of the variable wavelength light source 3
Polarization plane preservation spindle 14 between the polarization direction of light and the fiber 1
The angle with the direction of
Θo can also be estimated by sweeping. If both are combined, accurate measurement with less error becomes possible. In either method, the rotating unit is controlled by a step motor having a communication function, and the variable wavelength light source 3 and the light receiver 60 also have a communication function. It is needless to say that if is controlled, high-speed and accurate work can be performed.

【0049】(請求項9の実施例)次に請求項9に記載
の、光部品を支持する手段8と検光子5との取付角度の
評価装置について実施例を説明する。構成は請求項4に
列記したものと同じである。すなわち、精度良く固定さ
れたコネクタ2を出射端30に有するファイバ1を評価
すべきホルダ8に嵌入させて、波長可変光源3の光をフ
ァイバ1の入射端31から入射し、検光子5を通過した
光の強度が波長に対してどのように変動するかを観察し
て、波長に対する周期的な変動がなければ角度は合って
いるし、変動があれば角度はずれている。ずれの大きさ
は入射側の角度を精確に把握するか、入射角度を掃引す
ることで前述の数式2による計算から見積もることがで
きる。あるいは2つ以上の波長の光に対して検光子5の
角度を掃引し、波長が異なっても検出強度が変わらない
角度を絶対基準としてずれを求める。
(Embodiment of Claim 9) Next, an embodiment of the apparatus for evaluating the mounting angle between the means 8 for supporting the optical component and the analyzer 5 will be described. The configuration is the same as that listed in claim 4. That is, the fiber 1 having the connector 2 which is fixed with high precision at the emitting end 30 is fitted into the holder 8 to be evaluated, and the light of the tunable light source 3 enters from the incident end 31 of the fiber 1 and passes through the analyzer 5. Observing how the intensity of the light fluctuates with respect to the wavelength, the angles are correct if there is no periodic fluctuation with respect to the wavelength, and the angles are deviated if there is fluctuation. The magnitude of the deviation can be estimated from the calculation by the above-mentioned formula 2 by accurately grasping the angle on the incident side or by sweeping the incident angle. Alternatively, the angle of the analyzer 5 is swept with respect to light of two or more wavelengths, and the deviation is obtained with an absolute reference being an angle at which the detection intensity does not change even if the wavelengths differ.

【0050】(請求項10の実施例)次に請求項10に
記載の偏波面保存光ファイバの特性評価装置の例につい
て述べる。本例ではコネクタ2は無いものとして説明す
る。構成は請求項2に列記したものとほぼ等しい。ファ
イバ1の出射端30は検光子5に対して回転可能に保持
され、ファイバ1からの出射光が検光子5に入射するよ
うに配置する。ただしファイバ1を回転させるのはB値
の揺らぎを生じさせるおそれがあるため好ましくなく、
できるだけ制御良く回転可能な検光子を用いる方がよ
い。前述したように、入射光の波長を変化させると、検
光子5を通過した光の強度は波長に対して周期的に変動
する。波長をできるだけ細かいステップで変化させ、フ
ァイバ長Lが精確にわかっているファイバに関して変動
の1周期がどのくらいの波長差になるかを調べれば、前
述の数式2よりB値が計算で求められる。測定精度を高
めるには検光子5を回転させて、できるだけ強度変動の
振幅が大きくなる角度に検光子を合わせて測定すればよ
い。またパーソナルコンピュータ等の演算手段を利用す
れば、得られたデータを関数に回帰させてより信頼度の
高い数値を得ることもできる。またB値の明かなファイ
バに関してファイバ長Lを測定するのも、同じ構成と数
式から可能であることは言うまでもない。
(Embodiment of claim 10) Next, an example of a characteristic evaluation device for a polarization-maintaining optical fiber according to claim 10 will be described. In this example, it is assumed that the connector 2 is not provided. The configuration is almost the same as that listed in claim 2. The emitting end 30 of the fiber 1 is rotatably held with respect to the analyzer 5, and is arranged so that the emitted light from the fiber 1 enters the analyzer 5. However, rotating the fiber 1 is not preferable because it may cause fluctuations in the B value.
It is better to use an analyzer that can be rotated with as much control as possible. As described above, when the wavelength of the incident light is changed, the intensity of the light passing through the analyzer 5 changes periodically with respect to the wavelength. If the wavelength is changed in the finest steps possible and the amount of wavelength difference in one period of fluctuation is obtained with respect to the fiber whose fiber length L is accurately known, the B value can be calculated by the above-mentioned formula 2. In order to improve the measurement accuracy, the analyzer 5 may be rotated and the analyzer may be adjusted to an angle at which the amplitude of the intensity fluctuation is as large as possible. Further, by using an arithmetic means such as a personal computer, it is possible to regress the obtained data into a function to obtain a more reliable numerical value. It goes without saying that the fiber length L of a fiber having a clear B value can be measured with the same configuration and formula.

