JPH08248039A - Scanning probe microscope and measuring method thereof - Google Patents

Scanning probe microscope and measuring method thereof

Info

Publication number
JPH08248039A
JPH08248039A JP7981495A JP7981495A JPH08248039A JP H08248039 A JPH08248039 A JP H08248039A JP 7981495 A JP7981495 A JP 7981495A JP 7981495 A JP7981495 A JP 7981495A JP H08248039 A JPH08248039 A JP H08248039A
Authority
JP
Japan
Prior art keywords
probe
sample
vibration
scanning
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7981495A
Other languages
Japanese (ja)
Other versions
JP3497913B2 (en
Inventor
Hiroshi Kuroda
浩史 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP07981495A priority Critical patent/JP3497913B2/en
Publication of JPH08248039A publication Critical patent/JPH08248039A/en
Application granted granted Critical
Publication of JP3497913B2 publication Critical patent/JP3497913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE: To realize high speed scanning while shortening the measuring time by fixing the position of a cantilever in the direction of height at the time of scanning and imparting a predetermined continual vibration to the cantilever at each data acquisition point. CONSTITUTION: A sample 11 is shifted by means of an XYZ scanner 12 and scanned relatively by means of a probe 16. A shaker 14 imparts a vibration of predetermined duration continually to a cantilever 15 at a predetermined time interval. A laser light 19 is reflected on a lever 15 and enters into a photodetector 18. The surface of the sample 11 is then scanned in XY direction by means of the probe 16 being spaced apart therefrom by a predetermined distance while sustaining the voltage of a driving signal VZ at a predetermined level and a vibration is imparted continually to the lever 15. At the time of shaking, the scanning operation is interrupted and the position of the probe 16 is detected by means of the detector 18 and a detection signal Vin is delivered. The maximum peak value of the signal Vin is detected by a circuit 25 and delivered, as the height information of the sample 11, to a controller/processor 20. The controller/processor 20 operates the irregular shape on the surface of the sample 11 which is presented on a display 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型プローブ顕微鏡お
よびその測定方法に関し、特に、高速な走査を行い測定
時間を短縮する走査型プローブ顕微鏡およびその測定方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope and a measuring method therefor, and more particularly to a scanning probe microscope and a measuring method therefor which perform high-speed scanning to shorten the measuring time.

【0002】[0002]

【従来の技術】走査型プローブ(探針)顕微鏡は原子オ
ーダの測定分解能を有し、表面形状の計測など各種分野
に利用される。走査型プローブ顕微鏡には、検出対象の
物理量に応じて、走査型トンネル顕微鏡(STM)、原
子間力顕微鏡(AFM)、磁気力顕微鏡(MFM)など
がある。この中で原子間力顕微鏡は、試料表面の形状を
高分解能で検出するのに適しており、半導体や光ディス
クなどの表面形状の測定に利用されている。
2. Description of the Related Art A scanning probe (probe) microscope has a measurement resolution of an atomic order and is used in various fields such as surface shape measurement. The scanning probe microscope includes a scanning tunneling microscope (STM), an atomic force microscope (AFM), a magnetic force microscope (MFM), etc., depending on the physical quantity to be detected. Among them, the atomic force microscope is suitable for detecting the shape of the sample surface with high resolution, and is used for measuring the surface shape of semiconductors, optical disks, and the like.

【0003】走査型プローブ顕微鏡の測定方法の一例と
して特開平1−169304号公報に示される方法があ
る。この文献に示される測定方法は、STMの測定方法
であり、測定時における探針の走査移動において試料表
面との衝突を避けると共に高速な移動を可能にするもの
である。その測定方法の具体的な内容は、試料表面に沿
って移動するときには、試料表面から十分に離れた距離
で移動し、測定すべき位置に到達したときに試料表面に
トンネル電流が流れる程度の距離まで接近移動し、所定
のトンネル電流を流れるのを測定した後試料表面から離
れて上記距離まで移動し、その後、同様に測定箇所間の
走査移動と測定箇所での測定移動とを繰り返す。このよ
うに測定を行う箇所以外は、試料表面から離れて衝突を
心配することなく高速で移動できるので、走査時間を短
縮し、大きな面積の試料面を測定することができる。
As an example of the measuring method of the scanning probe microscope, there is a method disclosed in Japanese Patent Laid-Open No. 1-169304. The measuring method shown in this document is an STM measuring method, which avoids collision with the sample surface during scanning movement of the probe during measurement and enables high-speed movement. The specific content of the measurement method is that when moving along the sample surface, it moves at a distance sufficiently away from the sample surface, and the distance that a tunnel current flows on the sample surface when reaching the position to be measured. After moving to a predetermined tunnel current and measuring the flow of a predetermined tunnel current, the sample is moved away from the sample surface to the above distance, and thereafter, scanning movement between measurement points and measurement movement at the measurement points are repeated in the same manner. Except for the portion where the measurement is performed in this way, the sample surface can be moved at a high speed without being worried about collision, so that the scanning time can be shortened and the sample surface having a large area can be measured.

