JPH08247988A - Electrochemical detector and manufacture thereof - Google Patents

Electrochemical detector and manufacture thereof

Info

Publication number
JPH08247988A
JPH08247988A JP7072447A JP7244795A JPH08247988A JP H08247988 A JPH08247988 A JP H08247988A JP 7072447 A JP7072447 A JP 7072447A JP 7244795 A JP7244795 A JP 7244795A JP H08247988 A JPH08247988 A JP H08247988A
Authority
JP
Japan
Prior art keywords
electrode
substance
measured
platinum
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7072447A
Other languages
Japanese (ja)
Inventor
Osamu Niwa
修 丹羽
Tsutomu Horiuchi
勉 堀内
Masao Morita
雅夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7072447A priority Critical patent/JPH08247988A/en
Publication of JPH08247988A publication Critical patent/JPH08247988A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE: To improve the high current density and the S/N ratio by forming a plurality of infinitesimal patterns of conductor in which electrochemical reaction of substance to be measured easily occurs on a conductor in which the reaction scarcely occurs. CONSTITUTION: In the case of a conductor in which electro-chemical reaction scarcely occurs in substance to be measured such as hydrogen peroxide, as a conductor material in which the reaction easily occurs, a combination of metal having large electrochemical reaction velocity of hydrogen peroxide such as platinum, cobalt and other metal semiconductor such as carbon is included. As a method for forming a fine electrode pattern having 10μm or less on a conductor, since the conductor in which the reaction of the substance to be measured does not occur is substrate electrode, fine electrode pattern aggregate (fine array electrode) is formed on an insulating board by a plating method. Accordingly, since the substance to be measured is concentrically diffused on the fine electrode, a high current density is obtained. The substance to be measured is not reacted at the part except the patterns, and base line noise is extremely low. As a result, the S/N ratio is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学センサーやバイオ
センサー、液相クロマトグラフィやフローインジェクシ
ョン分析に適用される電気化学検出器及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical sensor, a biosensor, an electrochemical detector applied to liquid phase chromatography and flow injection analysis, and a method for producing the same.

【0002】[0002]

【従来の技術】電気化学検出は溶液中の水素イオン濃
度、微量に存在するイオン、ホルモンや糖などの生体中
の微量成分などの検出に利用されている。生体中に存在
する化合物では、カテコールアミン、インドールアミン
などの生体アミン類、ブドウ糖、果糖などの糖類、アセ
チルコリン、アミノ酸などの測定に電気化学測定が広く
用いられている。このなかで生体アミン類は、電極上で
直接酸化還元反応を起こすため、炭素電極等を利用し容
易に検出される。一方、他の物質は、電極上で直接反応
を起こさない。このため、糖類やアセチルコリン、コリ
ンについては酸化酵素の酵素反応により過酸化水素を生
成させ、それを電極反応により検出する方法や酵素反応
によって消費される酸素の減少量を測定することにより
定量される。一方、アミノ酸類については電気化学的に
活性な物質を被測定物質に結合させて誘導化した後電気
化学反応により検出されている。酵素反応で生成する過
酸化水素の測定や酵素反応で消費される酸素の測定で
は、電気化学分析に良く用いられる貴金属(金、白金)
や炭素電極の中で、過酸化水素や酸素が白金上で最も容
易に酸化されるため、広く使用されている。しかしなが
ら、糖尿病の診断に広く利用されている糖類の検出で
は、かなり高い濃度の被測定物質の定量が要求されるた
め、連続測定や多数のサンプルの測定中に白金電極の表
面が汚染されてくると、過酸化水素の反応速度は大幅に
低下し、被測定物質の濃度が増加しても過酸化水素の電
極反応が追随できず、信号が飽和する。また、電極で同
一濃度の試料の測定を行うと信号の経時変化が大きい。
これを解決するため、電極上に白金黒をメッキする方法
が知られている。白金黒は、見掛けの面積が等しい場合
通常の白金電極に比較し1000倍以上の実表面積を有
するため高濃度の過酸化水素の測定を行っても、信号の
飽和が起こりにくい。糖類の測定では、一般に白金電極
上に白金黒をメッキして被測定物質濃度の高い試料の測
定を行っているが、逆に低濃度の試料の測定が必要なア
セチルコリン/コリンの検出では検出器の検出限界の向
上が要求されている。アセチルコリンとコリン分析では
両者をカラムで分離した後、アセチルコリンはコリンエ
ステラーゼでコリンに変換した後、コリンオキシターゼ
で酸化、コリンは直接コリンオキシターゼで酸化し、発
生した過酸化水素を白金電極により検出している。更
に、生体中で使用できるバイオセンサー用電極として白
金ワイヤー電極の先に酵素を白金黒に取り込ませる形で
メッキした微小電極が報告されている。
2. Description of the Related Art Electrochemical detection is used to detect hydrogen ion concentration in a solution, ions present in a trace amount, and trace components in a living body such as hormones and sugars. For compounds existing in the living body, electrochemical measurement is widely used for measuring biogenic amines such as catecholamines and indoleamines, sugars such as glucose and fructose, acetylcholine and amino acids. Among these, biogenic amines directly undergo an oxidation-reduction reaction on the electrode, and thus are easily detected using a carbon electrode or the like. On the other hand, other substances do not react directly on the electrodes. Therefore, saccharides, acetylcholine, and choline are quantified by a method of generating hydrogen peroxide by an enzymatic reaction of an oxidase and detecting it by an electrode reaction, or by measuring a decrease amount of oxygen consumed by the enzymatic reaction. . On the other hand, amino acids are detected by electrochemical reaction after binding an electrochemically active substance to the substance to be measured and derivatization. Noble metals (gold, platinum) often used for electrochemical analysis in the measurement of hydrogen peroxide produced by enzymatic reaction and the measurement of oxygen consumed by enzymatic reaction.
Hydrogen peroxide and oxygen are widely used in carbon and carbon electrodes because they are most easily oxidized on platinum. However, the detection of saccharides, which is widely used in the diagnosis of diabetes, requires the quantification of a substance to be measured at a considerably high concentration, so the platinum electrode surface becomes contaminated during continuous measurement or measurement of many samples. Then, the reaction rate of hydrogen peroxide decreases significantly, and even if the concentration of the substance to be measured increases, the electrode reaction of hydrogen peroxide cannot follow and the signal is saturated. Further, when a sample having the same concentration is measured with the electrodes, the change of the signal with time is large.
In order to solve this, a method of plating platinum black on the electrode is known. Platinum black has an actual surface area that is 1000 times or more that of a normal platinum electrode when the apparent areas are the same, so that signal saturation is unlikely to occur even when a high concentration of hydrogen peroxide is measured. In the measurement of sugars, platinum black is generally plated on a platinum electrode to measure a sample with a high concentration of the substance to be measured, but conversely, a detector for detecting acetylcholine / choline, which requires measurement of a low concentration sample, is used. Improvement of the detection limit of is required. In acetylcholine and choline analysis, after separating both by column, acetylcholine is converted to choline by cholinesterase, then oxidized by choline oxidase, choline is directly oxidized by choline oxidase, and hydrogen peroxide generated is detected by platinum electrode. . Furthermore, as a biosensor electrode that can be used in a living body, a microelectrode plated with a platinum wire electrode in which platinum black is incorporated with an enzyme has been reported.