【0051】[0051]

【発明の効果】本発明の発明者が発見した偏波面保存光
ファイバにおける波長と出射される光の強度との関係を
用いることにより以下の効果が得られた。第1に,偏波
面保存光ファイバの偏波面保存主軸と光部品の取付角度
ズレが光の強度の変動という数値で定量的に把握するこ
とが出来るようになり,精度の良い取付が再現性良く行
えるようになった。また装置全体を自動制御として作業
を迅速かつ簡便に行うことも可能となった。第2に,偏
波面保存光ファイバと光部品の取付け角度を正確に把握
することができるようになった。第3に,偏波面保存光
ファイバの特性(B値、長さ)を短時間に精度良く、且
つ容易に自動化できる方法で測定できるようになった。
The following effects can be obtained by using the relationship between the wavelength and the intensity of emitted light in the polarization-maintaining optical fiber discovered by the inventor of the present invention. First, it becomes possible to quantitatively grasp the deviation of the mounting angle between the polarization-maintaining main axis of the polarization-maintaining optical fiber and the optical component by the numerical value of the fluctuation of the light intensity, and the accurate mounting can be performed with good reproducibility. I can do it now. In addition, it became possible to perform the work quickly and easily by automatically controlling the entire device. Secondly, it became possible to accurately grasp the attachment angle between the polarization-maintaining optical fiber and the optical component. Thirdly, it has become possible to measure the characteristics (B value, length) of the polarization-maintaining optical fiber in a short time with high accuracy and by a method that can be easily automated.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の構成を示す図である。FIG. 1 is a diagram showing a configuration of the present invention.

【図2】 TE/TMのθi依存性を示す図である。FIG. 2 is a diagram showing the dependence of TE / TM on θi.

【図3】 TE/TMのθo依存性を示す図である。FIG. 3 is a diagram showing θo dependence of TE / TM.

【図4】 実測データと計算値の比較を示す図である。FIG. 4 is a diagram showing comparison between measured data and calculated values.

【図5】 本発明の作用を説明する計算モデル図であ
る。
FIG. 5 is a calculation model diagram for explaining the operation of the present invention.

【図6】 本発明の作用を説明する計算結果図である。FIG. 6 is a calculation result diagram illustrating the operation of the present invention.

【図7】 本発明の作用を説明する計算結果図である。FIG. 7 is a calculation result diagram illustrating the operation of the present invention.

【図8】 SCコネクタとパンダファイバの概略図であ
る。
FIG. 8 is a schematic diagram of an SC connector and a panda fiber.

【符号の説明】[Explanation of symbols]