【0004】[0004]

【発明が解決しようとする課題】試料の表面において大
きな範囲を走査型プローブ顕微鏡で測定する場合、測定
に要する時間を短くすることが望まれる。この要望を満
たすために、前述した特開平1−169304号公報に
示される走査型トンネル顕微鏡の測定方法を利用するこ
とができる。しかし、この測定方法によれば、試料表面
に接近したり試料表面から離れたりする移動を各測定箇
所で行わなければならないため、走査速度をそれ程高め
ることができず、測定時間の短縮について或る程度の制
限を受けるという問題があった。
When a large area on the surface of a sample is measured by a scanning probe microscope, it is desirable to shorten the time required for the measurement. In order to satisfy this demand, the measuring method of the scanning tunneling microscope disclosed in Japanese Patent Laid-Open No. 1-169304 can be used. However, according to this measurement method, since the movement toward and away from the sample surface has to be performed at each measurement point, the scanning speed cannot be increased so much, and there is a possibility of shortening the measurement time. There was the problem of being limited in degree.

【0005】本発明の目的は、上記問題に鑑み、試料表
面における例えば数百ミクロンの大きな範囲を測定する
場合、高速に走査して短時間で測定できる走査型プロー
ブ顕微鏡およびその測定方法を提供することにある。
In view of the above problems, an object of the present invention is to provide a scanning probe microscope capable of scanning at high speed and in a short time and a measuring method thereof when measuring a large range of several hundred microns on the surface of a sample. Especially.

【0006】[0006]

【課題を解決するための手段】本発明に係る走査型プロ
ーブ顕微鏡は、上記目的を達成するため、カンチレバー
の先部に設けられた探針を所望の或る距離で試料の表面
に接近させ、この距離を保ちながら探針を試料表面に沿
って走査移動させて試料表面の凹凸形状に関する情報を
得るもので、探針に振幅が次第に増大する振動を断続的
に与える加振手段と、探針の位置変化を検出する位置検
出手段と、位置検出手段の出力信号から最大ピーク値を
検出する振幅ピーク検出手段と、変換データを予め記憶
する記憶手段と、この変換データに基づいて前記振幅ピ
ーク検出手段により得られた検出値から試料の表面形状
を求める処理手段とによって構成される。
In order to achieve the above-mentioned object, a scanning probe microscope according to the present invention is arranged such that a probe provided on the tip of a cantilever is brought close to the surface of a sample at a desired distance. The probe is moved along the surface of the sample while keeping this distance to obtain information about the uneven shape of the sample surface. A vibrating means for intermittently giving vibration to the probe whose amplitude gradually increases, and a probe. Position detecting means for detecting a position change of the position detecting means, an amplitude peak detecting means for detecting a maximum peak value from an output signal of the position detecting means, a storing means for storing conversion data in advance, and the amplitude peak detecting means based on the conversion data. And a processing means for obtaining the surface shape of the sample from the detection value obtained by the means.

【0007】また本発明に係る走査型プローブ顕微鏡の
測定方法は、上記目的を達成するため、カンチレバーの
先部に設けられた探針を所望の一定の距離で試料表面に
接近させ、その距離を保ちながら探針を試料表面に沿っ
て走査移動させ、そしてこの走査中に探針に振幅が次第
に増大する振動を断続的に与え、探針の振動における最
大ピーク値と探針および試料表面の間の距離に関する変
換データ、例えば両者の関係を表す表データに基づいて
試料表面の凹凸形状(プロファイル)に関する情報を求
める方法である。
In order to achieve the above-mentioned object, the measuring method of the scanning probe microscope according to the present invention makes the probe provided at the tip of the cantilever approach the surface of the sample at a desired fixed distance. The probe is moved along the sample surface while keeping it, and the probe is intermittently given vibrations of gradually increasing amplitude during this scanning. Is a method of obtaining information about the uneven shape (profile) of the sample surface based on the conversion data regarding the distance, for example, table data showing the relationship between the two.

【0008】上記の振動の振幅は直線的に増大すること
が望ましい。
It is desirable that the amplitude of the above-mentioned vibration increases linearly.

【0009】また各測定予定箇所で上記の振動が与える
ことを特徴とする。
Further, it is characterized in that the above-mentioned vibration is applied to each measurement scheduled portion.

【0010】[0010]

