JPH08247734A - Reflected light measuring instrument - Google Patents

Reflected light measuring instrument

Info

Publication number
JPH08247734A
JPH08247734A JP5243395A JP5243395A JPH08247734A JP H08247734 A JPH08247734 A JP H08247734A JP 5243395 A JP5243395 A JP 5243395A JP 5243395 A JP5243395 A JP 5243395A JP H08247734 A JPH08247734 A JP H08247734A
Authority
JP
Japan
Prior art keywords
light
optical system
reflected
reflected light
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5243395A
Other languages
Japanese (ja)
Other versions
JP2774945B2 (en
Inventor
Shiro Oikawa
四郎 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEITAI HIKARI JOHO KENKYUSHO K
SEITAI HIKARI JOHO KENKYUSHO KK
Original Assignee
SEITAI HIKARI JOHO KENKYUSHO K
SEITAI HIKARI JOHO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEITAI HIKARI JOHO KENKYUSHO K, SEITAI HIKARI JOHO KENKYUSHO KK filed Critical SEITAI HIKARI JOHO KENKYUSHO K
Priority to JP5243395A priority Critical patent/JP2774945B2/en
Publication of JPH08247734A publication Critical patent/JPH08247734A/en
Application granted granted Critical
Publication of JP2774945B2 publication Critical patent/JP2774945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To extract reflected light components from an observation point in distinction from multiply scattered light component by projecting two kinds of polarized light rays which are vertical and parallel to a plane containing a light receiving optical axis and light projecting optical axis in a state where the light rays can freely be switched to each other. CONSTITUTION: Light emitted from a light source 11 is condensed to an observation point R through a light projecting optical system 12 composed of a beam expanding optical system 121, polarizing plate 12, and objective lens 123. The light reflected at the point R in the direction of a light receiving optical axis 4 which is perpendicular to a light projecting optical axis 2 passes through a light receiving optical system 14 composed of an objective lens 141, polarizing plate 142, condenser lens 143, and pinhole plate 144 together with scattered light and only the light which passes through the pinhole 144a of the pinhole plate 144 is detected by means of a photodetector 13. Because of the polarizing plate 122, S-polarized light which is polarized in the direction perpendicular to a plane containing both optical axes 2 and 4 and P-polarized light which is polarized in the direction parallel to the plane is emitted from the optical system in a state where the polarized light can be switched to each other. Because of the polarizing plate 142, similarly, the S- and P-polarized light of the light made incident to the optical system 14 are emitted from the system 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検体内部の観測点で
の反射光量を測定する反射光測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflected light measuring device for measuring the amount of reflected light at an observation point inside a subject.

【0002】[0002]

【従来の技術】従来より、被検体、特に人体の体表や体
腔内壁の表面構造を光学的に調べ、具体的には例えば胃
カメラにより胃の内壁の状態を写真撮影し、それに基づ
いて診断等が行なわれている。近年、そのような生体組
織やそれを切除して得た病理組織試料等の被検体の表面
状態の観察のみでなく、その表面の奥、すなわち被検体
の内部を光学的に観察するための研究が行なわれてい
る。表面状態のみでなく内部の状態を観察することによ
り、より多くの情報を得ることができ、例えば臨床に応
用した場合、より適切な診断を行なうことができる。
2. Description of the Related Art Conventionally, the surface structure of the body surface or the inner wall of a body cavity of a subject, particularly a human body, is optically examined, and specifically, the state of the inner wall of the stomach is photographed by, for example, a gastric camera, and diagnosis is made based on the photograph And so on. In recent years, research for not only observing the surface condition of a subject such as a biological tissue or a pathological tissue sample obtained by excising it, but also optically observing the depth of the surface, that is, the inside of the subject Is being carried out. By observing not only the surface condition but also the internal condition, more information can be obtained and, for example, when applied clinically, more appropriate diagnosis can be performed.

【0003】従来、被検体内部を光学的に観察する手法
として、CLSM(共焦点走査型顕微鏡),OCT(O
ptical Coherence Tomograp
hy)が知られている。図9は、CLSMの原理説明図
である。ピンホール板81のピンホール81aを経由し
た、フォーカス性の良いレーザ光80を、ハーフミラー
82および対物レンズ83を経由して被検体1の内部の
所定の観測点Rに向けて照射する。観測点Rからの反射
光は、対物レンズ83を経由し、ハーフミラー82を透
過して共焦点ピンホール板84のピンホール84aの位
置に集光する。観測点R以外の点R’での反射光は、共
焦点ピンホール板84の位置では広がってしまい、もし
くは、その共焦点ピンホール板84上の、ピンホール8
4a以外の点に集光する。したがって観測点Rからの反
射光が選択的にピンホール84aを通過する。この反射
光を検出器(図示せず)で受光する。被検体1を走査し
て各観測点について反射光信号を得ることにより被検体
1の内部の像を得ることができる。
Conventionally, CLSM (confocal scanning microscope), OCT (O
optical Coherence Tomograp
hy) is known. FIG. 9 is a diagram illustrating the principle of CLSM. A laser beam 80 having a good focusability is emitted through a pinhole 81a of the pinhole plate 81 toward a predetermined observation point R inside the subject 1 through a half mirror 82 and an objective lens 83. The reflected light from the observation point R passes through the objective lens 83, passes through the half mirror 82, and is condensed at the position of the pinhole 84a of the confocal pinhole plate 84. The reflected light at the point R ′ other than the observation point R spreads at the position of the confocal pinhole plate 84, or the pinhole 8 on the confocal pinhole plate 84.
Focus on a point other than 4a. Therefore, the reflected light from the observation point R selectively passes through the pinhole 84a. This reflected light is received by a detector (not shown). An image of the inside of the subject 1 can be obtained by scanning the subject 1 and obtaining reflected light signals at each observation point.

【0004】図10は、OCT装置の説明図である。可
干渉距離の短い光を発する光源、例えばこの例ではSL
D(Super Luminescent Diod
e)91から発せられた光は、光ファイバ92に入射し
て伝達され、ファイバ・カプラ93により第1の光波
(物体光)と第2の光波(参照光)とに二分されて、そ
れぞれ光ファイバ94,95で伝達され、それぞれ対物
レンズ系96、参照レンズ系97を経由して、被検体
1、参照ミラー98に伝達される。このとき参照ミラー
98はZ方向(光ビームの光軸方向)に移動している。
FIG. 10 is an explanatory diagram of the OCT apparatus. A light source that emits light with a short coherence length, such as SL in this example
D (Super Luminescent Period)
e) The light emitted from 91 is transmitted by being incident on the optical fiber 92, and is divided into the first light wave (object light) and the second light wave (reference light) by the fiber coupler 93, respectively It is transmitted by the fibers 94 and 95, and is transmitted to the subject 1 and the reference mirror 98 via the objective lens system 96 and the reference lens system 97, respectively. At this time, the reference mirror 98 is moving in the Z direction (the optical axis direction of the light beam).

【0005】尚、図10には、物体光側にPZT(Pi
ezo−electric Transducer)9
9が配置され物体光の周波数シフトが行われているが、
これは、フォトダイオード101で、このフォトダイオ
ード101、ないしこのフォトダイオード101を含む
信号処理系に適した周波数の信号が得られるようにする
ためのものであり、本装置の測定原理上は必ずしも必要
のないものであり、以下、PZT99の作用については
省略し、PZT99を備えない場合について説明する。
Incidentally, in FIG. 10, PZT (Pi
ezo-electric Transducer) 9
9 is arranged and the frequency of the object light is shifted,
This is to enable the photodiode 101 to obtain a signal having a frequency suitable for the photodiode 101 or a signal processing system including the photodiode 101, and is necessarily required in the measurement principle of this device. In the following, the operation of PZT99 will be omitted and the case without PZT99 will be described.

【0006】被検体1に照射された光ビームは被検体内
を進み、その被検体内を進む間に被検体の光ビームの進
路上の各点で反射し、その反射光は対物レンズ系96を
経由して光ファイバ94に入射し、ファイバ・カプラ9
3を経由し、光ファイバ100を経由し、光検出器、例
えばこの例ではフォトダイオード101に入射する。ま
た参照ミラー98で反射した参照光も同様に、再度、参
照レンズ系97を経由し、光ファイバ95に入射し、フ
ァイバ・カプラ93を経由し、光ファイバ100を経由
し、フォトダイオード101に入射する。
The light beam applied to the subject 1 travels inside the subject, and is reflected at each point on the path of the light beam of the subject while traveling inside the subject, and the reflected light is the objective lens system 96. Incident on the optical fiber 94 via the fiber coupler 9
3 through the optical fiber 100, and then enters the photodetector, for example, the photodiode 101 in this example. Similarly, the reference light reflected by the reference mirror 98 again enters the optical fiber 95 via the reference lens system 97, the fiber coupler 93, the optical fiber 100, and the photodiode 101. To do.