1 偏波面保存光ファイバ。 2 光部品。 3 波長可変光源。 4 回転可能に取り付ける手段。 5 検光子。 6 測定装置。 7 所望の角度で固定する手段。 8 支持する手段。 9 検光子角度制御手段。 10 データ処理・装置制御手段。 11 コア。 12 応力付与部。 13 クラッド。 14 偏波面保存主軸。 15 検光子方向。 16 パンダファイバ。 30 出射端。 31 入射端。 60 受光器。 1 Polarization-maintaining optical fiber. 2 Optical parts. 3 Wavelength variable light source. 4 Rotating means. 5 Analyzer. 6 Measuring device. 7 Means for fixing at a desired angle. 8. Supporting means. 9 Analyzer angle control means. 10 Data processing / device control means. 11 cores. 12 Stress applying part. 13 Clad. 14 Polarization preservation axis. 15 Analyzer direction. 16 panda fiber. 30 Emitting end. 31 Entrance end. 60 Light receiver.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】波長が可変であって有限の消光比を持った
光を発生する光源を準備する段階と,偏波面保存光ファ
イバの一端に且つ該偏波面保存光ファイバの軸の周りに
取り付けるべき光部品と検光子とを所定の角度で保持す
るとともに回転可能に取り付ける段階と,前記光源から
の光を前記偏波面保存光ファイバの他端に入射させる段
階と,前記光源からの光の波長を変化させ,かつ前記偏
波面保存光ファイバの軸の周りに前記光部品及び検光子
を回転させながら前記光部品及び前記検光子を通過した
光の強度を測定する段階と,前記光の強度に基づいて前
記偏波面保存光ファイバの一端に前記光部品を所望の角
度で固定する段階とを含む光部品の組立方法。
1. A step of preparing a light source for generating light having a finite extinction ratio with a variable wavelength, and mounting the light source on one end of a polarization-maintaining optical fiber and around the axis of the polarization-maintaining optical fiber. Holding the optical component and the analyzer at a predetermined angle and rotatably mounting them, injecting the light from the light source into the other end of the polarization-maintaining optical fiber, and the wavelength of the light from the light source. And measuring the intensity of light that has passed through the optical component and the analyzer while rotating the optical component and the analyzer about the axis of the polarization-maintaining optical fiber, and Fixing the optical component to one end of the polarization-maintaining optical fiber at a desired angle based on the above method.
【請求項2】波長が可変であって有限の消光比を持った
光を発生する光源を準備する段階と,偏波面保存光ファ
イバの一端に且つ該偏波面保存光ファイバの軸の周りに
光部品を支持する手段を該偏波面保存光ファイバと所定
の角度で保持しつつ取り付けるとともに,該支持する手
段を介して取り付けるべき検光子を前記偏波面保存光フ
ァイバの軸の周りに回転可能に取り付ける段階と,前記
光源からの光を前記偏波面保存光ファイバの他端に入射
させる段階と,前記光源からの光の波長を変化させ,か
つ前記偏波面保存光ファイバの軸の周りに前記検光子を
回転させながら前記支持する手段及び前記検光子を通過
した光の強度を測定する段階と,前記光の強度に基づい
て前記支持する手段に前記検光子を所望の角度で固定す
る段階とを含む光部品の組立方法。
2. A step of preparing a light source for generating light having a finite extinction ratio and having a variable wavelength, and a light source at one end of the polarization-maintaining optical fiber and around the axis of the polarization-maintaining optical fiber. The means for supporting the component is attached while being held at a predetermined angle with the polarization-maintaining optical fiber, and the analyzer to be attached via the supporting means is rotatably attached around the axis of the polarization-maintaining optical fiber. A step of causing light from the light source to enter the other end of the polarization-maintaining optical fiber; a wavelength of the light from the light source being changed; and the analyzer around the axis of the polarization-maintaining optical fiber. Measuring the intensity of the light that has passed through the supporting means and the analyzer while rotating, and fixing the analyzer to the supporting means at a desired angle based on the intensity of the light. light A method of assembling the goods.
【請求項3】波長が可変であって有限の消光比を持った
光を発生する光源を準備する段階と,偏波面保存光ファ
イバの一端に且つ該偏波面保存光ファイバの軸の周りに
光部品と検光子とを所定の角度で保持するとともに取り
付ける段階と,前記光源からの光を前記偏波面保存光フ
ァイバの他端に入射させる段階と,前記光源からの光の
波長を変化させるとともに前記光部品及び前記検光子を
通過した光の強度を測定する段階とを含む偏波面保存光
ファイバと光部品との相対角度を検出する方法。