【作用】本発明では、試料表面の微細な凹凸形状を測定
するため探針による試料表面の走査が行われる間、振幅
が次第に増大する振動を探針に与えるようにカンチレバ
ーを所定の時間間隔で断続的に加振する。探針の振幅が
次第に増大すると、走査移動のために試料の表面との間
で保たれた所定距離と探針の振れ幅がほぼ等しくなり、
探針が試料表面に極めて接近する。その後、探針の振幅
は小さくなり、振動状態は消滅する。このような振動を
走査の間に所定の時間間隔で繰り返し行い、探針の振動
時に得られた探針の試料表面との接触等(非接触の場合
もあり得る)に伴う振動データを用いて試料表面の凹凸
形状に関する情報を得る。振動データに基づいて試料表
面の凹凸形状に関する情報を得るには、探針(カンチレ
バー)の振動と、探針および試料表面の距離との関係を
数値表などの変換データとして記憶手段に予め用意して
おく。探針走査中は、通常、試料表面から一定の距離に
保ち、測定時には探針に所定の振動を与えて試料表面と
の距離を測定するので、試料表面に接近させる或いは試
料表面から離れるための移動を特別に行う必要がない。
従って、走査移動に要する時間を短縮できる。
In the present invention, the cantilever is moved at a predetermined time interval so as to give vibration to the probe whose amplitude gradually increases while the sample surface is scanned by the probe in order to measure the fine unevenness of the sample surface. Excitation is applied intermittently. When the amplitude of the probe gradually increases, the swing distance of the probe becomes almost equal to the predetermined distance maintained between the surface of the sample due to the scanning movement,
The probe comes very close to the sample surface. After that, the amplitude of the probe decreases and the vibration state disappears. Such vibrations are repeated at predetermined time intervals during scanning, and the vibration data resulting from the contact of the probe with the sample surface (which may be non-contact) obtained during the vibration of the probe is used. Obtain information about the uneven shape of the sample surface. In order to obtain information about the uneven shape of the sample surface based on the vibration data, the relationship between the vibration of the probe (cantilever) and the distance between the probe and the sample surface should be prepared beforehand in the storage means as conversion data such as a numerical table. Keep it. Normally, keep a constant distance from the sample surface during scanning of the probe, and give a predetermined vibration to the probe during measurement to measure the distance from the sample surface. There is no need to move specially.
Therefore, the time required for scanning movement can be shortened.

【0011】[0011]

【実施例】以下に、本発明の実施例を添付図面に基づい
て説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0012】図1は本発明に係る走査型プローブ顕微鏡
の一例として原子間力顕微鏡(AFM)の構成を示す。
測定対象である試料11は、XYZスキャナ12の上に
配置される。XYZスキャナ12は、X軸方向への変位
を生じる圧電素子、Y軸方向への変位を生じる圧電素
子、Z軸方向への変位を生じる圧電素子を備え、制御装
置から各圧電素子に対して駆動信号を与えられることに
よって、試料11を任意の方向に微小に移動させる。X
YZスキャナ12はフレーム13の下部に固定される。
他方、フレーム13の上部には加振器14を介してカン
チレバー15が配置される。加振器14は圧電素子を用
いて構成される。カンチレバー15の先端には探針16
が設けられる。探針16の先端は試料11の表面に臨
む。XYZスキャナ12で試料11の位置をX軸、Y軸
の各方向に移動させることによって、相対的に試料11
の表面上で探針16を走査移動させることができる。ま
たカンチレバー15は加振器14によって加振され、そ
の結果探針16が振動する。カンチレバー15の上方に
はレーザ光源17と光検出器18が配置される。レーザ
光源17から出射されたレーザ光19は、カンチレバー
15の背面に設けられた反射面に照射され、そこで反射
して光検出器18に入射するように光路を設定される。
カンチレバー15の先部が図中高さ方向すなわちZ軸方
向に移動すると、光検出器18におけるレーザ光19の
入射位置が変化する。光検出器18におけるレーザ光1
9の入射位置を検出することによって、探針16のZ軸
方向の位置変位を検出することができる。レーザ光源1
7と光検出器18によって探針16の位置を検出するた
めの位置検出装置が構成される。
FIG. 1 shows the structure of an atomic force microscope (AFM) as an example of a scanning probe microscope according to the present invention.
The sample 11 to be measured is placed on the XYZ scanner 12. The XYZ scanner 12 includes a piezoelectric element that causes a displacement in the X-axis direction, a piezoelectric element that causes a displacement in the Y-axis direction, and a piezoelectric element that causes a displacement in the Z-axis direction, and the control device drives each piezoelectric element. By being given a signal, the sample 11 is slightly moved in an arbitrary direction. X
The YZ scanner 12 is fixed to the lower part of the frame 13.
On the other hand, a cantilever 15 is arranged above the frame 13 via a vibrator 14. The vibrator 14 is configured using a piezoelectric element. At the tip of the cantilever 15, a probe 16 is attached.
Is provided. The tip of the probe 16 faces the surface of the sample 11. By moving the position of the sample 11 in the X-axis and Y-axis directions by the XYZ scanner 12, the sample 11 is relatively moved.
The probe 16 can be moved by scanning on the surface of the. Further, the cantilever 15 is vibrated by the vibration exciter 14, and as a result, the probe 16 vibrates. A laser light source 17 and a photodetector 18 are arranged above the cantilever 15. The laser light 19 emitted from the laser light source 17 is applied to a reflection surface provided on the back surface of the cantilever 15, and the optical path is set so that the light is reflected there and enters the photodetector 18.
When the tip of the cantilever 15 moves in the height direction in the figure, that is, the Z-axis direction, the incident position of the laser light 19 on the photodetector 18 changes. Laser light 1 at photodetector 18
By detecting the incident position of 9, the positional displacement of the probe 16 in the Z-axis direction can be detected. Laser light source 1
7 and the photodetector 18 constitute a position detecting device for detecting the position of the probe 16.