【0007】図11は、フォトダイオード101で得ら
れる信号を示した図である。この図の横軸は、参照ミラ
ー98のZ方向の位置に対応しており、この参照ミラー
98はZ方向に等速で移動しているため、この図の横軸
は時間軸tでもある。またこの図の縦軸はフォトダイオ
ード101の受光信号の振幅であり、一点鎖線はその受
光信号の包絡線である。この図は、被検体内の一点のみ
で反射が生じており、かつ、フォトダイオード101に
伝達された反射光と参照光の強度が互いに同一の場合の
ものである。
FIG. 11 is a diagram showing signals obtained by the photodiode 101. The horizontal axis of this figure corresponds to the position of the reference mirror 98 in the Z direction, and since this reference mirror 98 moves in the Z direction at a constant speed, the horizontal axis of this figure is also the time axis t. The vertical axis in this figure represents the amplitude of the received light signal of the photodiode 101, and the alternate long and short dash line represents the envelope of the received light signal. This figure shows the case where reflection occurs at only one point in the subject and the reflected light and reference light transmitted to the photodiode 101 have the same intensity.

【0008】参照ミラー98を連続的に定速でZ方向に
移動すると、その参照ミラー98で反射した参照光は、
その参照ミラー98に入射した光と比べ、その周波数が
ドップラ周波数分だけ遷移した光に変換される。したが
ってフォトダイオード101上では反射光と参照光が干
渉し、それら反射光の周波数と参照光の周波数との差の
周波数の信号が観測される。
When the reference mirror 98 is continuously moved in the Z direction at a constant speed, the reference light reflected by the reference mirror 98 is
Compared with the light that has entered the reference mirror 98, its frequency is converted into light that has transitioned by the Doppler frequency. Therefore, on the photodiode 101, the reflected light and the reference light interfere with each other, and a signal having a frequency difference between the frequency of the reflected light and the frequency of the reference light is observed.

【0009】ところで、SLD91から発せられた光は
可干渉距離が短く、したがって、被検体1のある一点の
みで反射が生じているものとすると、SLD91から発
せられ、物体光として被検体に照射され、その被検体内
のある一点で反射してフォトダイオード101に至る光
路長(光学距離)と、SLD91から発せられ、参照ミ
ラー98で反射されて参照光としてフォトダイオード1
01に至る光路長とが完全に同一である、図10に示す
原点0を中点とし、そのSLD91から発せられた光の
可干渉距離に対応したZ方向の幅(時間幅)だけ、図示
のようなバースト波が観測される。実際には被検体1の
内部を進む光ビームの光路に沿った種々の点で反射が生
じており、参照ミラー98をZ方向に移動させることに
より、その移動中の各時点の参照ミラー98のZ方向の
位置に対応する、被検体内部の反射光の情報が連続的に
順次抽出された信号が得られることになる。
By the way, assuming that the light emitted from the SLD 91 has a short coherence length, and therefore the reflection occurs at only one point of the subject 1, the light emitted from the SLD 91 is radiated to the subject as object light. , The optical path length (optical distance) of the light reflected by a certain point in the subject to reach the photodiode 101, and emitted from the SLD 91, reflected by the reference mirror 98 and reflected by the photodiode 1 as the reference light.
The origin 0 shown in FIG. 10 is completely the same as the optical path length up to 01, and only the width (time width) in the Z direction corresponding to the coherence length of the light emitted from the SLD 91 is shown. Such a burst wave is observed. Actually, reflection occurs at various points along the optical path of the light beam that travels inside the subject 1, and by moving the reference mirror 98 in the Z direction, the reference mirror 98 at each point in time during the movement is reflected. A signal in which the information of the reflected light inside the subject corresponding to the position in the Z direction is continuously and sequentially extracted is obtained.

【0010】この図10に示すようなOCT装置は、主
に眼科領域への応用が研究されている。
Application of the OCT apparatus as shown in FIG. 10 mainly to the ophthalmic field has been studied.

【0011】[0011]

【発明が解決しようとする課題】上述のCLSMおよび
OCT装置のいずれにおいても、被検体1の観測点で反
射した反射光だけを検出することができず、被検体1の
表面ないし内部で多重に散乱した散乱光の混入を避ける
ことができないという問題がある。図12は、この散乱
光が混入する様子を模式的に示す説明図である。
In both the CLSM and OCT apparatus described above, it is not possible to detect only the reflected light that is reflected at the observation point of the subject 1 and multiplexes on the surface or inside of the subject 1. There is a problem that mixing of scattered scattered light cannot be avoided. FIG. 12 is an explanatory view schematically showing how the scattered light is mixed.

【0012】ここでは、図12(a)に示すように、光
源111から光路112を経由して被検体1の内部の観
測点Rに向けて光を照射し、観測点Rで反射した反射光
を、再び光路112を経由して光検出器113で受光す
るものとする。このとき観測点Rで反射した反射光以外
にも、図12(a)に模式的に示すような、被検体1の
表面もしくは内部で種々に多重散乱した光が光路112
を経て光検出器113に入射する。
Here, as shown in FIG. 12A, light is emitted from a light source 111 toward an observation point R inside the subject 1 via an optical path 112, and reflected light reflected at the observation point R. Are again received by the photodetector 113 via the optical path 112. At this time, in addition to the reflected light reflected at the observation point R, variously scattered light variously scattered on the surface or inside of the subject 1 as shown in FIG.
And enters the photodetector 113.

【0013】図12(b)は、図12(a)に示す光源
111から、極めて狭いパルス状の入射光を被検体1に
入射したときの、光検出器113に戻る出力光の時間遅
れ頻度分布(光検出器113で検出される光の強度)と
散乱回数の頻度を模式的に示したグラフである。入射光
が観測点Rに達し、観測点Rで反射して戻ってきた光が
光検出器113に入射する時刻をto としたとき、その
時刻t0 に光検出器113に入射した光に限定したとし
ても、その入射光の散乱回数は、観測点Rで1回だけ反
射した反射光のみでなく、多重に散乱した散乱光が大き
な割合で含まれている。
FIG. 12B is a time delay frequency of the output light returning to the photodetector 113 when an extremely narrow pulsed incident light is incident on the subject 1 from the light source 111 shown in FIG. 6 is a graph schematically showing the distribution (the intensity of light detected by the photodetector 113) and the frequency of the number of times of scattering. Assuming that the time when the incident light reaches the observation point R and is reflected by the observation point R and returned to the photodetector 113 is t o , the light incident on the photodetector 113 at the time t 0 is Even if limited, the number of times of scattering of the incident light includes not only the reflected light reflected once at the observation point R but also the scattered light scattered multiple times at a large ratio.

【0014】図9に示すCSLMにおいては、上述の多
重散乱成分が光検出器に入射するのを除去できず、この
ため、大きな測定誤差を生じるという問題がある。ま
た、CSLMにおいては、対物レンズ83(図9参照)
の開口角を大きくしても光軸方向(被検体1の深さ方
向)の分解能は、例えば数百μm程度であり、光軸に直
交する方向の分解能(例えば10μm程度)と比べ大き
く劣る。
In the CSLM shown in FIG. 9, there is a problem that the above-mentioned multiple scattering components cannot be removed from entering the photodetector, which causes a large measurement error. Further, in the CSLM, the objective lens 83 (see FIG. 9)
Even if the aperture angle is increased, the resolution in the optical axis direction (depth direction of the subject 1) is, for example, about several hundred μm, which is significantly inferior to the resolution in the direction orthogonal to the optical axis (for example, about 10 μm).

【0015】図10に示すOCT装置においては、干渉
計が構成されているため、多重散乱光のうちの、参照光
と干渉しない成分についてはその多重散乱光による影響
を除去することができるが、この多重散乱光の中には、
観測点Rで反射した反射光と同時刻(時刻t0 )に光検
出器に入射する、参照光と干渉する成分もかなりの割合
で含まれており、その干渉する成分については多量散乱
光の影響を除去することができないという問題がある。
また、OCT装置では、光軸方向に走査する方式のた
め、対物レンズ開口角を大きく設定することはできず、
被検体の深部からは極めて微弱な反射光しか得ることが
できない。
In the OCT apparatus shown in FIG. 10, since the interferometer is configured, it is possible to remove the influence of the multiple scattered light on the components of the multiple scattered light that do not interfere with the reference light. In this multiple scattered light,
A large proportion of the components that interfere with the reference light, which enter the photodetector at the same time (time t 0 ) as the reflected light reflected at the observation point R, are included. There is a problem that the influence cannot be removed.
Further, in the OCT apparatus, since the scanning is performed in the optical axis direction, the aperture angle of the objective lens cannot be set large,
Only extremely weak reflected light can be obtained from the deep part of the subject.

【0016】このように、被検体内部の組織構造を高解
像度で知るためには、光検出器への入射光から多重散乱
成分を取り除くことが極めて重要である。本発明は、上
記事情に鑑み、観測点で反射した反射光成分を多重散乱
成分と区別して高精度に抽出することのできる反射光測
定装置を提供することを目的とする。
As described above, in order to know the tissue structure inside the subject with high resolution, it is extremely important to remove the multiple scattering component from the light incident on the photodetector. In view of the above circumstances, it is an object of the present invention to provide a reflected light measuring device capable of accurately extracting a reflected light component reflected at an observation point from a multiple scattering component.