3. A step of preparing a light source for generating light having a tunable extinction ratio and having a variable wavelength, and a light source at one end of the polarization-maintaining optical fiber and around the axis of the polarization-maintaining optical fiber. Holding and attaching the component and the analyzer at a predetermined angle, causing the light from the light source to enter the other end of the polarization-maintaining optical fiber, and changing the wavelength of the light from the light source. A method of detecting a relative angle between a polarization-maintaining optical fiber and an optical component, the optical component and the step of measuring the intensity of light passing through the analyzer.
【請求項4】波長が可変であって有限の消光比を持った
光を発生する光源を準備する段階と,偏波面保存光ファ
イバの一端に且つ該偏波面保存光ファイバの軸の周りに
光部品を支持する手段を前記偏波面保存光ファイバと所
定の角度で保持しつつ取り付けるとともに,該支持する
手段を介して検光子を前記偏波面保存光ファイバの軸の
周りに取り付ける段階と,前記光源からの光を前記偏波
面保存光ファイバの他端に入射させる段階と,前記光源
からの光の波長を変化させるとともに前記支持する手段
及び前記検光子を通過した光の強度を測定する段階とを
含む支持する手段と検光子との相対角度を検出する方
法。
4. A step of preparing a light source for generating light having a tunable extinction ratio and having a variable wavelength, and a light source at one end of the polarization-maintaining optical fiber and around the axis of the polarization-maintaining optical fiber. Mounting means for supporting the component while holding the polarization maintaining fiber at a predetermined angle, and mounting an analyzer around the axis of the polarization maintaining optical fiber via the supporting means; From the light source to the other end of the polarization-maintaining optical fiber, and changing the wavelength of the light from the light source and measuring the intensity of the light passing through the supporting means and the analyzer. A method of detecting the relative angle between the supporting means and the analyzer.
【請求項5】波長が可変であって有限の消光比を持った
光を発生する光源を準備する段階と,偏波面保存光ファ
イバの一端に且つ該偏波面保存光ファイバの軸の周りに
所定の角度で検光子を取り付ける段階と,前記光源から
の光を前記偏波面保存光ファイバの他端に入射させる段
階と,前記光源からの光の波長を変化させるとともに前
記検光子を通過した光の強度を測定する段階とを含む偏
波面保存光ファイバの特性の測定方法。
5. A step of preparing a light source for generating light having a tunable extinction ratio with a variable wavelength, and a step of providing a light source at one end of a polarization-maintaining optical fiber and around an axis of the polarization-maintaining optical fiber. Of the light from the light source to the other end of the polarization-maintaining optical fiber, changing the wavelength of the light from the light source, and changing the wavelength of the light from the light source. A method for measuring the characteristics of a polarization-maintaining optical fiber, including the step of measuring the intensity.
【請求項6】波長が可変であって有限の消光比を持った
光を出射する光源(3)と,前記光を他端に入射する偏
波面保存光ファイバの一端に取り付けるべき光部品に所
定の角度で取り付けられた検光子(5)と,前記光部品
及び前記検光子とを前記偏波面保存光ファイバの一端に
且つ前記偏波面保存光ファイバの軸の周りに回転可能に
取り付ける手段(4)と,前記光源からの光の波長を変
化させ,かつ前記偏波面保存光ファイバの軸の周に前記
光部品及び前記検光子を回転させながら前記光部品及び
前記検光子を通過した光の強度を測定する測定装置
(6)と,該測定装置の出力信号に基づいて前記偏波面
保存光ファイバの他端に前記光部品を所望の角度で固定
する手段(7)とを含む光部品の組立装置。
6. A light source (3) which emits light having a finite extinction ratio with a variable wavelength and an optical component to be attached to one end of a polarization-maintaining optical fiber which makes the light incident on the other end thereof. (5) attached at an angle of, and a means (4) for attaching the optical component and the analyzer to one end of the polarization-maintaining optical fiber and rotatably about the axis of the polarization-maintaining optical fiber. ) And changing the wavelength of the light from the light source, and rotating the optical component and the analyzer around the axis of the polarization-maintaining optical fiber, and the intensity of the light passing through the optical component and the analyzer. Assembly of an optical component including a measuring device (6) for measuring the optical component, and means (7) for fixing the optical component to the other end of the polarization-maintaining optical fiber at a desired angle based on an output signal of the measuring device. apparatus.
【請求項7】波長が可変であって有限の消光比を持った
光を出射する光源(3)と,前記光を他端に入射する偏
波面保存光ファイバの一端に所定の角度で取り付けられ
た光部品を支持する手段(8)と,取り付けるべき検光
子を前記支持する手段に前記偏波面保存光ファイバの軸
の周りに且つ回転可能に取り付ける手段(4)と,前記
光源からの光の波長を変化させ,かつ前記偏波面保存光
ファイバの軸の周に前記検光子を回転させながら前記支