【0003】白金黒電極は表面積が非常に大きいため、
見掛けの電極面積当りの過酸化水素の反応速度が大きく
非常に大きな電流値が得られる。しかしながら、電極表
面積の増加によりノイズも増加する。その結果、高い濃
度の測定が必要な糖類検出には適しているが、低い検出
限界が要求されているアセチルコリン、コリンなどの神
経伝達物質の検出に使用するとノイズも増加するため、
低い検出限界を得ることができなかった。一方、白金電
極のままでは、電極の過酸化水素に対する反応性が徐々
に低下し、安定性に劣る欠点があった。近年、微小電極
を用いて微量物質を高感度に測定する方法が数多く行わ
れている。微小電極では単位面積当りに拡散してくる被
測定物質の量が多いために高い電流密度が得られ、S/
N比が向上するため検出限界を向上することができる。
しかしながら、単一の微小電極では面積が極めて小さい
ため高電流密度が得られるものの、絶対電流値は極めて
小さい。微小電極を多数集積しマイクロアレイ化するこ
とで電流の絶対値を保持したままで、電流密度を向上さ
せ、検出限界を向上させることができる。図3及び図4
は従来報告されている微小アレイ電極の模式図であり、
図3は導電性繊維を絶縁体中に封入し端面を研磨した電
極の構造の模式図、図4はリソグラフィ(微細加工)技
術により作製した電極の構造の模式図である。符号11
は絶縁性ポリマー、12は白金線、13は微小な円形パ
タン電極、14は絶縁膜、15は白金薄膜、16は絶縁
性基板を意味する。すなわちマイクロアレイ電極は、図
3に示すように白金線を束ねてポリマー中に封入し端面
を研磨してマイクロディスク電極を得る方法や、図4に
示すように基板上に形成した白金薄膜上に絶縁膜を形成
し、その後、フォトリソグラフィとドライエッチング法
により微小な円形パタンやバンド状パタンを多数形成
し、マイクロアレイ化する方法が用いられている。しか
しながら、白金ファイバーを封入する方法では、電極サ
イズがファイバーの径によって決まるため、数ミクロン
以下のパタンを得るのが困難である。また、リソグラフ
ィ技術を用いる場合も、サブミクロンあるいはそれ以下
の超微小なアレイ電極を形成するためには、電子線リソ
グラフィ法を使用する必要が有り、多数の電極パタンの
作製に時間がかかるなどの欠点があった。更にリソグラ
フィ技術を使用した電極作製では装置が高いことや工程
数が増えるなどの理由により電極製造コストが増加する
などの欠点があった。
Since the platinum black electrode has a very large surface area,
The reaction rate of hydrogen peroxide per apparent electrode area is large and a very large current value can be obtained. However, the noise increases as the electrode surface area increases. As a result, it is suitable for saccharide detection that requires high concentration measurement, but it also increases noise when used for detection of neurotransmitters such as acetylcholine and choline, which require low detection limits.
It was not possible to obtain a low detection limit. On the other hand, if the platinum electrode is used as it is, the reactivity of the electrode with respect to hydrogen peroxide gradually decreases, and there is a drawback that the stability is poor. In recent years, there have been many methods for measuring trace substances with high sensitivity using microelectrodes. With a microelectrode, a high current density is obtained because the amount of the substance to be measured that diffuses per unit area is large, and S /
Since the N ratio is improved, the detection limit can be improved.
However, although a single microelectrode has a very small area, a high current density can be obtained, but the absolute current value is extremely small. By integrating a large number of microelectrodes into a microarray, it is possible to improve the current density and the detection limit while maintaining the absolute value of the current. 3 and 4
Is a schematic diagram of a microarray electrode that has been reported so far,
FIG. 3 is a schematic diagram of the structure of an electrode in which conductive fibers are enclosed in an insulator and the end face is polished, and FIG. 4 is a schematic diagram of the structure of an electrode produced by a lithography (fine processing) technique. Code 11
Is an insulating polymer, 12 is a platinum wire, 13 is a minute circular pattern electrode, 14 is an insulating film, 15 is a platinum thin film, and 16 is an insulating substrate. That is, the microarray electrode is obtained by bundling platinum wires as shown in FIG. 3 and enclosing it in a polymer and polishing the end face to obtain a microdisk electrode, or as shown in FIG. 4, insulating on a platinum thin film formed on a substrate. A method is used in which a film is formed, and thereafter, a large number of minute circular patterns or band-shaped patterns are formed by photolithography and dry etching to form a microarray. However, in the method of encapsulating platinum fiber, it is difficult to obtain a pattern of several microns or less because the electrode size is determined by the diameter of the fiber. Further, even in the case of using a lithography technique, it is necessary to use an electron beam lithography method to form an ultrafine array electrode of submicron or smaller, and it takes time to prepare a large number of electrode patterns. There was a drawback. Further, in the electrode production using the lithographic technique, there are drawbacks such as an increase in the electrode manufacturing cost due to the fact that the apparatus is expensive and the number of steps is increased.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、前記
した従来技術の欠点を改良した電気化学検出器、及びそ
の製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrochemical detector and a method of manufacturing the same which ameliorates the above-mentioned drawbacks of the prior art.

【0005】[0005]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は電気化学検出器に関する発明であっ
て、被測定物質の電気化学反応が極めて起こりにくい導
電体上に、被測定物質が電気化学反応を容易に起こす導
電体の10μm以下のパタンが、複数形成されているこ
とを特徴とする。また、本発明の第2の発明は電気化学
検出器の製造方法に関する発明であって、前記第1の発
明の電気化学検出器を製造する方法において、被測定物
質と電気化学反応を容易に起こす導電体のパタンがメッ
キ法によって作製されることを特徴とする。そして、本
発明の第3の発明は、他の電気化学検出器の製造方法に
関する発明であって、前記第1の発明の電気化学検出器
を製造する方法において、被測定物質と電気化学反応を
容易に起こす導電体のパタンを絶縁性基板上に金属分子
が配位した芳香族系化合物を薄膜形成し、その熱分解に
より作製することを特徴とする。
The present invention will be summarized as follows. The first invention of the present invention is an invention relating to an electrochemical detector, in which an electrochemical reaction of a substance to be measured is extremely unlikely to occur. It is characterized in that a plurality of conductor patterns of 10 μm or less in which the substance to be measured easily causes an electrochemical reaction are formed. A second invention of the present invention relates to a method of manufacturing an electrochemical detector, wherein in the method of manufacturing the electrochemical detector of the first invention, an electrochemical reaction easily occurs with a substance to be measured. It is characterized in that the conductor pattern is produced by a plating method. A third invention of the present invention relates to another method for manufacturing an electrochemical detector, wherein in the method for manufacturing the electrochemical detector of the first invention, the substance to be measured and the electrochemical reaction are It is characterized in that a pattern of a conductor which is easily generated is formed by forming a thin film of an aromatic compound having metal molecules coordinated on an insulating substrate and thermally decomposing the thin film.

【0006】電気化学活性な物質の中で電極との電子移
動反応速度が小さいものでは、電極表面の状態や電極の
材質によって電気化学反応の電位が大きく異なる。例え
ば、過酸化水素は白金電極では銀/塩化銀参照電極に対
して0.5Vで充分な酸化反応が起こるが、炭素電極、
金電極では同じ電位でほとんど反応が起こらない。本発
明では、この効果を利用し、被測定物質が電気化学反応
を起こさない導電体上に、被測定物質が電気化学反応を
起こしやすい電極材料を用いて多数の微小電極パタンを
作製した。その結果、形成された微小パタンが被測定物
質に対してそれぞれ超微小電極として働き、被測定物質
が微小電極上のみに集中して拡散するため大きな電流密
度を保持したままで微小電極と同様な高い電流密度が達
成され、高感度化が実現できることを見出し本発明に至
った。
Among the electrochemically active substances, those having a low electron transfer reaction rate with the electrode have a great difference in the potential of the electrochemical reaction depending on the state of the electrode surface and the material of the electrode. For example, hydrogen peroxide has a sufficient oxidation reaction at 0.5 V with respect to a silver / silver chloride reference electrode at a platinum electrode, but a carbon electrode,
The gold electrode hardly reacts at the same potential. In the present invention, by utilizing this effect, a large number of microelectrode patterns are produced on an electric conductor on which a substance to be measured does not cause an electrochemical reaction by using an electrode material on which the substance to be measured easily causes an electrochemical reaction. As a result, the formed minute patterns act as ultra-fine electrodes for the substance to be measured, and the substance to be measured concentrates and diffuses only on the minute electrodes, so that a large current density is maintained and the same as with the minute electrodes. The inventors have found that a high current density can be achieved and high sensitivity can be realized, and the present invention has been completed.

【0007】以下、本発明を詳細に説明する。一般に無
電解メッキ法、蒸着法、スパッタ法などの薄膜形成法
で、形成する導電体の量を制限することにより絶縁性基
板上に微小な島状の導電性パタンを得ることができる。
しかしながら、形成された微小な電極パタンはそれぞれ
が電気的に接続されていないためにそれぞれをリードに
よって接続することなしには微小電極の集合体として使
用することはできない。本発明では下地電極として被測
定物質が電気化学反応を起こさない導電体が存在するた
め、リソグラフィ法など微細加工技術を用いることなし
に、メッキ法や蒸着、スパッタ法などで微小電極の集合
体(微小アレイ電極)を得ることができる特徴を有して
いる。
Hereinafter, the present invention will be described in detail. In general, a fine island-shaped conductive pattern can be obtained on an insulating substrate by limiting the amount of a conductor to be formed by a thin film forming method such as an electroless plating method, a vapor deposition method and a sputtering method.
However, since the formed fine electrode patterns are not electrically connected to each other, they cannot be used as an assembly of microelectrodes without connecting each with a lead. In the present invention, since there is a conductor that does not cause an electrochemical reaction of the substance to be measured as the base electrode, an assembly of microelectrodes (plating method, vapor deposition, sputtering method, etc., without using a microfabrication technique such as a lithography method ( It has a feature that a micro array electrode) can be obtained.