【0017】[0017]

【課題を解決するための手段】上記目的を達成する本発
明の第1の反射光測定装置は、 (1−1)被検体内部の所定の観測点で、所定の受光光
軸に沿う方向に反射した反射光を導く受光光学系 (1−2)上記受光光軸に直交する照射光軸に沿う方向
から、上記観測点に、受光光軸および照射光軸双方を含
む平面に垂直な方向に直線偏光した第1の偏光光、およ
びその平面に平行な方向に直線偏光した第2の偏光光
を、切替え自在に照射する照射光学系 (1−3)受光光学系により導かれた反射光の強度を検
出する光検出器 (1−4)光検出器で検出された、上記観測点が上記第
1の偏光光で照射されたときの第1の光強度と、上記観
測点が上記第2の偏光光で照射されたときの第2の光強
度との双方に基づいて、上記反射光と、被検体の表面も
しくは内部で散乱されて受光光学系に入射した散乱光と
のうちの上記反射光による光強度を抽出する反射光抽出
手段 を備えたことを特徴とする。
A first reflected light measuring device of the present invention which achieves the above object is (1-1) at a predetermined observation point inside a subject in a direction along a predetermined light receiving optical axis. Receiving optical system for guiding the reflected light reflected (1-2) From a direction along an irradiation optical axis orthogonal to the above-mentioned receiving optical axis to a direction perpendicular to a plane including both the receiving optical axis and the irradiation optical axis at the observation point. Irradiation optical system for switchingably irradiating linearly polarized first polarized light and linearly polarized second polarized light in a direction parallel to the plane (1-3) of reflected light guided by a light receiving optical system Photodetector for detecting intensity (1-4) First light intensity detected by the photodetector when the observation point is illuminated with the first polarized light, and the observation point is the second Of the reflected light and the surface of the subject based on both the second light intensity when illuminated with the polarized light of It is characterized in that a reflected light extracting means for extracting the light intensity of the reflected light among the scattered light scattered on the surface or inside and incident on the light receiving optical system is provided.

【0018】ここで、上記本発明の第1の反射光測定装
置において、上記(1−1)の受光光学系が、上記反射
光の、上記平面に垂直な方向に直線偏光した第1の偏光
成分を抽出する偏光抽出手段を備えていてもよい。ま
た、上記目的を達成する本発明の第2の反射光測定装置
は、 (2−1)被検体内部の所定の観測点に、所定の照射光
軸に沿う方向から照射光を照射する照射光学系 (2−2)上記観測点で、上記照射光軸に直交する受光
光軸に沿う方向に反射した反射光を導くとともに、その
反射光の、照射光軸および受光光軸双方を含む平面に垂
直な方向に直線偏光した第1の偏光成分、およびその平
面に平行な方向に直線偏光した第2の偏光成分を、切替
え自在に抽出する受光光学系 (2−3)受光光学系により抽出された反射光の偏光成
分の強度を検出する光検出器 (2−4)光検出器で検出された、その光検出器に上記
第1の偏光成分が入射したときの第1の光強度と、その
光検出器に上記第2の偏光成分が入射したときの第2の
光強度との双方に基づいて、上記反射光と、被検体の表
面もしくは内部で散乱されて受光光学系に入射した散乱
光とのうちの上記反射光による光強度を抽出する反射光
抽出手段 を備えたことを特徴とする。
Here, in the above-mentioned first reflected light measuring apparatus of the present invention, the (1-1) light receiving optical system is a first polarized light of the reflected light which is linearly polarized in a direction perpendicular to the plane. A polarized light extracting means for extracting the component may be provided. Further, the second reflected light measuring device of the present invention which achieves the above object is: (2-1) Irradiation optics for irradiating a predetermined observation point inside a subject with irradiation light from a direction along a predetermined irradiation optical axis. System (2-2) At the observation point, while guiding the reflected light reflected in the direction along the light receiving optical axis orthogonal to the irradiation optical axis, the reflected light is directed to a plane including both the irradiation optical axis and the light receiving optical axis. A light-receiving optical system that switchesably extracts a first polarized light component that is linearly polarized in a vertical direction and a second polarized light component that is linearly polarized in a direction parallel to the plane (2-3) is extracted by a light-receiving optical system. Photodetector for detecting the intensity of the polarization component of the reflected light (2-4) First light intensity detected by the photodetector when the first polarization component is incident on the photodetector, Both the second light intensity when the second polarized component is incident on the photodetector On the basis of the above, a reflected light extraction means for extracting the light intensity of the reflected light of the reflected light and the scattered light scattered on the surface or inside of the subject and incident on the light receiving optical system is provided. And

【0019】この本発明の第2の反射光測定装置におい
て、上記(2−1)の照射光学系が、上記照射光とし
て、上記平面に垂直な方向に直線偏光した第1の偏光光
を照射するものであってもよい。また、上記本発明の第
1の反射光測定装置ないし第2の反射光測定装置におい
て、上記(1−4)ないし(2−4)の反射光抽出手段
では、典型的には、上記第1の光強度と上記第2の光強
度との差分演算を含む演算が行なわれる。
In the second reflected light measuring apparatus of the present invention, the irradiation optical system of (2-1) irradiates, as the irradiation light, first polarized light linearly polarized in a direction perpendicular to the plane. It may be one that does. In the first reflected light measuring device or the second reflected light measuring device of the present invention, the reflected light extracting means of (1-4) to (2-4) is typically the first reflected light measuring device. The calculation including the difference calculation between the light intensity of the second light intensity and the light intensity of the second light intensity is performed.

【0020】また、上記本発明の第1の反射光測定装置
ないし第2の反射光測定装置は、被検体内部の所定の観
測点で互いに直交する第1の光軸および第2の光軸それ
ぞれを有し、切替え自在に、上記(1−2)ないし(2
−1)の照射光学系、および上記(1−1)ないし(2
−2)の受光光学系として使用される第1の光学系およ
び第2の光学系を備えたものであってもよい。
Further, in the first reflected light measuring device and the second reflected light measuring device of the present invention, each of the first optical axis and the second optical axis orthogonal to each other at a predetermined observation point inside the subject. And (2) to (2) are switchable.
-1) irradiation optical system, and the above (1-1) to (2)
-2) may be provided with the first optical system and the second optical system used as the light receiving optical system.

【0021】さらに、上記本発明の第1の反射光測定装
置ないし第2の反射光測定装置は、照射光学系、受光光
学系、および光検出器を、照射光軸と受光光軸とを二等
分する軸を回動軸として回動させる回動機構を備えたも
のであってもよく、また、上記観測点で、照射光軸と受
光光軸との双方に直交する第2の受光光軸に沿う方向に
反射した反射光を導く第2の受光光学系を備えたもので
あってもよい。
Further, in the first reflected light measuring device and the second reflected light measuring device of the present invention, the irradiation optical system, the light receiving optical system, and the photodetector are provided with the irradiation optical axis and the received optical axis. It may be provided with a rotating mechanism for rotating the equally divided shaft as a rotating shaft, and the second received light which is orthogonal to both the irradiation optical axis and the received optical axis at the observation point. A second light receiving optical system for guiding the reflected light reflected in the direction along the axis may be provided.

【0022】また、上記本発明の第1の反射光測定装置
ないし第2の反射光測定装置は、所定の可干渉距離を有
する光を射出する光源を有し、その光源から射出された
光を第1の光と第2の光とに二分し第1の光を照射光学
系に入射するとともに第2の光を光検出器に導く干渉光
学系を備えたものであってもよい。さらに、上記本発明
の第1の反射光測定装置ないし第2の反射光測定装置
は、照射光学系が、一次元的もしくは二次元的に並ぶ複
数の観測点に光を照射し、受光光学系が、それら複数の
観測点の像を光検出器上に結像する結像光学系を備えた
ものであって、光検出器が、それら複数の観測点それぞ
れで反射した反射光それぞれを検出するものであっても
よい。
Further, the first reflected light measuring device or the second reflected light measuring device of the present invention has a light source that emits light having a predetermined coherence distance, and emits the light emitted from the light source. It may be provided with an interference optical system that divides the first light and the second light into two and makes the first light incident on the irradiation optical system and guides the second light to the photodetector. Further, in the above-mentioned first reflected light measuring device or second reflected light measuring device of the present invention, the irradiation optical system irradiates a plurality of observation points arranged one-dimensionally or two-dimensionally, and the light receiving optical system. Is provided with an imaging optical system for forming images of the plurality of observation points on the photodetector, and the photodetector detects each of the reflected light reflected at each of the plurality of observation points. It may be one.