持する手段及び前記検光子を通過した光の強度を測定す
る測定装置(6)と,該測定装置の出力信号に基づいて
前記支持する手段に前記検光子を所望の角度で固定する
手段(7)とを含む光部品の組立装置。
7. A light source (3) which emits light having a finite extinction ratio and whose wavelength is variable, and a light source (3) attached to one end of a polarization-maintaining optical fiber which makes the light incident on the other end at a predetermined angle. Means (8) for supporting the optical component, means (4) for rotatably mounting the analyzer to be mounted around the axis of the polarization-maintaining optical fiber to the means for supporting, and Measuring means (6) for changing the wavelength and measuring the intensity of the light passing through the analyzer while supporting the analyzer while rotating the analyzer around the axis of the polarization-maintaining optical fiber, and the measurement. An apparatus for assembling an optical component, comprising means (7) for fixing the analyzer at a desired angle to the supporting means based on an output signal of the apparatus.
【請求項8】波長が可変であって有限の消光比を持った
光を出射する光源(3)と,前記光を他端に入射する偏
波面保存光ファイバの一端に且つ該偏波面保存光ファイ
バの軸の周りに取り付けた光部品に所定の角度で取り付
けられた検光子(5)と,前記光源からの光の波長を変
化させ,かつ前記光部品及び前記検光子を通過した光の
強度を測定する測定装置(6)とを含む偏波面保存光フ
ァイバと光部品との相対角度を検出する検出装置。
8. A light source (3) which emits light having a finite extinction ratio with a variable wavelength, and a polarization-maintaining light at one end of a polarization-maintaining optical fiber which makes the light incident on the other end. An analyzer (5) attached at a predetermined angle to an optical component attached around the axis of the fiber, and changing the wavelength of light from the light source, and the intensity of light passing through the optical component and the analyzer. A detector for detecting the relative angle between the polarization-maintaining optical fiber and the optical component, including a measuring device (6) for measuring
【請求項9】波長が可変であって有限の消光比を持った
光を出射する光源(3)と,前記光を他端に入射する偏
波面保存光ファイバの一端に且つ該偏波面保存光ファイ
バの軸の周りに所定の角度で取り付けた光部品を支持す
る手段に取り付けられた検光子(5)と,前記光源から
の光の波長を変化させ,かつ前記支持する手段及び前記
検光子を通過した光の強度を測定する測定装置(6)と
を含む光部品を支持する手段と検光子との相対角度を検
出する検出装置。
9. A light source (3) which emits light having a finite extinction ratio with a variable wavelength, and a polarization-maintaining light at one end of a polarization-maintaining optical fiber which makes the light incident on the other end. An analyzer (5) attached to a means for supporting an optical component attached at a predetermined angle around the axis of the fiber, and a means for changing and supporting the wavelength of light from the light source and the analyzer. A detection device for detecting a relative angle between a means for supporting an optical component and a analyzer, which includes a measuring device (6) for measuring the intensity of the transmitted light.
【請求項10】波長が可変であって有限の消光比を持っ
た光を出射する光源(3)と,前記光を一端に入射する
偏波面保存光ファイバの一端に且つ該偏波面保存光ファ
イバの軸の周りに所定の角度で取り付けられた検光子
(5)と,前記光源からの光の波長を変化させ,かつ前
記検光子を通過した光の強度を測定する測定装置(6)
とを含む偏波面保存光ファイバの特性測定装置。
10. A light source (3) which emits light having a finite extinction ratio and having a variable wavelength, and a polarization-maintaining optical fiber at one end of the polarization-maintaining optical fiber which enters the light at one end. An analyzer (5) mounted at a predetermined angle around the axis of, and a measuring device (6) for changing the wavelength of light from the light source and measuring the intensity of light passing through the analyzer.
A polarization-maintaining optical fiber characteristic measuring device including and.
JP7977095A 1995-03-09 1995-03-09 Method and device for assembling optical parts Pending JPH08248259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7977095A JPH08248259A (en) 1995-03-09 1995-03-09 Method and device for assembling optical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7977095A JPH08248259A (en) 1995-03-09 1995-03-09 Method and device for assembling optical parts