【0008】下記の各実施例において被測定物質が極め
て電気化学反応を起こしにくい導電体と電気化学反応を
容易に起こす導電体材料の組合せとして、被測定物質が
過酸化水素の場合、白金やコバルトなど過酸化水素の電
気化学反応速度が大きい金属とその他の金属、炭素、酸
化スズや酸化インジウムなどの半導体の組合せが挙げら
れる。また、被測定物質が酸素の場合の組合せとして白
金やコバルトなど酸素の電気化学反応速度が大きい金属
と炭素など過電圧が大きい導電体の薄膜との組合せが挙
げられる。また、被測定物質が二酸化炭素の場合は、銅
の微小電極と他の金属、炭素、半導体とその薄膜との組
合せが挙げられる。次に、導電体上への微細な電極パタ
ンの形成法としては、メッキ法、量を極めて制限した蒸
着法やスパッタ法、金属を取り込んだフタロシアニンや
ポルフィリンなどの有機物を薄膜化し、その後真空中で
加熱分解することにより炭素膜中に被測定物質に対して
反応性の大きい金属微粒子を形成する方法が挙げられ
る。
In each of the following examples, when the substance to be measured is hydrogen peroxide, platinum or cobalt is used as a combination of a conductor in which the substance to be measured hardly causes an electrochemical reaction and a conductor material in which an electrochemical reaction easily occurs. Examples include a combination of a metal having a high electrochemical reaction rate of hydrogen peroxide and another metal, carbon, and a semiconductor such as tin oxide or indium oxide. When the substance to be measured is oxygen, a combination of a metal such as platinum and cobalt having a high electrochemical reaction rate of oxygen and a thin film of a conductor having a large overvoltage such as carbon can be mentioned. When the substance to be measured is carbon dioxide, a combination of a copper microelectrode and another metal, carbon, a semiconductor and a thin film thereof can be used. Next, as a method for forming a fine electrode pattern on a conductor, a plating method, an evaporation method or a sputtering method in which the amount is extremely limited, a thin film of an organic substance such as phthalocyanine or porphyrin containing metal, and then in a vacuum There is a method of forming fine metal particles having high reactivity with the substance to be measured in the carbon film by thermal decomposition.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。なお、本発明は以下の実施例のみに限定さ
れるものではない。
Embodiments of the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the following examples.

【0010】実施例1 表面に厚さ1μmの酸化膜が形成されたシリコン基板
(住友シチックス社製)をメタルマスクを重ねてスパッ
タ装置(日本シード社製)に入れ、クロムを10nm基
板上に堆積した後、金を100nm堆積して直径3mm
の金薄膜電極を作製した。その後、当該電極基板を関数
発生器(東方技研社製)によって電位制御されたポテン
シオスタット(東方技研社製)の作用電極端子に接続
し、参照電極に銀/塩化銀、対向電極に白金ワイヤーを
用いて、白金メッキ溶液に浸漬した。白金メッキ溶液は
約1グラムの塩化白金酸を30mlの水に溶解させたの
ち10mgの酢酸鉛を添加した溶液を水で1/10の濃
度になるように希釈して使用した。作用電極端子に接続
した金薄膜電極に参照電極に対して、−1.5Vの電位
を1秒、3.0Vの電位で3秒電解、又は電解電圧をそ
れぞれ−2.2Vで1秒、3.0Vで3秒間として白金
黒をメッキした。図1及び図2にそれぞれの電解条件で
作製した電極構造の模式図を示す。すなわち図1及び図
2はそれぞれ金薄膜上に形成された白金黒の構造の模式
図である。なお図1はメッキ量が少なく超微小な白金黒
アレイが得られた場合を、図2は白金黒メッキ量が多い
場合を示し、符号21は金薄膜、22は白金黒パタン、
23は絶縁性基板を意味する。図1は低電圧で白金黒を
形成した電極で、金薄膜電極基板上に微小なディスク電
極がそれぞれ間隔をおいて形成されている。一方、図2
では、金薄膜電極のほぼ全面が白金黒の膜に覆われてお
り、メッキ量が多いことがわかる。この電極を、図5に
示すようなクロマトグラフィ装置の電気化学検出器とし
て薄層セルに装着した。図5はアセチルコリンコリン分
析用クロマトグラフィ装置の模式図であり、図5中31
はクロマトグラフィ用ポンプ、32はキャリア溶液入
れ、33はサンプルを導入するインジェクター、34は
アセチルコリンとコリンを分離する分離カラム、35は
アセチルコリンエステラーゼとコリンオキシターゼが固
定化された反応カラム、36が電気化学検出器が装着さ
れた薄層セルで一方のブロックがステンレススチール製
で対向電極を兼ねている。また、37が参照電極、38
が本発明の電極、39がポテンシオスタット、40が廃
液入れである。図5中、インジェクターより導入された
アセチルコリン及びコリンは、分離カラムによって、先
にアセチルコリン、後にコリンが溶出されるように分離
され反応カラムに導入される。反応カラムではアセチル
コリンはコリンエステラーゼによってコリンに変換され
た後、コリンオキシターゼによってベタインと過酸化水
素に酸化され、過酸化水素が電極上で酸化されることに
より信号が得られる。一方、コリンは直接コリンオキシ
ターゼによりベタインと過酸化水素に酸化され、アセチ
ルコリンと同様に過酸化水素の信号より濃度が測定され
る。過酸化水素の酸化のために電極電位は銀/塩化銀電
極に対して0.5Vに設定した。
Example 1 A silicon substrate (manufactured by Sumitomo Sitix Co., Ltd.) on the surface of which an oxide film having a thickness of 1 μm was formed was placed in a sputtering apparatus (manufactured by Nippon Seed Co.) with a metal mask, and chromium was deposited on the 10 nm substrate. After that, deposit 100 nm of gold and have a diameter of 3 mm
A gold thin film electrode was prepared. Then, the electrode substrate was connected to a working electrode terminal of a potentiostat (manufactured by Toho Giken) whose potential was controlled by a function generator (manufactured by Toho Giken), and silver / silver chloride was used as a reference electrode and a platinum wire was used as a counter electrode. Was immersed in the platinum plating solution. As the platinum plating solution, about 1 gram of chloroplatinic acid was dissolved in 30 ml of water, and then a solution containing 10 mg of lead acetate was diluted with water to a concentration of 1/10 for use. With respect to the gold thin film electrode connected to the working electrode terminal, with respect to the reference electrode, an electric potential of -1.5 V was applied for 1 second, an electric potential of 3.0 V was applied for 3 seconds, or an electrolysis voltage was -2.2 V for 1 second, 3 respectively. Platinum black was plated at 0.0 V for 3 seconds. 1 and 2 show schematic views of electrode structures produced under the respective electrolysis conditions. That is, FIGS. 1 and 2 are schematic views of the structure of platinum black formed on the gold thin film. Note that FIG. 1 shows a case where an ultra-fine platinum black array with a small plating amount is obtained, and FIG. 2 shows a case where the platinum black plating amount is large. Reference numeral 21 is a gold thin film, 22 is a platinum black pattern,
Reference numeral 23 denotes an insulating substrate. FIG. 1 shows an electrode in which platinum black is formed at a low voltage, and minute disk electrodes are formed at intervals on a gold thin film electrode substrate. On the other hand, FIG.
Shows that almost the entire surface of the gold thin film electrode is covered with the platinum black film, and the plating amount is large. This electrode was attached to a thin layer cell as an electrochemical detector of a chromatography device as shown in FIG. FIG. 5 is a schematic view of a chromatography device for acetylcholine choline analysis.
Is a pump for chromatography, 32 is a carrier solution, 33 is an injector for introducing a sample, 34 is a separation column for separating acetylcholine and choline, 35 is a reaction column in which acetylcholinesterase and choline oxidase are immobilized, and 36 is electrochemical detection. A thin layer cell equipped with a vessel, one block of which is made of stainless steel and also serves as a counter electrode. Further, 37 is a reference electrode, 38
Is an electrode of the present invention, 39 is a potentiostat, and 40 is a waste liquid container. In FIG. 5, acetylcholine and choline introduced from the injector are separated by a separation column so that acetylcholine is eluted first and then choline is eluted, and then introduced into the reaction column. In the reaction column, acetylcholine is converted to choline by cholinesterase, and then oxidized by betaine and hydrogen peroxide by choline oxidase, and the hydrogen peroxide is oxidized on the electrode to obtain a signal. On the other hand, choline is directly oxidized to betaine and hydrogen peroxide by choline oxidase, and the concentration is measured from the signal of hydrogen peroxide like acetylcholine. The electrode potential was set to 0.5 V against the silver / silver chloride electrode for the oxidation of hydrogen peroxide.