【0023】[0023]

【作用】以下では、先ず、本発明の原理について説明す
る。図1は、本発明における、基本的な光学系配置の概
念とその光学系配置の場合の散乱光発生の様子を示す模
式図である。図1に示すように、光源11から発せられ
た光は、照射光学系12を経由して照射光軸2に沿って
進み、被検体1の内部の観測点Rを照射する。観測点R
で反射して受光光軸4側に進む反射光は、受光光学系1
4を経由して光検出器13に入射する。ここで、照射光
軸2と受光光軸4は、観測点Rで互いに直交している。
In the following, the principle of the present invention will be described first. FIG. 1 is a schematic diagram showing a concept of a basic arrangement of an optical system and a state of scattered light generation in the case of the arrangement of the optical system in the present invention. As shown in FIG. 1, the light emitted from the light source 11 travels along the irradiation optical axis 2 via the irradiation optical system 12 and irradiates the observation point R inside the subject 1. Observation point R
The reflected light that is reflected by and travels toward the light receiving optical axis 4 side is
It is incident on the photodetector 13 via 4. Here, the irradiation optical axis 2 and the reception optical axis 4 are orthogonal to each other at the observation point R.

【0024】このような光学配置においても、図12を
参照して説明した場合と同様に、光検出器13には、観
測点Rで1回だけ反射した反射光のほか、被検体1の表
面ないし内部で多重に散乱した散乱光も入射する。図2
は、直線偏光光の反射方向に対する反射強度分布を示し
た図である。原点Oから観測点Rに向かって、図2の上
下方向のみに電界Eを持つ光、すなわち、図2の上下方
向に直線偏光した照射光を照射すると、観測点Rでの、
その照射光の光軸Cを含む紙面に垂直な面内への反射光
(もしくは観測点Rを透過した透過光)は、ある程度の
強度をもち、例えば点Aでは、その反射光が観測される
が、観測点Rにおける、その平面との垂線方向、例えば
点Bでは、観測点Rからの反射光は観測されない。
Also in such an optical arrangement, as in the case described with reference to FIG. 12, the photodetector 13 displays the reflected light reflected only once at the observation point R and the surface of the subject 1. Or, scattered light that is multiply scattered inside is also incident. Figure 2
FIG. 6 is a diagram showing a reflection intensity distribution with respect to a reflection direction of linearly polarized light. When the light having the electric field E only in the vertical direction of FIG. 2, that is, the irradiation light linearly polarized in the vertical direction of FIG.
The reflected light in the plane perpendicular to the paper surface including the optical axis C of the irradiation light (or the transmitted light transmitted through the observation point R) has a certain intensity, and the reflected light is observed at the point A, for example. However, at the observation point R, the reflected light from the observation point R is not observed in the direction perpendicular to the plane, for example, the point B.

【0025】本発明は、図2を参照して説明した直線偏
光光の性質を利用し、原理的には図1に示すような光学
系の配置によって、観測点Rからの反射光と、散乱光と
のうち、反射光のみを抽出するものである。本発明の第
1の反射光測定装置は、観測点Rを、図1の紙面に垂直
な方向に直線偏光した第1の偏光光(以下、これを「S
偏光」と称することがある)と、図1の紙面に平行な方
向に直線偏光した第2の偏光光(以下、これを「P偏
光」と称することがある)とを切替え自在に照射する。
The present invention utilizes the property of the linearly polarized light described with reference to FIG. 2, and in principle, the reflected light from the observation point R and the scattered light are scattered by the arrangement of the optical system as shown in FIG. Of the light, only reflected light is extracted. The first reflected light measuring device of the present invention is a first polarized light (hereinafter, referred to as “S”) obtained by linearly polarizing the observation point R in a direction perpendicular to the paper surface of FIG.
The polarized light) and the second polarized light linearly polarized in the direction parallel to the paper surface of FIG. 1 (hereinafter, this may be referred to as “P polarized light”) are switchably emitted.

【0026】被検体1がS偏光により照射されたとき、
観測点Rでの反射光はその偏光状態を保ったまま受光光
学系14に入射する。一方被検体1の表面ないし内部で
多重に散乱した光は、その偏光状態を失う。したがっ
て、被検体1がS偏光により照射されたときに、光検出
器13で検出される光強度IS は、観測点Rでの反射光
の、光検出器13で検出される強度をIRS、多重散乱成
分(ノイズ)の強度をn S としたとき、 IS =IRS+nS ……(1) で表わされる。
When the subject 1 is illuminated with S-polarized light,
The reflected light at the observation point R is the received light while maintaining its polarization state.
It enters the academic system 14. On the other hand, on the surface of the subject 1 or inside
Light scattered multiple times loses its polarization state. Accordingly
Then, when the subject 1 is illuminated with S-polarized light, light detection is performed.
Light intensity I detected by the device 13S Is the reflected light at observation point R
Of the intensity detected by the photodetector 13RS, Multiple scattering
The intensity of the minute (noise) is n S When I saidS = IRS+ NS ... (1)

【0027】一方、被検体1がP偏光により照射された
とき観測点Rでの反射は受光光学系側には発生せず、し
たがってこのときの観測点Rでの反射光の強度はゼロで
ある。一方多重散乱成分(ノイズ)は相変わらず存在
し、その強度をnP としたとき、光検出器13で検出さ
れる光強度IP は、 IP =nP ……(2) となる。
On the other hand, when the subject 1 is illuminated with P-polarized light, the reflection at the observation point R does not occur on the light receiving optical system side, and therefore the intensity of the reflected light at the observation point R at this time is zero. . On the other hand, the multiple scattering component (noise) still exists, and when the intensity is n P , the light intensity I P detected by the photodetector 13 is I P = n P (2)

【0028】ここで、被検体1が同一光量のS偏光,P
偏光で照射されたとすると、S偏光を照射したときのノ
イズ強度nS とP偏光を照射したときのノイズ強度nP
は互いに等しい(nS =nP )と考えられる。したがっ
て、(1)式と(2)式との差分ΔIを演算すると、 ΔI=IS −IP =IRS+nS −nP =IRS ……(3) となり、ノイズ成分がキャンセルされ、観測点Rで反射
した反射光による光強度IRSが抽出される。
Here, the subject 1 is S-polarized and P-polarized with the same light amount.
If polarized light is irradiated, the noise intensity n S when S polarized light is irradiated and the noise intensity n P when P polarized light is irradiated.
Are considered to be equal to each other (n S = n P ). Therefore, when the difference ΔI between the equations (1) and (2) is calculated, ΔI = I S −I P = I RS + n S −n P = I RS (3), and the noise component is canceled, The light intensity I RS due to the reflected light reflected at the observation point R is extracted.

【0029】ここで、上記本発明の第1の反射光測定装
置において、受光光学系14にS偏光成分のみを抽出す
る偏光抽出手段、例えば偏光板等を備えると、(1)式
の信号成分IRSはその偏光抽出手段をそのまま通過し、
ノイズ成分nS ,nP は、それらのノイズ成分nS ,n
P のうちのS偏光成分nSS,nPSのみがその偏光抽出手
段を通過する。したがって、この場合、光検出器13に
入射する光自体のS/Nが向上し、例えば上述の演算に
より、観測点Rでの反射強度IRSが、より高精度に抽出
される。
Here, in the above-described first reflected light measuring apparatus of the present invention, when the light receiving optical system 14 is provided with polarization extracting means for extracting only the S-polarized component, such as a polarizing plate, the signal component of the formula (1) is obtained. I RS passes through the polarized light extraction means as it is,
The noise components n S and n P are the noise components n S and n.
Only the S-polarized components n SS and n PS of P pass through the polarization extracting means. Therefore, in this case, the S / N of the light itself entering the photodetector 13 is improved, and the reflection intensity I RS at the observation point R is more accurately extracted by the above-described calculation, for example.

【0030】本発明の第2の反射光測定装置は、例えば
偏光状態にない照射光を被検体1に照射し、受光光学系
14の側に、その受光光学系14に入射してきた光のS
偏光成分とP偏光成分を切替え自在に抽出して光検出器
13に導く構成を有している。照射光が被検体1に照射
されたときの、観測点Rからの反射光の強度をIR 、散
乱光強度をnとしたとき、受光光学系14に入射した光
の合計の光強度IR +nのS偏光成分IS は IS =IRS+nS ……(4) を表わすことができる。図2を参照して説明したよう
に、受光光学系に入射する反射光は、既にS偏光成分の
みであるためIR =IRSである。一方、受光光学系に入
射した光の合計の光強度IR +nのP偏光成分IP は、
反射光のP偏光成分は存在しないため、 IP =nP ……(5) である。ここでも、nS =nP と考えられる。そこで、
(4)式と(5)式との差分ΔIを演算すると、 ΔI=IS −IP =IRS+nS −nP =IRS ……(6) となり、上述した本発明の第1の反射光測定装置と同様
に、散乱光成分をキャンセルされ、観測点Pからの反射
光成分のみが抽出される。
The second reflected light measuring apparatus of the present invention irradiates the subject 1 with irradiation light that is not in a polarized state, and the S of the light that has entered the light receiving optical system 14 is directed toward the light receiving optical system 14.
The polarization component and the P polarization component are switchably extracted and led to the photodetector 13. When the irradiation light is irradiated to the subject 1, I R intensity of the reflected light from the observation point R, when the scattered light intensity is n, the sum of the light intensities I R of the light incident on the light-receiving optical system 14 The + n S-polarized component I S can represent I S = I RS + n S (4). As described with reference to FIG. 2, the reflected light incident on the light receiving optical system already has only the S-polarized component, and therefore I R = I RS . On the other hand, the P polarization component I P of the total light intensity I R + n of the light incident on the light receiving optical system is
Since there is no P-polarized component of the reflected light, I P = n P (5) Again, it is considered that n S = n P. Therefore,
When the difference ΔI between the equations (4) and (5) is calculated, ΔI = I S −I P = I RS + n S −n P = I RS (6), which is the first aspect of the present invention described above. Similar to the reflected light measuring device, the scattered light component is canceled and only the reflected light component from the observation point P is extracted.

【0031】ここで、上述したように、観測点Rからの
受光光軸4側への反射光はS偏光成分のみであるため、
もともと被検体1にP偏光成分を照射する必要がなく、
照射光がS偏光であってもよい。その場合、観測点Pか
らの反射光強度IP に対する散乱光強度nの割合が減少
し、光検出器13にもともとS/Nの高い光が入射し、
したがって観測点Rでの反射光強度がより高精度に抽出
される。
Here, as described above, since the reflected light from the observation point R to the light receiving optical axis 4 side is only the S polarization component,
Originally, it is not necessary to irradiate the subject 1 with the P-polarized component,
The irradiation light may be S-polarized light. In that case, the ratio of scattered light intensity n is reduced with respect to the reflection intensity I P from the observation point P, originally incident light of high S / N to the optical detector 13,
Therefore, the reflected light intensity at the observation point R is extracted with higher accuracy.

【0032】[0032]

【実施例】以下、本発明の実施例について説明する。図
3は、本発明の反射光測定装置の第1実施例の構成図で
ある。光源11から射出された光は、ビーム拡大光学系
121、偏光板122、および対物レンズ123からな
る照射光学系12を経由し、観測点Rに集光される。観
測点Rにおいて、照射光軸2と直交する受光光軸4の方
向に反射した反射光は、図示しない散乱光とともに、対
物レンズ141、偏光板142、集光レンズ143、お
よびピンホール板144からなる受光光学系14を経由
し、ピンホール144aを通過した光が光検出器13に
より検出される。
Embodiments of the present invention will be described below. FIG. 3 is a configuration diagram of the first embodiment of the reflected light measuring apparatus of the present invention. The light emitted from the light source 11 passes through the irradiation optical system 12 including the beam expanding optical system 121, the polarizing plate 122, and the objective lens 123, and is condensed at the observation point R. At the observation point R, the reflected light reflected in the direction of the light receiving optical axis 4 orthogonal to the irradiation optical axis 2 is transmitted from the objective lens 141, the polarizing plate 142, the condenser lens 143, and the pinhole plate 144 together with the scattered light (not shown). The light that has passed through the light receiving optical system 14 and has passed through the pinhole 144a is detected by the photodetector 13.

【0033】本実施例では、照射光学系12を構成する
偏光板122は、図3の紙面に垂直な方向に偏光したS
偏光、および図3の紙面に平行な方向に偏光したP偏光
が切替え自在にこの照射光学系12から射出されるよう
に、自在に90°回転させることができる。また、本実
施例では、受光光学系14を構成する偏光板142も、
この受光光学系14に入射した光のうちのS偏光成分,
P偏光成分がそれぞれこの受光光学系14から射出され
るように、自在に90°回転することができるよう構成
されている。このように、図3に示す実施例は、照射光
学系側の偏光板122を回転させることができることか
ら、本発明の第1の反射光測定装置の一実施例であり、
またこれと同時に、受光光学系側の偏光板142を回転
させることができることから、本発明の第2の反射光測
定装置の一実施例でもある。
In this embodiment, the polarizing plate 122 constituting the irradiation optical system 12 is S polarized in a direction perpendicular to the paper surface of FIG.
The polarized light and the P-polarized light polarized in the direction parallel to the paper surface of FIG. 3 can be freely rotated by 90 ° so as to be switchably emitted from the irradiation optical system 12. Further, in the present embodiment, the polarizing plate 142 that constitutes the light receiving optical system 14 is also
The S-polarized component of the light incident on the light receiving optical system 14,
The P-polarized component is configured to be freely rotatable by 90 ° so as to be emitted from the light receiving optical system 14. As described above, the embodiment shown in FIG. 3 is an embodiment of the first reflected light measuring device of the present invention because the polarizing plate 122 on the irradiation optical system side can be rotated.
At the same time, the polarizing plate 142 on the light receiving optical system side can be rotated, which is also an embodiment of the second reflected light measuring apparatus of the present invention.

【0034】図3に示す反射光測定装置を、本発明の第
1の反射光測定装置として用いるときは、受光光学系側
の偏光板142は、その偏光板142からS偏光成分が
射出される向きに固定しておき、照射光学系側の偏光板
122が、S偏光成分を射出する向き、およびP偏光成
分を射出する向きに、交互にその回転角度が変更され、
その都度、光検出器13で光強度が測定される。その測
定された光強度は、反射光抽出部15に入力される。反
射光抽出部15では、上述した差分演算の、さらにその
平均が演算され、これにより、観測点Rにおける反射光
の強度が求められる。
When the reflected light measuring device shown in FIG. 3 is used as the first reflected light measuring device of the present invention, the S-polarized light component is emitted from the polarizing plate 142 of the light receiving optical system side. The orientation is fixed, and the rotation angle of the polarizing plate 122 on the irradiation optical system side is alternately changed to the direction in which the S-polarized component is emitted and the direction in which the P-polarized component is emitted,
The light intensity is measured by the photodetector 13 each time. The measured light intensity is input to the reflected light extraction unit 15. The reflected light extraction unit 15 further calculates the average of the difference calculation described above, and thereby obtains the intensity of the reflected light at the observation point R.

【0035】また、図3に示す反射光測定装置を本発明
の第2の反射光測定装置として用いるときは、照射光学
系側の偏光板122は、その偏光板122からS偏光成
分が射出される向きに固定しておき、受光光学系側の偏
光板142の回転角度が、S偏光成分を射出する向き、
およびP偏光成分を射出する向きに交互にその回転角度
が変更され、上記と同様の検出、演算が行われる。
When the reflected light measuring device shown in FIG. 3 is used as the second reflected light measuring device of the present invention, the polarizing plate 122 on the irradiation optical system side emits the S-polarized component from the polarizing plate 122. And the rotation angle of the polarizing plate 142 on the light receiving optical system side is the direction in which the S-polarized component is emitted,
The rotation angle is alternately changed in the direction in which the P polarization component and the P polarization component are emitted, and the same detection and calculation as described above are performed.

【0036】ここで、図3に示す反射光測定装置の、反
射光抽出部15を除く部分を、照射光軸2と受光光軸4
とを二等分する軸を回転軸として回転自在に構成し、多
数の回転角度における検出、差分演算を行ない、それら
多数の回転角度における差分の平均値を求めると、被検
体1の、観測点Rから外れた部分の、各部分によって異
なる誤差要因が均一化され、観測点Rからの反射光情報
のみを、一層高精度に求めることができる。
Here, the portion of the reflected light measuring device shown in FIG. 3 excluding the reflected light extracting portion 15 is the irradiation optical axis 2 and the received optical axis 4.
It is configured to be rotatable about an axis that bisects and as a rotation axis, detection at a large number of rotation angles and difference calculation are performed, and an average value of the differences at the large number of rotation angles is obtained. The error factors different from each other in the part deviating from R are equalized, and only the reflected light information from the observation point R can be obtained with higher accuracy.

【0037】尚、被検体1の方を回転させることができ
るときは、装置の方を回転させる代わりに、被検体1の
方を、観測点Rが常に照射光軸2と受光光軸4との交点
に一致するように、回転させてもよい。ところで、受光
光学系側では、その受光光学系に入射した光のうちのS
偏光成分ないしP偏光成分を抽出する必要があるが、照
射光学系側では、光源11から射出された光の中からS
偏光成分ないしP偏光成分を「抽出」する必要はなく、
偏光板122を備えることに代えて、光源11として、
例えばもともと直線偏光している光を射出する光源、例
えば半導体レーザ等を用い、その光源を照射光軸2を中
心に90°回転させることによりS偏光とP偏光を得て
もよく、あるいは、図示しない1/2波長板を備え、そ
の1/2波長板を、照射光軸2を中心に回転させること
により、光源11から射出された直線偏光光、あるいは
偏光板122から射出された直線偏光光の偏光の向き
を、S偏光やP偏光に合わせてもよい。
When the subject 1 can be rotated, instead of rotating the device, the subject 1 is always observed at the observation point R by the irradiation optical axis 2 and the receiving optical axis 4. You may rotate so that it may correspond to the intersection of. By the way, on the light receiving optical system side, S
It is necessary to extract the polarized component or the P polarized component, but on the irradiation optical system side, S from the light emitted from the light source 11 is extracted.
It is not necessary to "extract" the polarized component or the P polarized component,
Instead of providing the polarizing plate 122, as the light source 11,
For example, an S-polarized light and a P-polarized light may be obtained by using a light source that originally emits linearly polarized light, such as a semiconductor laser, and rotating the light source by 90 ° about the irradiation optical axis 2, or as shown in the drawing. The linearly polarized light emitted from the light source 11 or the linearly polarized light emitted from the polarizing plate 122 is provided by rotating the 1/2 wavelength plate about the irradiation optical axis 2 as a center. The direction of the polarized light may be adjusted to S-polarized light or P-polarized light.