【0013】上記の機構的部分に対して制御・演算処理
部分が設けられる。20は制御・演算処理装置、21は
表示装置である。制御・演算処理装置20は、XYZス
キャナ12に含まれるX軸方向圧電素子とY軸方向圧電
素子に対して駆動制御信号を与え、この駆動制御信号は
XY駆動回路22を経由して駆動信号Vx,Vyとして
供給される。また制御・演算処理装置20は、XYZス
キャナ12に含まれるZ軸方向圧電素子に対して駆動制
御信号を与え、この駆動制御信号はZ駆動回路23を経
由して駆動信号Vzとして供給される。制御・演算処理
装置20の制御に基づき生成される駆動信号Vx,Vy
によって試料11の表面における測定範囲が設定され、
当該測定範囲の探針16による走査が可能となる。また
制御・演算処理装置20の制御に基づき生成される駆動
信号Vzによって探針16と試料11の表面との距離が
調整される。
A control / arithmetic processing section is provided for the above mechanical section. Reference numeral 20 is a control / arithmetic processing device, and 21 is a display device. The control / arithmetic processing device 20 gives a drive control signal to the X-axis direction piezoelectric element and the Y-axis direction piezoelectric element included in the XYZ scanner 12, and the drive control signal is supplied via the XY drive circuit 22 to the drive signal Vx. , Vy. Further, the control / arithmetic processing device 20 gives a drive control signal to the Z-axis direction piezoelectric element included in the XYZ scanner 12, and this drive control signal is supplied as a drive signal Vz via the Z drive circuit 23. Drive signals Vx and Vy generated under the control of the control / arithmetic processing unit 20
The measurement range on the surface of the sample 11 is set by
The probe 16 can scan the measurement range. Further, the distance between the probe 16 and the surface of the sample 11 is adjusted by the drive signal Vz generated under the control of the control / arithmetic processing device 20.

【0014】また制御・演算処理装置20は加振用制御
信号を出力し、この加振用制御信号はカンチレバー加振
回路24で加振用駆動信号(以下加振信号という)Vou
t に変換され、加振信号Vout は加振器14に与えられ
る。加振信号Vout を与えられた加振器14は、後述す
るような特性を有する振動をカンチレバー15に与え
る。上記加振信号Vout は、図3に示すように所定の時
間間隔(T2)で断続的に一定時間(T1)の間発生さ
れる。
Further, the control / arithmetic processing device 20 outputs a vibration control signal, and this vibration control signal is applied to a vibration drive signal (hereinafter referred to as a vibration signal) Vou by the cantilever vibration circuit 24.
The vibration signal Vout is converted to t and is applied to the vibration exciter 14. The vibration exciter 14 to which the vibration signal Vout is given gives vibration to the cantilever 15 having a characteristic as described later. The vibration signal Vout is intermittently generated for a fixed time (T1) at a predetermined time interval (T2) as shown in FIG.

【0015】一方、制御・演算処理装置20に入力され
る信号は、前述の光検出器18から出力される位置検出
信号Vinであり、この位置検出信号Vinは振幅ピーク検
出回路25に入力され、振幅ピーク検出回路25の出力
信号は制御・演算処理装置20に入力される。振幅ピー
ク検出回路25では位置検出信号Vinの振幅変動のうち
の最大ピーク値が取り出され、この最大ピーク値が試料
表面における高さ情報として制御・演算処理装置20に
入力され、試料11の表面の凹凸形状測定のデータとし
て使用される。制御・演算処理装置20で求められた試
料11の表面における測定範囲の凹凸形状は表示装置2
1に表示される。
On the other hand, the signal input to the control / arithmetic processing device 20 is the position detection signal Vin output from the above-mentioned photodetector 18, and this position detection signal Vin is input to the amplitude peak detection circuit 25. The output signal of the amplitude peak detection circuit 25 is input to the control / arithmetic processing device 20. In the amplitude peak detection circuit 25, the maximum peak value of the amplitude fluctuation of the position detection signal Vin is extracted, and this maximum peak value is input to the control / arithmetic processing device 20 as height information on the sample surface and the surface of the sample 11 is detected. It is used as data for measuring uneven shapes. The uneven shape of the measurement range on the surface of the sample 11 obtained by the control / arithmetic processing unit 20 is displayed on the display unit 2.
1 is displayed.

【0016】以上の構成を有するAFMの測定動作を、
上記の図1と図2〜図4を参照して説明する。
The measurement operation of the AFM having the above structure is
Description will be made with reference to FIG. 1 and FIGS.