【0011】アセチルコリン、コリン各1pmolを含
む水溶液5μlを導入し、キャリア溶液は50mMのリ
ン酸水素ナトリウム、0.5mMのEDTAを含む水溶
液で水酸化ナトリウム溶液によりpH8に調整した。ま
た、流速は120μl/minとして−1.5Vと−
2.2Vで白金黒メッキを行った電極2種類を用いて測
定を行った。図6は1pmolのアセチルコリン、コリ
ンをインジェクションした時のクロマトグラムを示す図
である。試料導入後7.6分後と9.2分後に図6に示
すような2つの電流ピークが観測され、前者がアセチル
コリン、後者がコリンのピークに対応している。ピーク
の絶対値は、−1.5Vで作製した電極は信号絶対値が
アセチルコリンでは6.3nA、コリンでは5.7nA
のピークが得られた。一方、−2.2Vで作製した電極
ではそれぞれ、10.5nA、9.6nAのピークが得
られ、白金黒の増加によってピーク電流も増加すること
が分かった。それに対して、金薄膜電極を白金黒メッキ
しない場合はピーク電流はほとんど観測されなかった。
また、金薄膜表面が全面白金黒に覆われると、ピークの
値はほぼ飽和し、その後白金黒の堆積量を増やしても信
号の増加は観測されなかった。しかしながら、試料をイ
ンジェクションせずに、ベースラインノイズを測定する
と、白金黒のメッキ量の増加に伴い、ノイズも増加し、
−1.5Vでメッキした電極では21pA、−2.2V
でメッキした電極では70.5pAのノイズが観測さ
れ、−1.5Vでメッキした電極がS/N比が最も高
く、アセチルコリンについては10fmol、コリンに
ついては10.9fmolの低い検出限界が得られた。
また、市販の直径3mmの白金ディスク電極〔バイオア
ナリチカル システムズ(Bioanalytical Systems)社
製〕を用いて同様の測定を行うと検出限界は50fmo
lであった。−1.5Vでメッキした電極では図1に示
す白金黒超微小電極上のみで過酸化水素が反応するた
め、それぞれの白金黒ディスク電極上での過酸化水素の
拡散が半球状になって高い電流密度が得られる。一方、
白金黒量が増加すると微小電極の数及びサイズが増加し
各電極間距離が近くなるため、拡散層は重なり合う。そ
の結果、微小電流の効果は失われ電流密度が低下する。
一方、ノイズは電極表面積の増加に伴って増加するた
め、メッキ量を増やしても検出限界を向上させることが
できない。
5 μl of an aqueous solution containing 1 pmol each of acetylcholine and choline was introduced, and the carrier solution was adjusted to pH 8 with a sodium hydroxide solution with an aqueous solution containing 50 mM sodium hydrogen phosphate and 0.5 mM EDTA. In addition, the flow rate was 120 μl / min and was −1.5 V
The measurement was performed using two types of electrodes plated with platinum black at 2.2V. FIG. 6 is a diagram showing a chromatogram when 1 pmol of acetylcholine and choline were injected. Two current peaks as shown in FIG. 6 were observed 7.6 minutes and 9.2 minutes after the introduction of the sample, the former corresponding to the peak of acetylcholine and the latter corresponding to the peak of choline. The absolute value of the peak is 6.3 nA for acetylcholine and 5.7 nA for choline for the electrodes prepared at -1.5 V.
Was obtained. On the other hand, in the electrodes manufactured at -2.2 V, peaks of 10.5 nA and 9.6 nA were obtained, respectively, and it was found that the peak current also increases as the platinum black increases. In contrast, when the gold thin film electrode was not plated with platinum black, almost no peak current was observed.
When the entire surface of the gold thin film was covered with platinum black, the peak value was almost saturated, and no increase in signal was observed even if the amount of platinum black deposited was increased thereafter. However, when the baseline noise was measured without injecting the sample, the noise increased as the platinum black plating amount increased,
21pA, -2.2V for electrodes plated at -1.5V
A noise of 70.5 pA was observed at the electrode plated with, and the electrode plated at -1.5 V had the highest S / N ratio, and a low detection limit of 10 fmol for acetylcholine and 10.9 fmol for choline was obtained. .
In addition, when the same measurement is performed using a commercially available platinum disk electrode having a diameter of 3 mm (manufactured by Bioanalytical Systems), the detection limit is 50 fmo.
It was l. In the electrode plated with −1.5V, hydrogen peroxide reacts only on the platinum black ultrafine electrode shown in FIG. 1, so that the diffusion of hydrogen peroxide on each platinum black disk electrode becomes hemispherical. A high current density can be obtained. on the other hand,
As the amount of platinum black increases, the number and size of microelectrodes increase, and the distance between the electrodes decreases, so that the diffusion layers overlap. As a result, the effect of the minute current is lost and the current density is reduced.
On the other hand, noise increases as the electrode surface area increases, so the detection limit cannot be improved even if the plating amount is increased.

【0012】実施例2 実施例1と同様な方法を用いて金薄膜電極を作製し、そ
の表面に白金黒ディスクアレイ電極を形成した。その
後、白金黒電極を形成した金電極をリン酸緩衝溶液(p
H7、50mM)で洗浄し、リン酸緩衝溶液で希釈した
グルタメートオキシターゼ水溶液(200ユニット/m
l)に30分浸漬した後、アルブミン溶液(5%)とグ
ルタルアルデヒド溶液(1%)に順に浸して白金黒電極
中にグルタメートオキシターゼを固定化した。また、実
施例1と同様に金薄膜電極全面を白金黒で覆った電極も
作製し、同様な工程でグルタメートオキシターゼの固定
化を行った。これらの電極を、図7に示すように種々の
濃度のグルタメートを含むリン酸緩衝溶液(pH7、5
0mM)中に参照、対向電極と共に浸し、電流値の測定
を行った。なお図7はグルタメートの濃度と電流の関係
を測定した電気化学セルの模式図であり、符号51は本
発明の実施例5に示した電極、52は対向電極、53は
参照電極、54はグルタメートを含む溶液を意味する。
その結果、白金黒ディスクアレイ電極を形成した金電極
検出器では、0.5μMの検出限界が得られたのに対し
て、全面を白金黒電極に覆われた電極では検出限界は2
μMで白金黒ディスクアレイ構造を形成することで検出
限界が大きく向上した。
Example 2 A gold thin film electrode was prepared in the same manner as in Example 1, and a platinum black disk array electrode was formed on the surface thereof. Then, the gold electrode on which the platinum black electrode was formed was put into a phosphate buffer solution (p
H7, 50 mM), and an aqueous glutamate oxidase solution (200 units / m 2) diluted with a phosphate buffer solution.
After dipping in l) for 30 minutes, the albumin solution (5%) and the glutaraldehyde solution (1%) were sequentially dipped to fix glutamate oxidase in the platinum black electrode. Also, an electrode in which the entire surface of the gold thin film electrode was covered with platinum black was prepared in the same manner as in Example 1, and glutamate oxidase was immobilized in the same process. As shown in FIG. 7, these electrodes were placed in a phosphate buffer solution (pH 7, 5) containing various concentrations of glutamate.
The sample was dipped in 0 mM) together with a reference electrode and a counter electrode, and the current value was measured. FIG. 7 is a schematic diagram of an electrochemical cell in which the relationship between glutamate concentration and current is measured. Reference numeral 51 is the electrode shown in Example 5 of the present invention, 52 is a counter electrode, 53 is a reference electrode, and 54 is glutamate. Means a solution containing.
As a result, the detection limit of 0.5 μM was obtained with the gold electrode detector formed with the platinum black disk array electrode, whereas the detection limit was 2 with the electrode entirely covered with the platinum black electrode.
The detection limit was greatly improved by forming a platinum black disk array structure with μM.