【0038】図4は、照射光学系から射出された照射光
の集光点(対物レンズ121の焦点)と、受光光学系が
睨む観測点R(対物レンズ141の焦点)とを高精度に
一致させることのできる光学系の模式図である。図4で
は、照射光学系12の開口角が受光光学系14の開口角
と比べ大きくなるように光学系が構成されており、開口
角の大きな照射光学系12を、照射光軸2の延びる方向
(図示の矢印D方向)に微調移動させる移動機構125
が備えられている。この移動機構125により、開口角
の大きな照射光学系を矢印D方向に微調移動させること
により、照射光学系12の焦点と受光光学系14の焦点
を高精度に一致させることができる。
In FIG. 4, the focal point of the irradiation light emitted from the irradiation optical system (focus of the objective lens 121) and the observation point R (focus of the objective lens 141) gazed by the light receiving optical system are matched with high accuracy. It is a schematic diagram of the optical system which can be made. In FIG. 4, the optical system is configured such that the aperture angle of the irradiation optical system 12 is larger than the aperture angle of the light receiving optical system 14, and the irradiation optical system 12 having a large aperture angle is arranged in the extending direction of the irradiation optical axis 2. Moving mechanism 125 for finely moving (in the direction of arrow D in the figure)
Is provided. By finely moving the irradiation optical system having a large opening angle in the direction of the arrow D by the moving mechanism 125, the focal point of the irradiation optical system 12 and the focal point of the light receiving optical system 14 can be accurately matched.

【0039】尚、図4には、照射光学系12の開口角が
受光光学系14の開口角よりも大きい例を示したが、照
射光学系12の開口角よりも受光光学系14の開口角の
方を大きく構成してもよい。そのときには、開口角の大
きい受光光学系14の方が受光光軸4に沿う方向に微調
移動される。図5は、本発明の反射光測定装置の第2実
施例の模式図である。
Although FIG. 4 shows an example in which the aperture angle of the irradiation optical system 12 is larger than the aperture angle of the light receiving optical system 14, the aperture angle of the light receiving optical system 14 is larger than the aperture angle of the irradiation optical system 12. May be configured larger. At that time, the light receiving optical system 14 having a larger aperture angle is finely moved in the direction along the light receiving optical axis 4. FIG. 5 is a schematic diagram of a second embodiment of the reflected light measuring device of the present invention.

【0040】この第2実施例は、図3に示す第1実施例
と比べ、反射ミラー16,17と両面反射ミラー18が
備えられており、この両面反射ミラー18は、図5に実
線で示す回転位置と破線で示す回転位置とに自在に回転
させることができ、この両面反射ミラー18を破線で示
す位置に回転させると、照射光学系12と受光光学系1
4の役割りが交替する。したがって、この第2実施例の
場合、装置ないし被検体1を回転させることなく、図の
左側から照射し右側で受光するモードで求めた差分と、
図の右側から照射し左側で受光するモードで求めた差分
との平均値を求めることができ、図3に示す第1実施例
における、装置ないし被検体1を回転させない場合と比
べ、反射光をより高精度に抽出することができる。
Compared to the first embodiment shown in FIG. 3, the second embodiment is provided with reflecting mirrors 16 and 17 and a double-sided reflecting mirror 18, and the double-sided reflecting mirror 18 is shown by a solid line in FIG. The double-sided reflection mirror 18 can be freely rotated between the rotation position and the rotation position indicated by the broken line. When the double-sided reflection mirror 18 is rotated to the position indicated by the broken line, the irradiation optical system 12 and the light receiving optical system 1
The roles of 4 change. Therefore, in the case of the second embodiment, the difference obtained in the mode of irradiating from the left side of the drawing and receiving the light on the right side of the drawing without rotating the device or the subject 1,
The average value with the difference obtained in the mode of irradiating from the right side of the drawing and receiving on the left side can be obtained, and compared with the case of not rotating the device or the subject 1 in the first embodiment shown in FIG. It can be extracted with higher accuracy.

【0041】図6は、本発明の反射光測定装置の第3実
施例における光軸を示した図である。ここでは、図示の
煩雑さを回避するため、光学系そのものは図示されてい
ない。三次元的には、被検体1の観測点Rで互いに直交
する光軸は、図5に示すように光軸21,22,23の
3本存在する。そこで、そのうちの一本を照射光軸と
し、残りの二本を受光光軸とすることにより、1回の測
定で2方向への反射の情報を得ることができ、また反射
光収集立体角が2倍に増え、測定精度が向上する。さら
に、これら3本の光軸21,22,23のいずれの1本
をも照射光軸として用い、かつ残りの2本を受光光軸と
して用いることができるように切替え自在に構成する
と、測定精度をさらに向上させることができる。さら
に、装置もしくは被検体1を、観測点Rを通る法線30
を回転軸として回転自在に構成すると、測定精度をさら
に向上させることができる。
FIG. 6 is a diagram showing the optical axis in the third embodiment of the reflected light measuring apparatus of the present invention. Here, the optical system itself is not shown in order to avoid complication of illustration. Three-dimensionally, there are three optical axes 21, 22, 23 that are orthogonal to each other at the observation point R of the subject 1, as shown in FIG. Therefore, by using one of them as the irradiation optical axis and the remaining two as the reception optical axis, it is possible to obtain information of reflection in two directions by one measurement, and It doubles and the measurement accuracy improves. Furthermore, if any one of these three optical axes 21, 22, 23 is used as an irradiation optical axis and the other two are used as a light receiving optical axis, it is switchable so that measurement accuracy can be improved. Can be further improved. Furthermore, the device or the subject 1 is connected to the normal line 30 passing through the observation point R.
If it is configured to be rotatable about the rotation axis, the measurement accuracy can be further improved.

【0042】図7は、本発明の反射光測定装置の第4実
施例の構成図である。図3に示す第1実施例と比べ、ハ
ーフミラー20,22が備えられ、さらに反射ミラー2
1が備えられている。さらに、この第4実施例では、光
源11として、可干渉距離の短い光を発する光源、例え
ばSLDが採用される。光源11から射出された光は、
ハーフミラー20により、被検体1を照射する光5と、
被検体1を経由せずに光検出器13に導かれる参照光6
とに二分される。参照光6は、さらに反射ミラー21で
反射され、もう一枚のハーフミラー22で、被写体1を
経由して受光光学系14に入射した光と合成されて、光
検出器13に入射する。ここでは、光源11から射出し
た光がハーフミラー20を透過し観測点Rを経由して光
検出器13に入射するまでの光路長と、光源11から入
射した光がハーフミラー20で反射し参照光6として光
検出器13に入射する迄の光路長とが一致するように、
光路長調整機構23により、反射ミラー21の位置が調
整される。
FIG. 7 is a block diagram of the fourth embodiment of the reflected light measuring apparatus of the present invention. Compared to the first embodiment shown in FIG. 3, half mirrors 20 and 22 are provided, and a reflection mirror 2 is further provided.
1 is provided. Furthermore, in the fourth embodiment, as the light source 11, a light source that emits light with a short coherence length, for example, an SLD is used. The light emitted from the light source 11 is
The light 5 for irradiating the subject 1 with the half mirror 20,
Reference light 6 guided to the photodetector 13 without passing through the subject 1
Is divided into two. The reference light 6 is further reflected by the reflection mirror 21, and is combined by the other half mirror 22 with the light that has entered the light receiving optical system 14 via the subject 1 and enters the photodetector 13. Here, the light path length until the light emitted from the light source 11 passes through the half mirror 20 and enters the photodetector 13 via the observation point R, and the light incident from the light source 11 is reflected by the half mirror 20 and is referred to. To match the optical path length until the light 6 is incident on the photodetector 13,
The position of the reflection mirror 21 is adjusted by the optical path length adjusting mechanism 23.

【0043】この第4実施例では、干渉計が構成されて
おり、しかも可干渉距離の短い光を用いているため、図
10,図11を参照して説明したように、被検体1を経
由して受光光学系14に入射し、さらに偏光板142を
通過した光のうち、参照光と干渉する成分のみが抽出さ
れる。この干渉する成分には、観測点Rからの反射光は
そのまま含まれ、散乱光の方は、その散乱光の一部の、
干渉する成分のみが検出されるため、前述した差分演算
を行う前にS/Nの高い信号が検出され、したがって前
述した差分演算と合わせ、一層高精度の測定が行われ
る。
In the fourth embodiment, an interferometer is constructed and light having a short coherence length is used. Therefore, as described with reference to FIGS. Then, of the light that has entered the light receiving optical system 14 and has further passed through the polarizing plate 142, only the component that interferes with the reference light is extracted. This interfering component includes the reflected light from the observation point R as it is, and the scattered light is a part of the scattered light.
Since only the interfering component is detected, a signal with a high S / N is detected before performing the above-mentioned difference calculation, and therefore, in combination with the above-mentioned difference calculation, a higher precision measurement is performed.

【0044】図8は、本発明の反射光測定装置の第5実
施例の構成図である。この第5実施例では、光検出器と
して、光センサが二次元的に配列された二次元アレイセ
ンサ13Aが採用されており、図3に示す第1実施例と
比べ光検出器の前面のピンホール板144(図3参照)
は取り除かれている。また、この第5実施例に示す受光
光学系14は、照射光学系12による集光点R0 ではな
く、その集光点R0 よりもやや照射光学系12に寄りの
観測点Rを睨んでいる。また、この受光光学系14は、
その観測点Rを中心とする二次元平面の像を、二次元ア
レイセンサ13A上に形成している。
FIG. 8 is a block diagram of the fifth embodiment of the reflected light measuring apparatus of the present invention. In the fifth embodiment, the two-dimensional array sensor 13A in which the photosensors are two-dimensionally arranged is adopted as the photodetector, and the pin on the front surface of the photodetector is compared with the first embodiment shown in FIG. Hall plate 144 (see FIG. 3)
Has been removed. The light-receiving optical system 14 shown in the fifth embodiment, instead of the focal point R 0 by the irradiation optical system 12, staring the observation point R of deviation slightly irradiation optical system 12 than the focal point R 0 There is. Further, the light receiving optical system 14 is
An image of a two-dimensional plane centered on the observation point R is formed on the two-dimensional array sensor 13A.

【0045】この第5実施例では、上記の構成により、
観測点Rを中心とした平面上の多数の点それぞれを観測
点として、それら多数の観測点の反射強度を二次元アレ
イセンサ13Aで一度に検出することができる。本発明
は、被検体内の二次元平面反射分布を知ろうとする場
合、一時には一点の観測点の反射情報を得るように構成
し、走査により二次元的な画像を得ることもできるが、
図8の実施例に示すように二次元的な各点の反射分布
を、走査なしで、一度に得ることもできる。
In the fifth embodiment, with the above configuration,
The two-dimensional array sensor 13A can detect the reflection intensities of a large number of points on the plane with the observation point R as the center, as the observation points. The present invention, when trying to know the two-dimensional planar reflection distribution in the subject, configured to obtain the reflection information of one observation point at a time, it is also possible to obtain a two-dimensional image by scanning,
As shown in the embodiment of FIG. 8, a two-dimensional reflection distribution of each point can be obtained at once without scanning.

【0046】また、例えば、図3に示す第1実施例にお
いて、シリンドリカルレンズ等を配置して、観測点Rを
含む、図3に垂直な方向に延びる線状の各点を照射し、
それらの各点からの反射光を図3の紙面に垂直な方向に
一次元的に光センサが配列された光検出器を用いて同時
に検出することにより、一時に一本の直線上の複数の観
測点の反射情報を得ることもできる。尚、この場合、ピ
ンホール板144を、図3の紙面に垂直な方向に延びる
スリットが形成されたスリット板に変更する等、必要な
変更を行うことは当然である。
Further, for example, in the first embodiment shown in FIG. 3, a cylindrical lens or the like is arranged to irradiate each linear point including the observation point R and extending in the direction perpendicular to FIG.
The reflected light from each of these points is detected simultaneously by using a photodetector in which photosensors are arranged one-dimensionally in a direction perpendicular to the paper surface of FIG. It is also possible to obtain reflection information at the observation point. In this case, it goes without saying that necessary changes such as changing the pinhole plate 144 to a slit plate in which slits extending in the direction perpendicular to the paper surface of FIG. 3 are formed.

【0047】このように、本発明の反射光測定装置は、
一時には一点の観測点の反射情報を得るように構成する
こともでき、一時に直線上に並ぶ多数の観測点の反射情
報を得るように構成するともでき、一時に、平面上に並
ぶ多数の観測点の反射情報を得るように構成することも
できる。
As described above, the reflected light measuring device of the present invention is
It can be configured to obtain the reflection information of one observation point at a time, or it can be configured to obtain the reflection information of many observation points lined up on a straight line at a time. It can also be configured to obtain the reflection information of the observation point.

【0048】[0048]

【発明の効果】以上説明したように、本発明の反射光測
定装置によれば、被検体内部の観測点からの反射光の情
報を、被検体表面ないし被検体内部で多重に散乱した散
乱光とは高精度に分離して抽出することができる。
As described above, according to the reflected light measuring apparatus of the present invention, the information of the reflected light from the observation point inside the object is scattered light which is multiply scattered on the surface of the object or inside the object. Can be separated and extracted with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における、基本的な光学系配置の概念と
その光学系配置の場合の散乱光発生の様子を示す模式図
である。
FIG. 1 is a schematic diagram showing a concept of a basic optical system arrangement and a state of scattered light generation in the case of the optical system arrangement in the present invention.

【図2】直線偏光光の反射方向に対する反射強度分布を
示した図である。
FIG. 2 is a diagram showing a reflection intensity distribution with respect to a reflection direction of linearly polarized light.

【図3】本発明の反射光測定装置の第1実施例の構成図
である。
FIG. 3 is a configuration diagram of a first embodiment of a reflected light measuring device of the present invention.

【図4】照射光学系から射出された照射光の集光点と、
受光光学系が睨む観測点Rとを高精度に一致させること
のできる光学系の模式図である。
FIG. 4 is a condensing point of irradiation light emitted from the irradiation optical system,
FIG. 3 is a schematic diagram of an optical system capable of highly accurately matching an observation point R to which a light receiving optical system gazes.

【図5】本発明の反射光測定装置の第2実施例の模式図
である。
FIG. 5 is a schematic view of a second embodiment of the reflected light measuring device of the present invention.

【図6】本発明の反射光測定装置の第3実施例における
光軸を示した図である。
FIG. 6 is a diagram showing an optical axis in a third embodiment of the reflected light measuring device of the invention.

【図7】本発明の反射光測定装置の第4実施例の構成図
である。
FIG. 7 is a configuration diagram of a fourth embodiment of the reflected light measuring apparatus of the present invention.

【図8】本発明の反射光測定装置の第5実施例の構成図
である。
FIG. 8 is a configuration diagram of a fifth embodiment of the reflected light measuring apparatus of the present invention.

【図9】CLSMの原理説明図である。FIG. 9 is a diagram illustrating the principle of CLSM.

【図10】OCT装置の説明図である。FIG. 10 is an explanatory diagram of an OCT apparatus.

【図11】図10に示すOCT装置における、フォトダ
イオードで得られる信号を示した図である。
11 is a diagram showing signals obtained by a photodiode in the OCT apparatus shown in FIG.

【図12】散乱光が混入する様子を模式的に示す説明図
である。
FIG. 12 is an explanatory diagram schematically showing how scattered light is mixed.

【符号の説明】[Explanation of symbols]

1 被検体 2 照射光軸 4 受光光軸 11 光源 12 照射光学系 13 光検出器 14 受光光学系 122,142 偏光板 R 観測点 1 Subject 2 Irradiation Optical Axis 4 Receiving Optical Axis 11 Light Source 12 Irradiation Optical System 13 Photodetector 14 Light Receiving Optical System 122, 142 Polarizing Plate R Observation Point

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 被検体内部の所定の観測点で、所定の受
光光軸に沿う方向に反射した反射光を導く受光光学系
と、 前記受光光軸に直交する照射光軸に沿う方向から、前記
観測点に、前記受光光軸および前記照射光軸双方を含む
平面に垂直な方向に直線偏光した第1の偏光光、および
前記平面に平行な方向に直線偏光した第2の偏光光を、
切替え自在に照射する照射光学系と、 前記受光光学系により導かれた前記反射光の強度を検出
する光検出器と、 前記光検出器で検出された、前記観測点が前記第1の偏
光光で照射されたときの第1の光強度と、前記観測点が
前記第2の偏光光で照射されたときの第2の光強度との
双方に基づいて、前記反射光と、前記被検体の表面もし
くは内部で散乱されて前記受光光学系に入射した散乱光
とのうちの前記反射光による光強度を抽出する反射光抽
出手段とを備えたことを特徴とする反射光測定装置。
1. A light receiving optical system that guides reflected light reflected at a predetermined observation point inside a subject in a direction along a predetermined light receiving optical axis, and from a direction along an irradiation optical axis orthogonal to the light receiving optical axis, At the observation point, first polarized light linearly polarized in a direction perpendicular to a plane including both the light receiving optical axis and the irradiation optical axis, and second polarized light linearly polarized in a direction parallel to the plane,
An irradiation optical system that emits light in a switchable manner, a photodetector that detects the intensity of the reflected light guided by the light receiving optical system, and the observation point detected by the photodetector is the first polarized light. On the basis of both the first light intensity when illuminated with and the second light intensity when the observation point is illuminated with the second polarized light. A reflected light measuring device comprising: a reflected light extracting unit that extracts a light intensity of the reflected light out of scattered light that is scattered on the surface or inside and is incident on the light receiving optical system.
【請求項2】 前記受光光学系が、前記反射光の、前記
平面に垂直な方向に直線偏光した第1の偏光成分を抽出
する偏光抽出手段を備えたことを特徴とする請求項1記
載の反射光測定装置。
2. The light receiving optical system according to claim 1, further comprising polarization extracting means for extracting a first polarization component of the reflected light, which is linearly polarized in a direction perpendicular to the plane. Reflected light measuring device.
【請求項3】 被検体内部の所定の観測点に、所定の照
射光軸に沿う方向から照射光を照射する照射光学系と、 前記観測点で、前記照射光軸に直交する受光光軸に沿う
方向に反射した反射光を導くとともに、該反射光の、前
記照射光軸および前記受光光軸双方を含む平面に垂直な
方向に直線偏光した第1の偏光成分、および前記平面に
平行な方向に直線偏光した第2の偏光成分を、切替え自
在に抽出する受光光学系と、 前記受光光学系により抽出された前記反射光の偏光成分
の強度を検出する光検出器と、 前記光検出器で検出された、該光検出器に前記第1の偏
光成分が入射したときの第1の光強度と、該光検出器に
前記第2の偏光成分が入射したときの第2の光強度との
双方に基づいて、前記反射光と、前記被検体の表面もし
くは内部で散乱されて前記受光光学系に入射した散乱光
とのうちの前記反射光による光強度を抽出する反射光抽
出手段とを備えたことを特徴とする反射光測定装置。
3. An irradiation optical system for irradiating a predetermined observation point inside the subject with irradiation light from a direction along a predetermined irradiation optical axis, and a light reception optical axis orthogonal to the irradiation optical axis at the observation point. A first polarization component linearly polarized in a direction perpendicular to a plane including both the irradiation light axis and the received light axis of the reflected light while guiding the reflected light reflected in the direction along the direction, and a direction parallel to the plane. A light receiving optical system for extracting the second polarization component linearly polarized in a switchable manner, a photodetector for detecting the intensity of the polarization component of the reflected light extracted by the light receiving optical system, and the photodetector. Of the detected first light intensity when the first polarized component is incident on the photodetector and the second light intensity when the second polarized component is incident on the photodetector. Based on both of them, the reflected light is scattered on the surface or inside of the subject. A reflected light measuring device comprising: a reflected light extracting unit that extracts a light intensity of the reflected light out of scattered light that is disturbed and enters the light receiving optical system.
【請求項4】 前記照射光学系が、前記照射光として、
前記平面に垂直な方向に直線偏光した第1の偏光光を照
射するものであることを特徴とする請求項3記載の反射
光測定装置。
4. The irradiation optical system, as the irradiation light,
The reflected light measuring device according to claim 3, wherein the reflected light measuring device emits linearly polarized first polarized light in a direction perpendicular to the plane.
【請求項5】 前記反射光抽出手段が、前記第1の光強
度と前記第2の光強度との差分演算を含む演算を行なう
ものであることを特徴とする請求項1から4のうちいず
れか1項記載の反射光測定装置。
5. The reflected light extraction means performs a calculation including a difference calculation between the first light intensity and the second light intensity. The reflected light measuring device according to item 1.
【請求項6】 被検体内部の所定の観測点で互いに直交
する第1の光軸および第2の光軸それぞれを有し、切替
え自在に、前記照射光学系および前記受光光学系として
使用される第1の光学系および第2の光学系を備えたこ
とを特徴とする請求項1又は3記載の反射光測定装置。
6. A first optical axis and a second optical axis that are orthogonal to each other at a predetermined observation point inside the subject, and are switchably used as the irradiation optical system and the light receiving optical system. The reflected light measuring device according to claim 1 or 3, further comprising a first optical system and a second optical system.
【請求項7】 前記照射光学系、前記受光光学系、およ
び前記光検出器を、前記照射光軸と前記受光光軸とを二
等分する軸を回動軸として回動させる回動機構を備えた
ことを特徴とする請求項1又は3記載の反射光測定装
置。
7. A rotating mechanism for rotating the irradiation optical system, the light receiving optical system, and the photodetector with an axis bisecting the irradiation optical axis and the light receiving optical axis as a rotation axis. The reflected light measuring device according to claim 1 or 3, further comprising:
【請求項8】 前記観測点で、前記照射光軸と前記受光
光軸との双方に直交する第2の受光光軸に沿う方向に反
射した反射光を導く第2の受光光学系を備えたことを特
徴とする請求項1又は3記載の反射光測定装置。
8. A second light receiving optical system for guiding the reflected light reflected at the observation point in a direction along a second light receiving optical axis orthogonal to both the irradiation light axis and the light receiving optical axis. The reflected light measuring device according to claim 1 or 3, characterized in that.
【請求項9】 所定の可干渉距離を有する光を射出する
光源を有し、該光源から射出された光を第1の光と第2
の光とに二分し該第1の光を前記照射光学系に入射する
とともに該第2の光を前記光検出器に導く干渉光学系を
備えたことを特徴とする請求項1又は3記載の反射光測
定装置。
9. A light source that emits light having a predetermined coherence length, and the light emitted from the light source is a first light and a second light.
4. The interference optical system for splitting the first light into the irradiation optical system and guiding the second light to the photodetector is divided into two. Reflected light measuring device.
【請求項10】 前記照射光学系が、一次元的もしくは
二次元的に並ぶ複数の観測点に光を照射し、前記受光光
学系が、該複数の観測点の像を前記光検出器上に結像す
る結像光学系を備えたものであって、前記光検出器が該
複数の観測点それぞれで反射した反射光それぞれを検出
するものであることを特徴とする請求項1又は3記載の
反射光測定装置。
10. The irradiation optical system irradiates a plurality of observation points arranged one-dimensionally or two-dimensionally with light, and the light-receiving optical system displays images of the plurality of observation points on the photodetector. 4. An image forming optical system for forming an image, wherein the photodetector detects each of the reflected lights reflected at each of the plurality of observation points. Reflected light measuring device.
JP5243395A 1995-03-13 1995-03-13 Reflected light measuring device Expired - Lifetime JP2774945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5243395A JP2774945B2 (en) 1995-03-13 1995-03-13 Reflected light measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5243395A JP2774945B2 (en) 1995-03-13 1995-03-13 Reflected light measuring device

Publications (2)

Publication Number Publication Date
JPH08247734A true JPH08247734A (en) 1996-09-27
JP2774945B2 JP2774945B2 (en) 1998-07-09

Family

ID=12914627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5243395A Expired - Lifetime JP2774945B2 (en) 1995-03-13 1995-03-13 Reflected light measuring device

Country Status (1)

Country Link
JP (1) JP2774945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166810A (en) * 1997-12-05 2000-12-26 Nippon Telegraph And Telephone Corporation Method and apparatus for determining distance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166810A (en) * 1997-12-05 2000-12-26 Nippon Telegraph And Telephone Corporation Method and apparatus for determining distance

Also Published As

Publication number Publication date
JP2774945B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
EP0458601B1 (en) Method of and apparatus for measuring spectral absorption in opaque specimens and method of and apparatus for measuring microscopic absorption distribution
JP5377738B2 (en) Flexible non-linear laser scanning microscope for non-invasive 3D detection
JP4344829B2 (en) Polarized light receiving image measuring device
US8204300B2 (en) Image forming method and optical coherence tomograph apparatus using optical coherence tomography
US9993153B2 (en) Optical coherence tomography system and method with multiple apertures
EP3250956B1 (en) Microscopy system with auto-focus adjustment by low-coherence interferometry
US20090219544A1 (en) Systems, methods and computer-accessible medium for providing spectral-domain optical coherence phase microscopy for cell and deep tissue imaging
US20110222070A1 (en) Optical Tomographic Image Forming Method
US10337995B2 (en) Systems and methods for oblique laser scanning
US9383188B2 (en) Polarization-sensitive optical measurement instrument
US9625380B2 (en) Optical coherence tomography with homodyne-phase diversity detection
JP6690390B2 (en) Optical coherence tomography device
US9170411B2 (en) Scanning optical microscope
JP2009008393A (en) Optical image measuring device
JP3631056B2 (en) Light wave reflection tomography observation device
JP2002034919A (en) Eye optical characteristic measuring apparatus
US20190072375A1 (en) Optical image measuring apparatus
JP3365474B2 (en) Polarizing imaging device
JPH061241B2 (en) Particle analyzer
JP2012202774A (en) Observation device and observation method
WO2019150695A1 (en) Optical image measuring apparatus
JP2774945B2 (en) Reflected light measuring device
US8379220B2 (en) Imaging and measuring apparatus for surface and internal interface of object
JP2009258080A (en) Hole shape measuring apparatus
JPH0721451B2 (en) Microscopic absorption distribution measuring device for opaque samples

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980407