Publications (1)

Publication Number Publication Date
JPH08248259A true JPH08248259A (en) 1996-09-27

Family

ID=13699450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7977095A Pending JPH08248259A (en) 1995-03-09 1995-03-09 Method and device for assembling optical parts

Country Status (1)

Country Link
JP (1) JPH08248259A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765935B2 (en) 2000-12-15 2004-07-20 The Furukawa Electric Co., Ltd. Semiconductor laser module, manufacturing method thereof and optical amplifier
US6782028B2 (en) 2000-12-15 2004-08-24 The Furukawa Electric Co., Ltd. Semiconductor laser device for use in a semiconductor laser module and an optical amplifier
US7085440B2 (en) 2001-07-02 2006-08-01 The Furukawa Electric Co., Ltd Semiconductor laser module and optical amplifier
US7245643B2 (en) 2001-07-02 2007-07-17 The Furukawa Electric Co., Ltd. Semiconductor laser module and method of manufacturing the same
US7259905B2 (en) 2001-07-02 2007-08-21 The Furukawa Electric Co., Ltd. Semiconductor laser module, optical amplifier, and method of manufacturing the semiconductor laser module
US7408867B2 (en) 2002-04-04 2008-08-05 The Furukawa Electric Co., Ltd. Method of aligning an optical fiber, method of manufacturing a semiconductor laser module, and semiconductor laser module
JP2015142219A (en) * 2014-01-28 2015-08-03 住友電気工業株式会社 Adjustment method of photoreceiver

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765935B2 (en) 2000-12-15 2004-07-20 The Furukawa Electric Co., Ltd. Semiconductor laser module, manufacturing method thereof and optical amplifier
US6782028B2 (en) 2000-12-15 2004-08-24 The Furukawa Electric Co., Ltd. Semiconductor laser device for use in a semiconductor laser module and an optical amplifier
US7085440B2 (en) 2001-07-02 2006-08-01 The Furukawa Electric Co., Ltd Semiconductor laser module and optical amplifier
US7245643B2 (en) 2001-07-02 2007-07-17 The Furukawa Electric Co., Ltd. Semiconductor laser module and method of manufacturing the same
US7259905B2 (en) 2001-07-02 2007-08-21 The Furukawa Electric Co., Ltd. Semiconductor laser module, optical amplifier, and method of manufacturing the semiconductor laser module
US7529021B2 (en) 2001-07-02 2009-05-05 The Furukawa Electric Co., Ltd. Semiconductor laser module, optical amplifier, and method of manufacturing the semiconductor laser module
US7408867B2 (en) 2002-04-04 2008-08-05 The Furukawa Electric Co., Ltd. Method of aligning an optical fiber, method of manufacturing a semiconductor laser module, and semiconductor laser module
JP2015142219A (en) * 2014-01-28 2015-08-03 住友電気工業株式会社 Adjustment method of photoreceiver

Similar Documents

Publication Publication Date Title
US8102535B2 (en) Fiber optic gyroscope using a low-polarization and polarization-maintaining hybrid light path
CN102183360B (en) The detection method of polarization extinction ratio of optical polarizer and pick-up unit
JPH03191805A (en) Apparatus and method for detecting posi- tion
CN103743553B (en) The dual channel optical performance testing device of a kind of integrated waveguide manipulator and polarization crosstalk identification thereof and processing method
JP3457548B2 (en) Polarization independent reflectometry and polarization independent reflectometer
CN108287056B (en) System and method for evaluating coupling characteristics of optical fiber sensitive ring polarization mode
CN103900680B (en) A kind of device utilizing light source to suppress polarization crosstalk to measure noise and detection method
JP2005512047A (en) Sensor and method for detecting defects in optical fibers
Calvani et al. Polarization measurements on single-mode fibers
CN112082735B (en) Optical fiber sensing ring bidirectional synchronous measurement device and method based on Sagnac structure
CN108106817B (en) Method for improving polarization performance measurement accuracy of Y waveguide device
CN102243333A (en) Production method for all-fibre quarter-wave plate
JPH08248259A (en) Method and device for assembling optical parts
CN112082651B (en) Polarization characteristic measurement method for assembling full polarization-maintaining Sagnac closed light path
JP4027985B2 (en) Method and apparatus for accurately producing a depolarizer
Sezerman et al. Accurate alignment preserves polarization
CN110554464B (en) Miniaturized single polarization fiber resonant cavity
CN112082736B (en) Polarization maintaining optical fiber ring polarization crosstalk bidirectional measuring device and method based on multifunctional optical switch
US20030165283A1 (en) Device for providing polarized light
JP2001033492A (en) Optical application measuring apparatus
JPS60107603A (en) Connecting method of polarization maintaining optical fiber
JPH01292263A (en) Optical fiber current measuring apparatus
JPH0658712A (en) Optical fiber sensor
JP3187518B2 (en) Method and apparatus for detecting optical axis of polarization-maintaining optical fiber
JP2002131186A (en) Measuring method of polarization crosstalk of optical component