【0013】実施例3 クロマトグラフィ用の直径3mmの市販の金ディスク電
極(バイオアナリチカル システムズ社製)をポテンシ
オスタット(東方技研社製)の作用電極端子に接続し、
参照電極に銀/塩化銀、対向電極に白金ワイヤーを用い
て、白金メッキ溶液に浸漬した。白金メッキ溶液は約1
グラムの塩化白金酸を30mlの水に溶解させたのち1
0mgの酢酸鉛を添加した溶液を水で1/10の濃度に
なるように希釈して使用した。作用電極端子に接続した
金薄膜電極に参照電極に対して、−1.5Vの電位を1
秒、3.0Vの電位を3秒印加し、金電極上にサブミク
ロン台の多数の白金黒マイクロディスク電極を作製し
た。この電極を実施例1と同様なクロマトグラフィ装置
に装着し、実施例1と同様な測定条件でアセチルコリン
/コリンの検出を行った。1pmolのアセチルコリン
とコリンを含む水溶液(5μl)をインジェクションし
たところ、アセチルコリンについては7.3nA、コリ
ンについては6.6nAのピークが得られた。次に、直
径3mmの白金ディスク電極を検出器として同様の実験
を行ったところ、アセチルコリンでは4.1nA、コリ
ンでは3.7nAのピークが得られた。またそれぞれの
ノイズレベルは、白金黒微小電極パタンを有する金電極
では0.03nA、白金ディスク電極では0.08nA
の結果が得られ本発明の電気化学検出器ではより低い検
出限界を実現した。
Example 3 A commercially available gold disk electrode (made by Bio-Analytical Systems) having a diameter of 3 mm for chromatography was connected to a working electrode terminal of potentiostat (made by Toho Giken Co., Ltd.),
Using a silver / silver chloride as a reference electrode and a platinum wire as a counter electrode, it was immersed in a platinum plating solution. Platinum plating solution is about 1
After dissolving 1 g of chloroplatinic acid in 30 ml of water, 1
The solution to which 0 mg of lead acetate was added was diluted with water to a concentration of 1/10 and used. To the gold thin film electrode connected to the working electrode terminal, a potential of -1.5 V is applied to the reference electrode by 1
Second, a potential of 3.0 V was applied for 3 seconds to prepare a number of submicron platinum black microdisk electrodes on the gold electrode. This electrode was attached to the same chromatography device as in Example 1, and acetylcholine / choline was detected under the same measurement conditions as in Example 1. When an aqueous solution (5 μl) containing 1 pmol of acetylcholine and choline was injected, peaks of 7.3 nA for acetylcholine and 6.6 nA for choline were obtained. Next, when a similar experiment was conducted using a platinum disk electrode having a diameter of 3 mm as a detector, peaks of 4.1 nA for acetylcholine and 3.7 nA for choline were obtained. The noise level was 0.03 nA for the gold electrode with the platinum black microelectrode pattern and 0.08 nA for the platinum disk electrode.
The following results were obtained, and the electrochemical detector of the present invention realized a lower detection limit.

【0014】実施例4 表面に酸化膜を有する3インチシリコンウエハを図8に
示すように内部を減圧することが可能な石英チューブ中
に入れて直径3mmの電極とリード部分を有するメタル
マスクを重ねた。すなわち図8は炭素薄膜電極作製法の
模式図であり、符号61は石英チューブ、62は3,
4,9,10−ペリレンテトラカルボン酸無水物、63
は昇華用電気炉(400℃)、64は熱分解用電気炉
(1000℃)、65は3インチシリコンウエハ、66
はメタルマスクを意味する。その後3,4,9,10−
ペリレンテトラカルボン酸無水物を400℃で昇華さ
せ、1000℃、0.001Torrの条件でシリコン
上に基板上に熱分解物を堆積させた。1000℃にて1
5分間保持した後に徐冷させ表面抵抗300オーム程度
の導電性炭素薄膜電極を得た。その電極上に実施例1と
同様な方法によって白金黒微小ディスクアレイを形成し
た。炭素薄膜上に形成した白金微小ディスクは実施例1
において金薄膜電極上に形成したものと非常に類似な構
造が得られた。また、白金黒のメッキ量を増やして、炭
素薄膜全面が白金黒に覆われた電極も作製した。また、
白金黒をメッキしない炭素薄膜も合せて作製した。これ
らの電極を実施例1と同様なクロマトグラフィ装置に装
着し、実施例1と同様な測定条件でアセチルコリン/コ
リンの検出を行った。1pmolのアセチルコリンとコ
リンを含む水溶液(5μl)をインジェクションしたと
ころ、アセチルコリンについては8.5nA、コリンに
ついては7.0nAのピークが得られた。それに対し
て、全面が白金黒に覆われた電極ではそれぞれ、12.
3nA、11.2nAのピークが得られ、白金黒の増加
によってピーク電流も増加することが分かった。また、
炭素薄膜電極単独では大きなピーク電流はほとんど観測
されなかった。次に、試料をインジェクションせずに、
ベースラインノイズを測定すると、白金黒のメッキ量の
増加に伴い、ノイズも増加し、−1.5Vでメッキした
電極では22.6pA、−2.2Vでメッキした電極で
は115pAのノイズが観測された。その結果、−1.
5Vでメッキした電極がS/N比が最も高く、アセチル
コリンについては8fmol、コリンについては9.7
fmolの検出限界が得られることが分かった。
Example 4 A 3-inch silicon wafer having an oxide film on its surface was placed in a quartz tube whose inside can be decompressed as shown in FIG. 8, and an electrode having a diameter of 3 mm and a metal mask having a lead portion were overlaid. It was That is, FIG. 8 is a schematic view of a carbon thin film electrode manufacturing method, in which reference numeral 61 is a quartz tube, and 62 is
4,9,10-perylene tetracarboxylic acid anhydride, 63
Is an electric furnace for sublimation (400 ° C.), 64 is an electric furnace for thermal decomposition (1000 ° C.), 65 is a 3-inch silicon wafer, 66
Means a metal mask. Then 3, 4, 9, 10-
Perylene tetracarboxylic acid anhydride was sublimated at 400 ° C., and a thermal decomposition product was deposited on the substrate on silicon under the conditions of 1000 ° C. and 0.001 Torr. 1 at 1000 ° C
After holding for 5 minutes, it was gradually cooled to obtain a conductive carbon thin film electrode having a surface resistance of about 300 ohms. A platinum black microdisk array was formed on the electrode by the same method as in Example 1. The platinum micro disk formed on the carbon thin film was used in Example 1.
In, a structure very similar to that formed on the gold thin film electrode was obtained. Also, an electrode in which the entire carbon thin film was covered with platinum black was prepared by increasing the amount of platinum black plating. Also,
A carbon thin film not plated with platinum black was also prepared. These electrodes were mounted on the same chromatography device as in Example 1, and acetylcholine / choline was detected under the same measurement conditions as in Example 1. When an aqueous solution (5 μl) containing 1 pmol of acetylcholine and choline was injected, peaks of 8.5 nA for acetylcholine and 7.0 nA for choline were obtained. On the other hand, in the case of electrodes whose entire surface is covered with platinum black, 12.
A peak of 3 nA and 11.2 nA was obtained, and it was found that the increase of platinum black also increased the peak current. Also,
A large peak current was hardly observed with the carbon thin film electrode alone. Next, without injecting the sample,
When the baseline noise was measured, the noise increased as the platinum black plating amount increased, and noise of 22.6 pA was observed at the electrode plated at -1.5 V and 115 pA at the electrode plated at -2.2 V. It was As a result, -1.
The electrode plated at 5V has the highest S / N ratio, 8 fmol for acetylcholine and 9.7 for choline.
It was found that a detection limit of fmol was obtained.