【0017】このAFMの測定によれば、XYZスキャ
ナ12を作動させることにより、試料11の表面におい
て設定された測定範囲を探針16によって走査する時、
所定の時間間隔T2で上記の加振信号Vout を加振器1
4に与えてカンチレバー15を加振する。カンチレバー
加振回路24から出力される加振信号Vout の波形を図
2の(A)に示す。加振信号は、一定時間T1の間に限
り発生するもので、カンチレバー15の共振周波数また
はその近傍の周波数を有する交流信号であって、期間T
1の間に振幅が0から次第に増大して最終的に最大振幅
でVo1のピーク値をとり、再び0に戻るという振幅特性
を有する交流信号である。加振信号の各振幅ピークを繋
ぐ包絡線は線形性を有する直線であることが望ましい。
図2の(A)に示される加振信号が加振器14からカン
チレバー15に与えられると、探針16は加振信号と同
じ振幅特性で振動する。
According to the measurement of this AFM, when the XYZ scanner 12 is operated to scan the measurement range set on the surface of the sample 11 by the probe 16,
The vibration signal Vout is applied to the vibration exciter 1 at a predetermined time interval T2.
4, and the cantilever 15 is vibrated. The waveform of the vibration signal Vout output from the cantilever vibration circuit 24 is shown in FIG. The vibration signal is generated only during a fixed time T1, is an AC signal having a resonance frequency of the cantilever 15 or a frequency in the vicinity thereof, and has a period T
The AC signal has an amplitude characteristic that the amplitude gradually increases from 0 during 1 and finally takes the peak value of Vo1 at the maximum amplitude and then returns to 0 again. The envelope connecting the amplitude peaks of the excitation signal is preferably a straight line having linearity.
When the vibration signal shown in FIG. 2A is applied to the cantilever 15 from the vibration generator 14, the probe 16 vibrates with the same amplitude characteristic as the vibration signal.

【0018】図2の(A)に示す加振信号Vout で探針
16が振動したとすると、探針16が、試料11の表面
から、原子間力という物理的作用の影響を当該表面から
受けない十分な距離で離れているときには、図2の
(B)に示す検出信号Vinが光検出器18から得られ
る。この検出信号Vinは、振幅が0から次第に増大し、
最終的な最大振幅でVi1のピーク値となり、その後0に
戻る交流信号である。また加振信号Vout で探針16が
振動した場合に、探針16が或る距離に接近し、試料表
面から原子間力の影響を受けるときには、図2の(C)
に示すように、上記のピーク値Vi1に達する前に探針先
端と試料表面の間の原子間力による相互作用のため、検
出信号Vinでは或るピーク値Vi2を境に減衰する。この
ピーク値Vi2は今回の振動において最大ピーク値とな
り、探針16と試料11の表面の距離に基づいて決まる
ものである。なお、最大ピーク値Vi2を生じる時、探針
16の先端と試料表面とが接触している場合と、非接触
の場合とがある。これらは最大ピーク値Vi2後のVinの
減衰特性によって判断できる。振幅ピーク検出回路25
は、光検出器18から出力される検出信号Vinの中から
最大ピーク値Vi2を検出し、このピーク値Vi2を制御・
演算処理装置20に出力する。このように測定予定箇所
(データ取得点)でカンチレバー15を加振し、そのた
びに検出された信号Vinから最大ピーク値Vi2を得るこ
とにより、試料11の表面凹凸形状に関する情報を求め
ることができる。なお試料表面の凹凸形状を求める場合
において、最大ピーク値と探針および試料の間の距離と
の関係を調べ、その関係を表などにして表し、記憶部等
に変換データとして持っている必要がある。
Assuming that the probe 16 vibrates with the excitation signal Vout shown in FIG. 2A, the probe 16 is affected by the physical action of atomic force from the surface of the sample 11 from the surface. When they are separated by a sufficient distance, the detection signal Vin shown in FIG. 2B is obtained from the photodetector 18. The amplitude of this detection signal Vin gradually increases from 0,
It is an AC signal that has a peak value of Vi1 at the final maximum amplitude and then returns to zero. Further, when the probe 16 vibrates by the vibration signal Vout and the probe 16 approaches a certain distance and is affected by the atomic force from the sample surface, (C) in FIG.
As shown in, the detection signal Vin is attenuated at a certain peak value Vi2 due to the interaction between the tip of the probe and the sample surface due to the atomic force before reaching the peak value Vi1. This peak value Vi2 becomes the maximum peak value in this vibration, and is determined based on the distance between the probe 16 and the surface of the sample 11. When the maximum peak value Vi2 is generated, there are cases where the tip of the probe 16 is in contact with the sample surface and cases where it is not in contact. These can be judged by the attenuation characteristic of Vin after the maximum peak value Vi2. Amplitude peak detection circuit 25
Detects the maximum peak value Vi2 from the detection signal Vin output from the photodetector 18, and controls this peak value Vi2.
Output to the arithmetic processing unit 20. In this way, the cantilever 15 is vibrated at the planned measurement location (data acquisition point), and the maximum peak value Vi2 is obtained from the signal Vin detected each time, so that information about the surface unevenness shape of the sample 11 can be obtained. . When obtaining the uneven shape of the sample surface, it is necessary to investigate the relationship between the maximum peak value and the distance between the probe and the sample, express the relationship in a table, etc., and have it as converted data in the storage unit etc. is there.

【0019】図3は、X軸方向の一部の探針走査区間
と、この区間における加振信号Voutの発生状態、およ
び駆動信号Vx,Vzの発生状態とを示す。図3におい
て横軸は時間軸tを示し、縦軸は電圧軸を示す。なお縦
軸の電圧では加振信号Vout 、駆動信号Vx,Vzの間
の大小関係を示すものではなく、図3は単に各信号の時
間経過に伴う変化状態の対応関係を示すものである。
FIG. 3 shows a part of the probe scanning section in the X-axis direction, the generation state of the vibration signal Vout, and the generation states of the drive signals Vx and Vz in this section. In FIG. 3, the horizontal axis represents the time axis t, and the vertical axis represents the voltage axis. Note that the voltage on the vertical axis does not show the magnitude relationship between the excitation signal Vout and the drive signals Vx and Vz, and FIG. 3 merely shows the correspondence of the change state of each signal with the passage of time.