【0015】実施例5 図9に本発明の実施例5の電気化学検出器の製造工程を
示す。すなわち図9は白金黒で部分修飾した金くし形微
小電極の作製の工程図であり、符号71はポジ型ホトレ
ジスト、72はシリコン酸化膜、73はシリコン基板、
74はクロム/金積層薄膜、75はレジスト絶縁膜、7
6は白金黒微小電極パタンを意味する。1μmの酸化膜
付きシリコンウエハ(住友シチックス社製)上に、ホト
レジスト(富士ハント社製 FH6400)を1μmの
厚みに塗布した(a)。このレジスト塗布シリコンウエ
ハをオーブン中に入れ、90℃、90秒の条件でベーク
した。その後、かみ合ったくし形電極パタンが描かれた
クロムマスクを用いてマスクアライナ(キャノン製PL
F−501)により15秒間密着露光した。露光したシ
リコンウエハをレジスト現像液(富士ハント社製)の中
で、20℃、45秒間現像を行い、水洗、乾燥してマス
クパタンをレジストに転写した(b)。このレジスト付
き基板をスパッタ装置(日本シード社製)内の所定位置
に取付け、クロム膜を10nm堆積した後、金あるいは
白金膜を100nm堆積した(c)。その後、基板をメ
チルエチルケトン中に浸漬して超音波処理を行い、電極
形成部以外のレジストをはく離してくし形電極パタンを
得た(d)。次に、基板上にシリコン系ポジ形ホトレジ
スト(SP3C、富士ハント社製)を1μmの厚みにス
ピンコートし、ホットプレート上で90℃、90秒間ベ
ーキングを行った後、マスクを用いて露光、現像し、く
し形作用電極、参照電極先端、対向電極部分を残して、
レジストで覆った(e)。次にそのレジストをオーブン
中200℃で2時間熱硬化し絶縁膜とした。作製した電
気化学検出器はくし形作用電極の電極幅2μm、ギャッ
プ2μm、くしの長さ2mm、くしの本数250対とし
た。その後、当該金くし形電極の両方の端子を関数発生
器(東方技研社製)によって電位制御されたポテンシオ
スタット(東方技研社製)の作用電極端子に接続し、参
照電極に銀/塩化銀、対向電極に白金ワイヤーを用い
て、実施例1と同様な組成の白金メッキ溶液に浸漬し、
−1.5Vで1秒間白金黒のメッキを行うと、くし形電
極の各くしの部分のエッジ部分に電解が集中するため
に、くしのエッジ部分ではサブミクロン台の白金の微小
バンド電極がくしの中央部ではサブミクロン又はそれ以
下の白金ディスクアレイ電極構造が得られた(f)。こ
の電極を、図5に示すようなクロマトグラフィ装置の電
気化学検出器として薄層セルに装着した。実施例1と同
様な条件で1pmolのアセチルコリンとコリンをそれ
ぞれ含むリンガー液を5μlインジェクションしたとこ
ろ、アセチルコリンとコリンに対応した2つの電流ピー
クが観測された。ピークの絶対値は、アセチルコリンで
は3.1nA、コリンでは2.9nAのピークが得られ
た。一方、白金黒をメッキした金くし形電極の替りに白
金くし形電極をクロマトグラフィ検出器に使用し同様の
測定を行うとアセチルコリンでは2.7nA、コリンで
は2.5nAのピークが得られた。また、ベースライン
のノイズを比較すると白金黒メッキ金くし形電極では5
pA、白金くし形電極では13.5pAの値が得られ
た。信号とノイズの関係から、信号がノイズレベルの3
倍になる値を検出限界と決めアセチルコリンについて計
算を行うと、白金黒メッキ金くし形電極では2.2fm
ol、白金くし形電極では9.1fmolの値が得ら
れ、白金黒メッキ金くし形電極がより高感度で低い検出
限界を示すことが分かった。
Embodiment 5 FIG. 9 shows a manufacturing process of an electrochemical detector according to Embodiment 5 of the present invention. That is, FIG. 9 is a process diagram of manufacturing a gold comb-shaped microelectrode partially modified with platinum black. Reference numeral 71 is a positive photoresist, 72 is a silicon oxide film, 73 is a silicon substrate,
74 is a chromium / gold laminated thin film, 75 is a resist insulating film, 7
6 means a platinum black microelectrode pattern. A photoresist (FH6400 manufactured by Fuji Hunt Co., Ltd.) was applied to a silicon wafer with a 1 μm oxide film (manufactured by Sumitomo Sitix Co., Ltd.) to a thickness of 1 μm (a). The resist-coated silicon wafer was put in an oven and baked at 90 ° C. for 90 seconds. After that, a mask aligner (Canon PL
F-501) was used for contact exposure for 15 seconds. The exposed silicon wafer was developed in a resist developer (Fuji Hunt Co., Ltd.) at 20 ° C. for 45 seconds, washed with water and dried to transfer the mask pattern to the resist (b). This substrate with resist was mounted in a predetermined position in a sputtering device (manufactured by Nippon Seed Co., Ltd.), and a chromium film was deposited to 10 nm, and then a gold or platinum film was deposited to 100 nm (c). Then, the substrate was immersed in methyl ethyl ketone and subjected to ultrasonic treatment, and the resist other than the electrode forming portion was peeled off to obtain a comb-shaped electrode pattern (d). Then, a silicon-based positive photoresist (SP3C, manufactured by Fuji Hunt Co., Ltd.) was spin-coated on the substrate to a thickness of 1 μm, baked on a hot plate at 90 ° C. for 90 seconds, and then exposed and developed using a mask. , Leaving the comb-shaped working electrode, reference electrode tip, and counter electrode part,
Covered with resist (e). Next, the resist was thermoset in an oven at 200 ° C. for 2 hours to form an insulating film. The prepared electrochemical detector had a comb-shaped working electrode having an electrode width of 2 μm, a gap of 2 μm, a comb length of 2 mm, and a number of combs of 250 pairs. After that, both terminals of the metal comb electrode were connected to the working electrode terminals of a potentiostat (manufactured by Toho Giken) whose potential was controlled by a function generator (manufactured by Toho Giken), and silver / silver chloride was used as a reference electrode. Using a platinum wire for the counter electrode, immersing in a platinum plating solution having the same composition as in Example 1,
When platinum black plating is performed at -1.5 V for 1 second, electrolysis concentrates at the edge of each comb part of the comb-shaped electrode, so that submicron-sized platinum micro band electrodes are formed at the comb edge. In the central part, a submicron or smaller platinum disk array electrode structure was obtained (f). This electrode was attached to a thin layer cell as an electrochemical detector of a chromatography device as shown in FIG. When 5 μl of Ringer's solution containing 1 pmol of acetylcholine and choline was injected under the same conditions as in Example 1, two current peaks corresponding to acetylcholine and choline were observed. The absolute values of the peaks were 3.1 nA for acetylcholine and 2.9 nA for choline. On the other hand, when a platinum comb-shaped electrode was used for the chromatographic detector instead of the platinum-plated gold comb-shaped electrode, the same measurement was performed, and peaks of 2.7 nA were obtained for acetylcholine and 2.5 nA for choline. In addition, comparing the noise of the baseline, it is 5 for the platinum black plated gold comb electrode.
A value of 13.5 pA was obtained for pA and platinum comb electrodes. Due to the relationship between the signal and noise, the signal has a noise level of 3
When the doubling value is set as the detection limit and calculation is performed for acetylcholine, it is 2.2 fm for the platinum black-plated gold comb electrode.
A value of 9.1 fmol was obtained for the ol and platinum comb electrodes, and it was found that the platinum black-plated gold comb electrode showed higher sensitivity and lower detection limit.

【0016】実施例6 実施例1と同様な方法により酸化膜付きシリコン基板上
に直径3mmの金薄膜電極を作製した。この電極をスパ
ッタ装置(日本シード社製)中に入れ、膜厚が5nm以
下になるように白金をスパッタ法で形成した。この電極
表面組成を調べると金が80%、白金が20%表面に露
出しており、白金薄膜が金薄膜上に島状に形成すること
が確認された。この電極を実施例1と同様なクロマトグ
ラフィ装置の検出器として装着し、1pmolのアセチ
ルコリン及びコリンを含むリンガー溶液5μlをインジ
ェクションしたところアセチルコリンに対しては2.1
nA、コリンでは1.9nAのピークが得られた。一
方、直径3mmの白金くし形電極を検出器に使用する
と、電流値はアセチルコリン、コリン共に約2倍に増加
した。しかしながら、本発明の白金を島状にスパッタし
た金薄膜電極では白金薄膜電極単独に比較し、ベースラ
インノイズは約1/4の値が得られた。その結果、本発
明の電極においては白金薄膜電極単独に比較し、約1/
2の検出限界を達成した。
Example 6 By the same method as in Example 1, a gold thin film electrode having a diameter of 3 mm was formed on a silicon substrate with an oxide film. This electrode was placed in a sputtering device (manufactured by Nippon Seed Co., Ltd.), and platinum was formed by a sputtering method so that the film thickness was 5 nm or less. When the composition of the electrode surface was examined, 80% of gold and 20% of platinum were exposed on the surface, and it was confirmed that the platinum thin film was formed in an island shape on the gold thin film. When this electrode was attached as a detector of the same chromatographic apparatus as in Example 1 and 5 μl of Ringer's solution containing 1 pmol of acetylcholine and choline was injected, it was 2.1 for acetylcholine.
A peak of 1.9 nA was obtained for nA and choline. On the other hand, when a platinum comb-shaped electrode having a diameter of 3 mm was used for the detector, the current values for both acetylcholine and choline doubled. However, in the gold thin film electrode of the present invention in which platinum was sputtered in an island shape, the baseline noise was about 1/4 of the value obtained by using the platinum thin film electrode alone. As a result, in the electrode of the present invention, about 1 / compared to the platinum thin film electrode alone.
A detection limit of 2 was achieved.

【0017】実施例7 コバルトフタロシアニン(アルドリッチ社製)を精製し
た後、蒸着装置のボート上に100mg載せ、その上方
に直径3mmの円形電極パタンとリード及びパッド部分
を有するメタルマスクを重ねた3インチの石英基板を置
き、ボートを加熱して基板上に膜厚0.3μmのコバル
トフタロシアニン膜を形成した。その後、この基板を図
8に示したような内部を減圧することが可能な石英チュ
ーブ中に入れ1000℃、0.001Torrの条件で
30分間熱処理した後、徐冷させ導電性炭素薄膜ディス
ク電極を得た。この炭素薄膜を走査型電子顕微鏡JSM
−840(日本電子社製)により観察すると、炭素膜中
にサブミクロン以下の多数のコバルト粒子が分散してい
ることが分かった。この電極基板を実施例1と同様なク
ロマトグラフィ装置に装着し、種々の濃度のアセチルコ
リンとコリンを含むリンガー溶液をインジェクションし
た。その結果、アセチルコリン、コリン両方の物質につ
いて、2fmolから10pmolまで良い直線性が得
られた。次に3mmの白金ディスク電極をクロマトグラ
フィ装置に装着し、同様の測定を行うと電流値は約3倍
に増加したが、アセチルコリン及びコリン濃度と電流値
の間の直線性は30fmolから10pmolの間での
み得られ、本発明のコバルト微粒子が多数分散した炭素
薄膜電極では検出限界が大きく向上していることが分か
った。
Example 7 After purifying cobalt phthalocyanine (manufactured by Aldrich), 100 mg was placed on a boat of a vapor deposition apparatus, and a metal mask having a circular electrode pattern having a diameter of 3 mm, a lead and a pad portion was laid above it 3 inches. The quartz substrate was placed and the boat was heated to form a cobalt phthalocyanine film having a thickness of 0.3 μm on the substrate. Then, this substrate was put in a quartz tube capable of depressurizing the inside as shown in FIG. 8 and heat-treated for 30 minutes at 1000 ° C. and 0.001 Torr, and then gradually cooled to form a conductive carbon thin film disk electrode. Obtained. This carbon thin film is a scanning electron microscope JSM
Observation with -840 (manufactured by JEOL Ltd.) revealed that a large number of submicron cobalt particles were dispersed in the carbon film. This electrode substrate was mounted on the same chromatographic apparatus as in Example 1, and a Ringer's solution containing various concentrations of acetylcholine and choline was injected. As a result, good linearity was obtained from 2 fmol to 10 pmol for both acetylcholine and choline. Next, when a 3 mm platinum disk electrode was attached to the chromatography device and the same measurement was performed, the current value increased about 3 times, but the linearity between the acetylcholine and choline concentration and the current value was between 30 fmol and 10 pmol. It was found that the detection limit was greatly improved in the carbon thin film electrode in which a large number of cobalt fine particles were dispersed according to the present invention.

【0018】[0018]

【発明の効果】以上説明したように、本発明による電気
化学検出器は、被測定物質の電気化学反応が極めて起こ
りにくい導電体上に、被測定物質が電気化学反応を容易
に起こす導電体の10μm以下のパタンが形成されてい
ることを特徴とし、被測定物質が微小な電極上に集中し
て拡散するため高い電流密度が得られる。また微細パタ
ン以外の部分では被測定物質はほとんど反応せず、ベー
スラインノイズも極めて小さい。その結果、S/N比が
向上し検出限界が向上する。このような微細構造の作製
は導電体薄膜を微細加工することによっても作製するこ
とができる。しかしながら、本方法ではメッキ法や金属
の配位した有機物薄膜の熱分解によって通常のフォトリ
ソグラフィ法に比較しより微細な電極パタンを形成する
ことが可能なためより高い電流密度が得られるという特
徴を有する。電気化学反応を利用した分析やバイオセン
サーでは、過酸化水素や酸素の増減を測定して物質の濃
度を測定する方法が広く用いられている。これは、酵素
反応を利用した分析に酸化酵素が多く利用されており、
酵素反応で生成する過酸化水素や反応によって消費され
る酸素の減少量をモニターするバイオセンサーが多く研
究されているためである。本発明で得られた検出器で
は、従来の検出器に比較し、過酸化水素などを高感度に
測定できる可能性があるため、生理活性物質の測定など
に用いるバイオセンサーやクロマトグラフィ装置の検出
器として利用価値が大きい等の優れた効果が期待でき
る。
As described above, in the electrochemical detector according to the present invention, the electrochemical reaction of the substance to be measured easily occurs on the conductor on which the electrochemical reaction of the substance to be measured hardly occurs. A characteristic is that a pattern of 10 μm or less is formed, and a substance to be measured is concentrated and diffused on a minute electrode, so that a high current density can be obtained. Further, the substance to be measured hardly reacts in the portion other than the fine pattern, and the baseline noise is extremely small. As a result, the S / N ratio is improved and the detection limit is improved. Such a fine structure can also be produced by finely processing a conductor thin film. However, in this method, a higher current density can be obtained because a finer electrode pattern can be formed by a plating method or thermal decomposition of an organic thin film in which a metal is coordinated, as compared with a normal photolithography method. Have. A method of measuring the concentration of a substance by measuring the increase or decrease of hydrogen peroxide or oxygen is widely used in the analysis and biosensor using the electrochemical reaction. This is because oxidase is often used for analysis using enzyme reaction,
This is because a lot of research has been conducted on biosensors that monitor the amount of hydrogen peroxide produced by enzymatic reactions and the amount of oxygen consumed by the reactions. The detector obtained in the present invention may be capable of measuring hydrogen peroxide and the like with high sensitivity as compared with conventional detectors, and thus is a detector for biosensors and chromatography devices used for measurement of physiologically active substances. It can be expected to have excellent effects such as great utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】金薄膜上に形成された白金黒のメッキ量の少な
い場合の構造の模式図である。
FIG. 1 is a schematic diagram of a structure in the case where a plating amount of platinum black formed on a gold thin film is small.

【図2】金薄膜上に形成された白金黒のメッキ量の多い
場合の構造の模式図である。
FIG. 2 is a schematic diagram of a structure in the case where a platinum black plating amount formed on a gold thin film is large.

【図3】従来報告されている微小アレイ電極の構造の模
式図である。
FIG. 3 is a schematic diagram of a structure of a microarray electrode that has been reported in the past.

【図4】従来報告されている微小アレイ電極の構造の模
式図である。
FIG. 4 is a schematic diagram of a structure of a microarray electrode that has been reported in the past.

【図5】アセチルコリンコリン分析用クロマトグラフィ
装置の模式図である。
FIG. 5 is a schematic diagram of a chromatography device for acetylcholine choline analysis.

【図6】1pmolのアセチルコリン、コリンをインジ
ェクションした時のクロマトグラムを示す図である。
FIG. 6 is a diagram showing a chromatogram when 1 pmol of acetylcholine and choline were injected.

【図7】グルタメートの濃度と電流の関係を測定した電
気化学セルの模式図である。
FIG. 7 is a schematic diagram of an electrochemical cell in which the relationship between glutamate concentration and current is measured.

【図8】炭素薄膜電極作製法の模式図である。FIG. 8 is a schematic diagram of a carbon thin film electrode manufacturing method.

【図9】白金黒で部分修飾した金くし形微小電極の作製
の工程図である。
FIG. 9 is a process diagram of manufacturing a gold comb-shaped microelectrode partially modified with platinum black.