【0020】XYZスキャナ12内のZ軸方向の圧電素
子に印加される駆動信号(電圧信号)Vzは一定の電圧
値に保持される。このことは、駆動信号Vzを一定値に
固定することによって、非測定箇所での走査移動ではカ
ンチレバー15すなわち探針16と試料11の間の距離
はサーボ制御が行われず、試料表面から所望の一定距離
に固定されることを意味する。またXYZスキャナ12
に内蔵されるX軸方向の圧電素子に印加される駆動信号
(電圧信号)Vxの電圧値は次第に大きくなる。従っ
て、相対的な位置変化によって探針16は試料表面上で
X軸方向に変位し、走査移動を行う。そのような走査移
動中に時間間隔T2で断続的にカンチレバー15が加振
されると、各加振時において、時間T1の間走査を停止
して探針16において前述の振動が生じ、その結果、最
大ピーク値Vi2が得られる。時間間隔T2で測定箇所す
なわちデータ取得点が設定され、各データ取得点で最大
ピーク値を求めることができる。各データ取得点ごとの
最大ピーク値Vi2は、試料11の表面の凹凸形状を反映
しており、この最大ピーク値Vi2を利用して制御・演算
処理装置20で表示データを生成し、表示装置21に試
料表面の凹凸形状を表示する。
The drive signal (voltage signal) Vz applied to the Z-axis piezoelectric element in the XYZ scanner 12 is held at a constant voltage value. This means that by fixing the drive signal Vz to a constant value, the cantilever 15, that is, the distance between the probe 16 and the sample 11 is not servo-controlled during the scanning movement at the non-measurement point, and the desired constant distance from the sample surface is maintained. Means to be fixed at a distance. In addition, the XYZ scanner 12
The voltage value of the drive signal (voltage signal) Vx applied to the piezoelectric element in the X-axis direction built in the disk gradually increases. Therefore, the probe 16 is displaced in the X-axis direction on the surface of the sample due to the relative position change, and performs scanning movement. When the cantilever 15 is intermittently vibrated at time intervals T2 during such scanning movement, at each vibration, the scanning is stopped for the time T1 and the above-mentioned vibration occurs in the probe 16, resulting in , The maximum peak value Vi2 is obtained. The measurement point, that is, the data acquisition point is set at the time interval T2, and the maximum peak value can be obtained at each data acquisition point. The maximum peak value Vi2 at each data acquisition point reflects the uneven shape of the surface of the sample 11. The maximum peak value Vi2 is used to generate display data by the control / arithmetic processing device 20, and the display device 21 The uneven shape of the sample surface is displayed on.

【0021】図4は、走査移動31における非測定状態
で移動を行うための移動区間32と、測定箇所すなわち
データ取得点33を示す。図4に示されるように、誇張
して示されたカンチレバー15の中心位置(振動の中
心、例えば基端の位置)はZ軸方向の一定の高さ位置に
保持される。データ取得点33は離散的に設定され、飛
び越し走査が行われる。
FIG. 4 shows a movement section 32 for moving the scanning movement 31 in a non-measurement state, and a measurement point, that is, a data acquisition point 33. As shown in FIG. 4, the center position (center of vibration, for example, the position of the base end) of the cantilever 15 which is exaggerated is held at a constant height position in the Z-axis direction. The data acquisition points 33 are set discretely, and interlaced scanning is performed.

【0022】なお前記実施例において、測定で得られた
最大ピーク値を用いて試料11の測定範囲の凹凸形状の
情報を得るためには、前述の通り、予め最大ピーク値V
i2と高さとの関係を調べておく必要がある。当該関係
は、次の手順によって調べられる。まず走査を停止して
探針16が試料11の表面から原子間力の作用を受けな
い距離まで試料11を探針から離す。次に図2の(A)
に示す信号でカンチレバー15を加振し、このときの加
振信号Vout の最大ピーク値V01に対する検出信号Vin
の最大ピーク値Vi1を記録する。振幅ピーク検出回路2
5の出力信号をモニタしながら、XYZスキャナ12の
Z軸方向の圧電素子を駆動して試料11を探針16に接
近させ、上記出力信号が減少し始めた位置をZ軸の原点
とする。さらに試料11を探針16側に接近移動させ、
Z軸方向の移動距離とVi2との関係を記録する。このよ
うにして得られた情報に基づいてVi2と高さとの対応関
係に関する表を作成することができ、測定の際各データ
取得点で得られた最大ピーク値Vi2に基づいて高さのデ
ータに変換し、高さのデータを用いて試料表面の凹凸形
状を表示する。
In the above embodiment, in order to obtain the information on the uneven shape of the measurement range of the sample 11 by using the maximum peak value obtained by the measurement, the maximum peak value V is previously set as described above.
It is necessary to investigate the relationship between i2 and height. The relationship is examined by the following procedure. First, the scanning is stopped, and the sample 16 is separated from the surface of the sample 11 to a distance that is not affected by the interatomic force. Next, in FIG.
The cantilever 15 is vibrated by the signal shown in FIG. 2 and the detection signal Vin for the maximum peak value V01 of the vibration signal Vout at this time is detected.
Record the maximum peak value Vi1 of. Amplitude peak detection circuit 2
While monitoring the output signal of No. 5, the piezoelectric element of the XYZ scanner 12 in the Z-axis direction is driven to bring the sample 11 closer to the probe 16, and the position where the output signal starts to decrease is set as the origin of the Z-axis. Further, the sample 11 is moved closer to the probe 16 side,
The relationship between the movement distance in the Z-axis direction and Vi2 is recorded. A table relating the correspondence between Vi2 and height can be created based on the information obtained in this way, and height data can be obtained based on the maximum peak value Vi2 obtained at each data acquisition point during measurement. After conversion, the height data is used to display the uneven shape of the sample surface.

【0023】前記実施例ではAFMについて説明した
が、上記の測定方法は走査型プローブ顕微鏡に一般的に
適用することができる。
Although the AFM has been described in the above embodiment, the above measuring method can be generally applied to the scanning probe microscope.

【0024】[0024]

【発明の効果】以上の説明で明らかなように本発明によ
れば、カンチレバーと試料の相対的位置を変えて探針を
走査移動するときカンチレバーの高さ方向の位置を固定
して走査移動を行い、各データ取得点でカンチレバーに
所定の振動を与えて測定を行うようにし、高さ方向の移
動を行わなくとも済むようにしたため、測定のための走
査移動を高速化でき、測定時間を短縮化できると共に、
広い測定範囲であっても短時間で測定を行うことができ
る。
As is apparent from the above description, according to the present invention, when the relative position of the cantilever and the sample is changed and the probe is scanned and moved, the position of the cantilever in the height direction is fixed and the scan is moved. Since the cantilever is given a predetermined vibration at each data acquisition point to perform the measurement and the movement in the height direction is not required, the scanning movement for the measurement can be speeded up and the measurement time can be shortened. Can be realized,
Even in a wide measurement range, the measurement can be performed in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る走査型プローブ顕微鏡の構成図で
ある。
FIG. 1 is a configuration diagram of a scanning probe microscope according to the present invention.

【図2】カンチレバーに与えられる振動(加振信号)の
波形、位置検出装置で得られる検出信号の波形、実際測
定時に発生する検出信号の波形を示す波形図である。
FIG. 2 is a waveform diagram showing a waveform of vibration (excitation signal) applied to a cantilever, a waveform of a detection signal obtained by a position detection device, and a waveform of a detection signal generated during actual measurement.

【図3】加振信号とX軸方向駆動信号とZ軸方向駆動信
号の変化状態を示す図である。
FIG. 3 is a diagram showing changes in a vibration signal, an X-axis direction drive signal, and a Z-axis direction drive signal.

【図4】走査時のカンチレバーの振動状態と移動区間と
データ取得点の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a vibration state of a cantilever during scanning, a moving section, and a data acquisition point.

【符号の説明】[Explanation of symbols]