【符号の説明】[Explanation of symbols]

11:絶縁性ポリマー、12:白金線、13:微小な円
形パタン電極、14:絶縁膜、15:白金薄膜、16:
絶縁性基板、21:金薄膜、22:白金黒パタン、2
3:絶縁性基板、31:クロマトグラフィ用ポンプ、3
2:キャリア溶液入れ、33:インジェクター、34:
アセチルコリン/コリン分離カラム、35:反応カラ
ム、36:薄層セル、37:参照電極、38:本発明の
実施例3に示した電極、39:ポテンシオスタット、4
0:廃液入れ、51:本発明の実施例5に示した電極、
52:対向電極、53:参照電極、54:グルタメート
を含む溶液、61:石英チューブ、62:3,4,9,
10−ペリレンテトラカルボン酸無水物、63:昇華用
電気炉(400℃)、64:熱分解用電気炉(1000
℃)、65:3インチシリコンウエハ、66:メタルマ
スク、71:ポジ型ホトレジスト、72:シリコン酸化
膜、73:シリコン基板、74:クロム/金積層薄膜、
75:レジスト絶縁膜、76:白金黒微小電極パタン
11: insulating polymer, 12: platinum wire, 13: minute circular pattern electrode, 14: insulating film, 15: platinum thin film, 16:
Insulating substrate, 21: gold thin film, 22: platinum black pattern, 2
3: Insulating substrate, 31: Chromatography pump, 3
2: carrier solution holder, 33: injector, 34:
Acetylcholine / choline separation column, 35: reaction column, 36: thin layer cell, 37: reference electrode, 38: electrode shown in Example 3 of the present invention, 39: potentiostat, 4
0: waste liquid container, 51: electrode shown in Example 5 of the present invention,
52: counter electrode, 53: reference electrode, 54: solution containing glutamate, 61: quartz tube, 62: 3, 4, 9,
10-perylene tetracarboxylic acid anhydride, 63: electric furnace for sublimation (400 ° C.), 64: electric furnace for thermal decomposition (1000
C.), 65: 3 inch silicon wafer, 66: metal mask, 71: positive photoresist, 72: silicon oxide film, 73: silicon substrate, 74: chromium / gold laminated thin film,
75: Resist insulating film, 76: Platinum black microelectrode pattern

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定物質の電気化学反応が極めて起こ
りにくい導電体上に、被測定物質が電気化学反応を容易
に起こす導電体の10μm以下のパタンが、複数形成さ
れていることを特徴とする電気化学検出器。
1. A plurality of conductor patterns of 10 μm or less of an electric conductor that easily cause an electrochemical reaction of the substance to be measured are formed on the electric conductor on which the electrochemical reaction of the substance to be measured is extremely unlikely to occur. Electrochemical detector.
【請求項2】 請求項1に記載の電気化学検出器におい
て、被測定物質が過酸化水素であることを特徴とする電
気化学検出器。
2. The electrochemical detector according to claim 1, wherein the substance to be measured is hydrogen peroxide.
【請求項3】 請求項1に記載の電気化学検出器を製造
する方法において、被測定物質と電気化学反応を容易に
起こす導電体のパタンがメッキ法によって作製されるこ
とを特徴とする電気化学検出器の製造方法。
3. The method for manufacturing an electrochemical detector according to claim 1, wherein a pattern of a conductor that easily causes an electrochemical reaction with a substance to be measured is produced by a plating method. Detector manufacturing method.
【請求項4】 請求項1に記載の電気化学検出器を製造
する方法において、被測定物質と電気化学反応を容易に
起こす導電体のパタンを絶縁性基板上に金属分子が配位
した芳香族系化合物を薄膜形成し、その熱分解により作
製することを特徴とする電気化学検出器の製造方法。
4. The method for manufacturing an electrochemical detector according to claim 1, wherein an aromatic substance in which a metal molecule is coordinated on an insulating substrate with a pattern of a conductor that easily causes an electrochemical reaction with a substance to be measured. A method for manufacturing an electrochemical detector, which comprises forming a thin film of a system-based compound, and producing the thin film by thermal decomposition thereof.
JP7072447A 1995-03-07 1995-03-07 Electrochemical detector and manufacture thereof Pending JPH08247988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7072447A JPH08247988A (en) 1995-03-07 1995-03-07 Electrochemical detector and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7072447A JPH08247988A (en) 1995-03-07 1995-03-07 Electrochemical detector and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08247988A true JPH08247988A (en) 1996-09-27

Family

ID=13489562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7072447A Pending JPH08247988A (en) 1995-03-07 1995-03-07 Electrochemical detector and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08247988A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025617A (en) * 2001-01-11 2001-04-06 오흥국 Method and apparatus for measuring power consumption for electro-chemical equipment, and electro-chemical energy consumption power meter using the same
JP2002368384A (en) * 2001-06-11 2002-12-20 Toppan Printing Co Ltd Method for manufacturing wiring board or semiconductor circuit
JP2005534031A (en) * 2002-07-26 2005-11-10 インストゥルメンテイション ラボラトリー カンパニー Compositions and methods for reducing the rate of oxygen loss from aqueous solutions
JP2009532700A (en) * 2006-04-04 2009-09-10 メドトロニック ミニメド インコーポレイテッド Method and apparatus for controlling the electrochemical function of an analyte sensor
JP2015179056A (en) * 2014-03-18 2015-10-08 平沼産業株式会社 Moisture measurement device
CN104792843B (en) * 2015-04-23 2017-12-12 能讯传感技术(上海)有限公司 A kind of glass carbon tiny array electrode, method and application
JP2019536982A (en) * 2016-09-08 2019-12-19 ザ フランシス クリック インスティチュート リミティッド Electrochemical wire electrode array and corresponding manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025617A (en) * 2001-01-11 2001-04-06 오흥국 Method and apparatus for measuring power consumption for electro-chemical equipment, and electro-chemical energy consumption power meter using the same
JP2002368384A (en) * 2001-06-11 2002-12-20 Toppan Printing Co Ltd Method for manufacturing wiring board or semiconductor circuit
JP4672189B2 (en) * 2001-06-11 2011-04-20 凸版印刷株式会社 Manufacturing method of wiring board or semiconductor circuit
JP2005534031A (en) * 2002-07-26 2005-11-10 インストゥルメンテイション ラボラトリー カンパニー Compositions and methods for reducing the rate of oxygen loss from aqueous solutions
JP4672366B2 (en) * 2002-07-26 2011-04-20 インストゥルメンテイション ラボラトリー カンパニー Compositions and methods for reducing the rate of oxygen loss from aqueous solutions
JP2009532700A (en) * 2006-04-04 2009-09-10 メドトロニック ミニメド インコーポレイテッド Method and apparatus for controlling the electrochemical function of an analyte sensor
JP2015179056A (en) * 2014-03-18 2015-10-08 平沼産業株式会社 Moisture measurement device
CN104792843B (en) * 2015-04-23 2017-12-12 能讯传感技术(上海)有限公司 A kind of glass carbon tiny array electrode, method and application
JP2019536982A (en) * 2016-09-08 2019-12-19 ザ フランシス クリック インスティチュート リミティッド Electrochemical wire electrode array and corresponding manufacturing method

Similar Documents

Publication Publication Date Title
Urban et al. Miniaturized thin-film biosensors using covalently immobilized glucose oxidase
EP0185941B1 (en) Polymer-based microelectronic pH-sensor
US7018848B2 (en) Electrochemical test device and related methods
Niwa et al. Voltammetric measurements of reversible and quasi-reversible redox species using carbon film based interdigitated array microelectrodes
EP0569908B1 (en) Electrochemical detection method and apparatus therefor
Niwa Electroanalysis with interdigitated array microelectrodes
US20090194415A1 (en) Pair of measuring electrodes, biosensor comprising a pair of measuring electrodes of this type, and production process
JP2000298111A (en) Biosensor
Lamani et al. Electrochemical oxidation and determination of methocarbamol at multi-walled carbon nanotubes-modified glassy carbon electrode
JP4513093B2 (en) Carbon electrode for electrochemical measurement and manufacturing method thereof
JPH08247988A (en) Electrochemical detector and manufacture thereof
JP4982899B2 (en) Microelectrode and manufacturing method thereof
JP2006317263A (en) Measuring method of catecholamines, electrode for measuring catecholamines used therein, manufacturing method of the electrode and electrochemical cell
WO1994023291A1 (en) Mixed heteropolyanion doped conductive polymer film for sensing nitrite ions, nitrogen monoxide or an no-containing substance
JPH05223772A (en) Microelectrode cell for electrochemical detection and its production method
KR20120126977A (en) CNT-based three electrode system, fabrication of the same and electrochemical biosensor using the same
JPH05281181A (en) Enzyme modified electrochemical detector and its manufacture
JPH09127039A (en) Electrochemical detector and its manufacture
JP2003513274A (en) Microscopic combination of amperometric and potentiometric sensors
JP2564030B2 (en) Method for producing carbon thin film electrode for electrochemical measurement
JP2748526B2 (en) Enzyme electrode
JPH02140655A (en) Electrochemical detector and production thereof
JPH09243590A (en) Micro comb-shaped electrode and its manufacture and electrode unit for electrochemical measurement of solution system
JP2566173B2 (en) Electrochemical detector
JPH0219758A (en) Comb-shaped modified micro-electrode cell and its production