11 試料 12 XYZスキャナ 13 フレーム 14 加振器 15 カンチレバー 16 探針 17 レーザ光源 18 光検出器 19 レーザ光 20 制御・演算処理装置 21 表示装置 22 XY駆動回路 23 Z駆動回路 24 カンチレバー加振回路 25 振幅ピーク検出回路 11 sample 12 XYZ scanner 13 frame 14 exciter 15 cantilever 16 probe 17 laser light source 18 photodetector 19 laser light 20 control / arithmetic processing device 21 display device 22 XY drive circuit 23 Z drive circuit 24 cantilever excitation circuit 25 amplitude Peak detection circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 カンチレバーの先部に設けられた探針を
或る距離で試料の表面に接近させ、前記距離を保ちなが
ら前記探針を前記試料表面に沿って走査移動させて前記
試料表面の形状に関する情報を得る走査型プローブ顕微
鏡において、 前記探針に振幅が次第に増大する振動を断続的に与える
加振手段と、 前記探針の位置変化を検出する位置検出手段と、 前記位置検出手段の出力信号から最大ピーク値を検出す
る振幅ピーク検出手段と、 変換データを予め記憶する記憶手段と、 前記変換データに基づいて前記振幅ピーク検出手段によ
り得られた検出値から前記試料の表面形状を求める処理
手段と、 からなることを特徴とする走査型プローブ顕微鏡。
1. A probe provided on the tip of a cantilever is brought close to the surface of a sample at a certain distance, and the probe is scanned and moved along the surface of the sample while maintaining the distance, and In a scanning probe microscope that obtains information about the shape, a vibrating unit that intermittently gives the probe a vibration whose amplitude gradually increases, a position detecting unit that detects a position change of the probe, and a position detecting unit. Amplitude peak detection means for detecting the maximum peak value from the output signal, storage means for storing conversion data in advance, and the surface shape of the sample is obtained from the detection value obtained by the amplitude peak detection means based on the conversion data. A scanning probe microscope, comprising: a processing means.
【請求項2】 前記振動の振幅は直線的に増大すること
を特徴とする請求項1記載の走査型プローブ顕微鏡。
2. The scanning probe microscope according to claim 1, wherein the amplitude of the vibration increases linearly.
【請求項3】 カンチレバーの先部に設けられた探針を
或る距離で試料の表面に接近させ、前記距離を保ちなが
ら前記探針を前記試料表面に沿って走査移動させて前記
試料表面の形状に関する情報を得る走査型プローブ顕微
鏡の測定方法であり、 前記探針に振幅が次第に増大する振動を断続的に与え、
前記探針の振動で得られる最大ピーク値と前記探針およ
び前記試料表面の間の距離に関する変換データに基づい
て前記試料表面の形状に関する情報を求めることを特徴
とする走査型プローブ顕微鏡の測定方法。
3. A probe provided on the tip of the cantilever is brought closer to the surface of the sample at a certain distance, and while maintaining the distance, the probe is moved along the surface of the sample by scanning to move the probe to the surface of the sample. It is a measuring method of a scanning probe microscope to obtain information about the shape, the vibration is intermittently given to the probe the amplitude of which gradually increases,
Measuring method of a scanning probe microscope, characterized in that information on the shape of the sample surface is obtained based on the maximum peak value obtained by the vibration of the probe and conversion data on the distance between the probe and the sample surface. .
【請求項4】 前記振動の振幅は直線的に増大すること
を特徴とする請求項3記載の走査型プローブ顕微鏡の測
定方法。
4. The measuring method of a scanning probe microscope according to claim 3, wherein the amplitude of the vibration linearly increases.
【請求項5】 各測定予定箇所で前記振動を与えること
を特徴とする請求項3記載の走査型プローブ顕微鏡の測
定方法。
5. The method for measuring a scanning probe microscope according to claim 3, wherein the vibration is applied at each of the predetermined measurement points.
JP07981495A 1995-03-10 1995-03-10 Scanning probe microscope and its measuring method Expired - Fee Related JP3497913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07981495A JP3497913B2 (en) 1995-03-10 1995-03-10 Scanning probe microscope and its measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07981495A JP3497913B2 (en) 1995-03-10 1995-03-10 Scanning probe microscope and its measuring method

Publications (2)

Publication Number Publication Date
JPH08248039A true JPH08248039A (en) 1996-09-27
JP3497913B2 JP3497913B2 (en) 2004-02-16

Family

ID=13700680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07981495A Expired - Fee Related JP3497913B2 (en) 1995-03-10 1995-03-10 Scanning probe microscope and its measuring method

Country Status (1)

Country Link
JP (1) JP3497913B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890821A1 (en) * 1997-07-11 1999-01-13 Jeol Ltd. Scanning probe microscope
WO2007135345A1 (en) * 2006-05-24 2007-11-29 Universite Joseph Fourier Controlled atomic force microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890821A1 (en) * 1997-07-11 1999-01-13 Jeol Ltd. Scanning probe microscope
WO2007135345A1 (en) * 2006-05-24 2007-11-29 Universite Joseph Fourier Controlled atomic force microscope
FR2901601A1 (en) * 2006-05-24 2007-11-30 Univ Grenoble 1 ASSISTED ATOMIC STRENGTH MICROSCOPE

Also Published As

Publication number Publication date
JP3497913B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
EP0410131B1 (en) Near-field lorentz force microscopy
KR100961571B1 (en) Scanning probe microscope
US5723775A (en) Atomic force microscope under high speed feedback control
US6323483B1 (en) High bandwidth recoiless microactuator
JP3485244B2 (en) Field detection by single pass dual amplitude mode scanning force microscope
JP4832296B2 (en) Atomic force microscope probe
JP2915554B2 (en) Barrier height measurement device
JPH06213910A (en) Method and interaction device for accurately measuring parameter of surface other than shape or for performing work associated with shape
JP2004523748A5 (en)
JP5252389B2 (en) Scanning probe microscope
JP2005512100A (en) Force scanning probe microscope
US8869311B2 (en) Displacement detection mechanism and scanning probe microscope using the same
US5652377A (en) Scanning method with scanning probe microscope
JPH11160333A (en) Scanning probe microscope
JP2000346784A (en) Viscoelasticity distribution measurement method
JP3497913B2 (en) Scanning probe microscope and its measuring method
US6745617B2 (en) Scanning probe microscope
JP2001108601A (en) Scanning-type probe microscope
JP2003014605A (en) Scanning type probe microscope
JP3637297B2 (en) Magnetic recording head measuring apparatus and measuring method applied to the same
JP3588701B2 (en) Scanning probe microscope and its measuring method
US7854015B2 (en) Method for measuring the force of interaction in a scanning probe microscope
JP3548972B2 (en) Probe moving method and moving mechanism for scanning probe microscope
JPH09264897A (en) Scanning probe microscope
JP3274087B2 (en) Scanning probe microscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees