JPH08246022A - Lance nozzle for blowing-in converter - Google Patents

Lance nozzle for blowing-in converter

Info

Publication number
JPH08246022A
JPH08246022A JP4760895A JP4760895A JPH08246022A JP H08246022 A JPH08246022 A JP H08246022A JP 4760895 A JP4760895 A JP 4760895A JP 4760895 A JP4760895 A JP 4760895A JP H08246022 A JPH08246022 A JP H08246022A
Authority
JP
Japan
Prior art keywords
blowing
oxygen
hole
lance nozzle
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4760895A
Other languages
Japanese (ja)
Inventor
Chihiro Yamaji
千博 山地
Koji Takeuchi
康二 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4760895A priority Critical patent/JPH08246022A/en
Publication of JPH08246022A publication Critical patent/JPH08246022A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE: To provide a lance nozzle for blowing-in converter particularly prevented from the thermal deformation of an oxygen jetting hole for blowing and the damage to a corner part at the tip part of a lance caused by radiation heat. CONSTITUTION: In the lance nozzle having the oxygen jetting holes 7 for blowing in which the gaseous oxygen jetting direction in the inner part is parallel with a cooling water flowing direction on the back surface of a wall, copper-made heat pipes 5 are embedded along the oxygen jetting holes 7 for blowing in the wall of the oxygen jetting holes for blowing to quicken the heat transfer parallel with the wall surface. The copper-made heat pipe 5 is extended from a position distant from the tip part on the side of the heat receiving surface of the oxygen jetting hole for blowing by 15-30mm to a position close to the inner part side by <=100mm and the water is used as the working fluid in the copper-made heat pipes 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、転炉吹錬用ランスノズ
ルに関し、特に輻射熱によるランス先端部の吹錬用酸素
吹出し孔の熱変形およびコーナー部の損傷を防止した転
炉吹錬用ランスノズルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a converter blowing lance nozzle, and more particularly to a converter blowing lance which prevents thermal deformation and corner damage of the blowing oxygen blowing hole at the tip of the lance due to radiant heat. Regarding nozzles.

【0002】[0002]

【従来の技術】従来、転炉吹錬用ランスノズルは、銅ま
たは銅合金からなるランスノズルとそれを冷却する冷却
用二重水管を締結一体化して使用されている。この際、
酸素ジェットを溶鋼面に吹きつける吹錬用酸素吹出し孔
の先端部は、輻射熱による熱変形および熱損傷を大きく
受けることが問題となっていた。
2. Description of the Related Art Conventionally, as a lance nozzle for blowing a converter, a lance nozzle made of copper or a copper alloy and a cooling double water pipe for cooling the lance nozzle are integrally used. On this occasion,
It has been a problem that the tip portion of the oxygen blowing hole for blowing, which blows the oxygen jet onto the molten steel surface, is greatly subjected to thermal deformation and thermal damage due to radiant heat.

【0003】従来のランスノズルとして、吹錬用酸素吹
出し孔が5孔よりなる例を図3および図4に示す。図3
では、酸素供給管3の先端部には、吹錬用酸素吹出し孔
7が複数設けられ、純酸素を気体酸素ジェット流15と
して溶鋼面に吹きつける状況を示している。これらの図
で、吹錬用酸素吹出し孔7の周辺の冷却は、冷却水内管
2の通路から冷却水を供給し、導水孔12a、12b、
12cを通って吹錬用酸素吹出し孔7の外周部が冷却さ
れる。同時に、受熱面9には大量な冷却水流を供給で
き、そして、最終的には冷却水管1の通路を通り排出さ
れる構造となっている。
As an example of a conventional lance nozzle, FIG. 3 and FIG. 4 show an example in which there are five oxygen blowing holes for blowing. FIG.
In FIG. 2, a plurality of blowing oxygen blowing holes 7 are provided at the tip of the oxygen supply pipe 3, and pure oxygen is blown as a gaseous oxygen jet flow 15 onto the molten steel surface. In these figures, for cooling the periphery of the blowing oxygen blowing hole 7, cooling water is supplied from the passage of the cooling water inner pipe 2, and the water guiding holes 12a, 12b,
The outer peripheral portion of the blowing oxygen blowing hole 7 is cooled through 12c. At the same time, a large amount of cooling water flow can be supplied to the heat receiving surface 9 and is finally discharged through the passage of the cooling water pipe 1.

【0004】この際、図3に示すように、輻射熱等によ
って吹錬用酸素吹出し孔5の先端部は、繰り返し加熱、
冷却されるために変形部13およびコーナー損傷部14
が発生する。特に、変形部13では吹錬用酸素吹出し孔
の形状は偏平ないし楕円状になり、気体酸素ジェット流
15は、その噴出方向成分が屈折することになる。この
ため、溶鋼精錬時の安定した操業に支障をきたし、また
鉄分歩留りが低下することが問題となっている。この分
野の従来技術として、特開平3−229814号公報に
は、転炉メインランスノズルの長寿命化をはかるため、
酸素吹き出し口の先端部の溶損を防止する方法として、
ガス通路と、このガス通路を取り囲む冷却水通路とを有
し、受熱面の冷却水の線速度が18m/秒以上となるよ
うに前記冷却水通路が形成したランスノズルが開示され
ている。
At this time, as shown in FIG. 3, the tip of the oxygen blowing hole 5 for blowing is repeatedly heated by radiant heat or the like.
Deformation part 13 and corner damage part 14 due to being cooled
Occurs. In particular, in the deforming portion 13, the blowing oxygen blowing holes have a flat or elliptical shape, and the gaseous oxygen jet stream 15 has its jetting direction component refracted. Therefore, stable operation during molten steel refining is hindered, and the iron yield is reduced. As a conventional technique in this field, Japanese Patent Laid-Open No. 3-229814 discloses a converter main lance nozzle having a long life.
As a method to prevent melting damage at the tip of the oxygen outlet,
Disclosed is a lance nozzle having a gas passage and a cooling water passage surrounding the gas passage, the cooling water passage being formed so that the linear velocity of the cooling water on the heat receiving surface is 18 m / sec or more.

【0005】このように、ランスノズルの損傷は、酸素
孔出口コーナー部の損傷と、酸素孔全体の変形があり、
交換の主因となっている。従来方式では後者の酸素孔全
体の変形に対する改善効果はない。
As described above, damage to the lance nozzle includes damage to the corner portion of the oxygen hole outlet and deformation of the entire oxygen hole.
It is the main cause of exchange. The conventional method does not have the effect of improving the latter deformation of the entire oxygen hole.

【0006】[0006]

【発明が解決しようとする課題】上記の吹錬用酸素吹出
し孔7の変形部13およびコーナー損傷部14の発生に
ついて、種々解析を進めた結果、変形は一定のパターン
によって生じることが明らかとなった。すなわち、輻射
熱等による加熱と吹錬終了時の待機による冷却の繰り返
しが、ランスノズルに残留圧縮歪みを発生し、これが加
熱冷却のサイクルとともに累積し加算され、変形が拡大
していく。初期の段階では、一端変形部13は外側に膨
らみ、熱膨張差によって反対側の内側に収縮することが
繰り返され、最終的には初期形状から約10mmぐらい
の変形を残留した形状に変化することになる。
As a result of various analyzes on the generation of the deformed portion 13 and the damaged corner portion 14 of the oxygen blowing hole 7 for blowing as described above, it is revealed that the deformation is caused by a certain pattern. It was That is, repeated heating by radiant heat or the like and cooling by waiting at the end of blowing generate residual compressive strain in the lance nozzle, which is accumulated and added together with the heating / cooling cycle to expand the deformation. In the initial stage, the one-end deformed portion 13 bulges outward and contracts inward on the opposite side due to the difference in thermal expansion, and eventually changes from the initial shape to a shape with a residual deformation of about 10 mm. become.

【0007】この変形はマクロ的には、酸素ジェット流
15の成分が内側に曲げられ、そのため全体としてのジ
ェット流が内側に曲げられ、噴出衝突経路が定常の位置
からずれることになる。このため、溶鋼面の酸素ジェッ
ト衝突位置である火点位置をずらしていまい、定常的な
操業に支障を来たすことになる。本発明は、吹錬用酸素
吹出し孔における以上のような変形およびコーナー部の
損傷を防止することを目的に、吹錬用酸素吹出し孔壁面
の冷却の促進方法を検討し、受熱面からの高熱による変
形および損傷を、熱伝導の改善により抑制して、吹錬の
ランスノズル一代での定常安定化を実現し、かつ寿命を
延長してその交換による時間的およびコスト的負担の軽
減改善をはかることを可能とする転炉吹錬用ランスノズ
ルを提供するものである。
Macroscopically, this deformation causes the components of the oxygen jet flow 15 to be bent inward, so that the jet flow as a whole is bent inward, and the jet collision path deviates from the steady position. For this reason, the fire point position, which is the oxygen jet collision position on the molten steel surface, may be displaced, which hinders steady operation. The present invention, for the purpose of preventing the above-described deformation and corner damage in the oxygen blowing hole for blowing, studies a method for promoting the cooling of the wall surface of the oxygen blowing hole for blowing, and examines the high heat from the heat receiving surface. Deformation and damage due to heat conduction is suppressed by improvement of heat conduction, steady stabilization of the lance nozzle for blowing is realized, and the life is extended to reduce the time and cost burden by replacing it. It is intended to provide a lance nozzle for converter blowing that enables the above.

【0008】[0008]

【課題を解決するための手段】本発明は上記の課題を解
決するもので、その要旨とするところは、 (1)内部の気体酸素噴出方向、および壁背面の冷却水
流方向が平行なる吹錬用酸素吹出し孔を有するランスノ
ズルにおいて、前記吹錬用酸素吹出し孔周囲の壁内に、
前記吹錬用酸素吹出し孔に沿って、銅製ヒートパイプを
埋設し壁面に平行な熱伝達を促進することを特徴とする
転炉吹錬用ランスノズル。
Means for Solving the Problems The present invention is to solve the above-mentioned problems, and the gist thereof is as follows: (1) Blowing in which the direction of jetting of gaseous oxygen inside and the direction of cooling water on the back surface of the wall are parallel In a lance nozzle having a blown oxygen outlet hole, in the wall around the blown oxygen outlet hole,
A converter lance nozzle for blowing a converter, wherein a copper heat pipe is embedded along the blowing oxygen blowing hole to promote heat transfer parallel to a wall surface.

【0009】(2)前記銅製ヒートパイプが、吹錬用酸
素吹出し孔の受熱面先端部から15〜30mmの位置か
ら、吹錬用酸素吹出し孔入側より少なくとも100mm
位置まで延在する(1)記載の転炉吹錬用ランスノズ
ル。
(2) The copper heat pipe is 15 to 30 mm from the tip of the heat-receiving surface of the oxygen blowing hole for blowing, and at least 100 mm from the inlet side of the oxygen blowing hole for blowing.
The lance nozzle for converter blowing as described in (1), which extends to a position.

【0010】(3)前記銅製ヒートパイプの作動流体が
水である(1)記載の転炉吹錬用ランスノズルである。 本発明の作用について、以下に説明する。
(3) The lance nozzle for blowing a converter as set forth in (1), wherein the working fluid of the copper heat pipe is water. The operation of the present invention will be described below.

【0011】[0011]

【作用】通常のランスノズルは溶鋼からの熱負荷により
図3に示すような酸素孔全体がノズル中心側に向かうよ
うな変形13を生じる。また、吹錬用酸素吹出し孔7の
出側コーナー部14は、他の部位に比べ高温になるため
損傷する。この変形および損傷はノズルの使用回数とと
もに進行し変形量が大きくなると酸素ジェット流15が
所定の特性を維持できなくなる。そこで冷却水通路8に
導入された冷却水により冷却される吹錬用酸素吹出し孔
壁6内に、吹錬用酸素吹出し孔7と同方向にヒートパイ
プ5を設け、前記ヒートパイプ5の先端の一方を吹錬用
酸素吹出し孔出側10の位置に配設し、かつ他方を前記
位置から十分離れた位置に、本発明では吹錬用酸素吹出
し孔入側より少なくとも100mm位置まで配設し、か
つ酸素孔全体を均一に冷却するように円周方向に複数本
配置する。これにより溶鋼からの輻射熱でより高温にさ
らされる孔出口近傍の壁温度が、従来の壁面厚み方向の
熱移動だけでなく、壁面平行方向の熱移動が発生するた
め、従来に比べ低温になる。
In a normal lance nozzle, the heat load from the molten steel causes a deformation 13 such that the entire oxygen hole is directed toward the nozzle center side as shown in FIG. Further, the outlet side corner portion 14 of the blowing oxygen blowing hole 7 becomes hot as compared with other portions and is damaged. This deformation and damage progress with the number of times the nozzle is used, and when the amount of deformation increases, the oxygen jet stream 15 cannot maintain the predetermined characteristics. Therefore, a heat pipe 5 is provided in the same direction as the blowing oxygen blowing hole 7 in the blowing oxygen blowing hole wall 6 cooled by the cooling water introduced into the cooling water passage 8, and the tip of the heat pipe 5 is provided. One is arranged at the position of the blowing oxygen outlet hole outlet side 10 and the other is arranged at a position sufficiently distant from the position, and in the present invention, it is arranged at least 100 mm from the blowing oxygen outlet hole inlet side, In addition, a plurality of oxygen holes are arranged in the circumferential direction so as to uniformly cool the entire oxygen holes. As a result, the wall temperature in the vicinity of the outlet of the hole, which is exposed to a higher temperature by the radiant heat from the molten steel, is not only the heat transfer in the wall thickness direction of the related art, but also the heat transfer in the direction parallel to the wall surface, so that the wall temperature is lower than that in the prior art.

【0012】吹錬用酸素吹出し孔7の壁温度が低下する
ことにより、前記壁に発生する応力は減少し酸素孔全体
の変形量、酸素孔出口コーナー部の損傷を防止できる。
また、本発明では銅製ヒートパイプ5の位置として、吹
錬用酸素吹出し孔出側10の先端部から15〜30mm
の位置から内部側の吹錬用酸素吹出し孔入側11から少
なくとも100mmの位置に延在するものである。最も
温度が高温になるコーナー部の冷却をするには、コーナ
ー直近までヒートパイプを配設すればよいが、コーナー
部からの距離を15mm未満にすると酸素吹出し孔壁6
と受熱面9の強度上問題であり、また該位置がコーナー
部から30mmを越えると冷却の十分な効果が得られな
い。この部位の熱は吹錬用酸素吹出し孔入側11の内部
側少なくとも100mmの位置まで輸送される。これに
よって、受熱面9よりの熱量を吹錬用酸素吹出し孔の内
部方向により多くの熱を伝達し、その位置で冷却するこ
とによって、受熱面の熱を分散し冷却効果をより増大す
るものである。
By lowering the wall temperature of the oxygen blowing hole 7 for blowing, the stress generated on the wall is reduced, and the deformation amount of the entire oxygen hole and the damage of the oxygen hole outlet corner can be prevented.
Further, in the present invention, the position of the copper heat pipe 5 is 15 to 30 mm from the tip end of the blowing-out oxygen blowout hole side 10.
From the position (1) to the position at least 100 mm from the inside of the blowing-out oxygen blowing hole entrance side 11. To cool the corner where the temperature is the highest, a heat pipe may be installed up to the immediate vicinity of the corner, but if the distance from the corner is less than 15 mm, the oxygen outlet hole wall 6
And the heat-receiving surface 9 has a problem in strength, and if the position exceeds 30 mm from the corner, a sufficient cooling effect cannot be obtained. The heat of this portion is transported to a position of at least 100 mm on the inner side of the blowing-in oxygen blowing hole inlet side 11. As a result, more heat is transferred from the heat receiving surface 9 to the inside of the blowing oxygen blowing holes, and by cooling at that position, the heat on the heat receiving surface is dispersed and the cooling effect is further increased. is there.

【0013】本来、吹錬用酸素吹出し孔の先端部近傍
は、背面冷却として周辺の冷却水流によって冷却され、
この時の冷却水量4は、通常約3Nm3 /分である。こ
の際、図1のように導水孔12a、12bによって、冷
却水通路8の冷却水を壁面の背面に強制的に衝突させ冷
却するように工夫されたとしても、吹錬用酸素吹出し孔
の壁面背面に流水を直接衝突させて冷却する方式では、
自ずと冷却効果に制約を受け、通常の受熱面の熱量に対
して不足の傾向となる。本発明では、この冷却不足を補
償し、かつ冷却をより促進するために、吹錬用酸素吹出
し孔7の壁面に埋設された銅製ヒートパイプ5によって
受熱面9の熱を内部側に伝導し、背面冷却能の大きい内
部位置で効率よく冷却することを実現した。さらに、本
発明の銅製ヒートパイプ5は、一般的に、内部を排気し
て揮発性の液体(作動液)を少量封入した管体で、熱パ
イプともいわれているもので、低損失の熱伝導が実現可
能である。本発明では、この作動液として、水を封入し
て水の蒸発、凝縮による潜熱の吸収、放出を利用し、凝
縮水の自然落下による内部還流を実現したものである。
これによって、複数の銅製ヒートパイプ5を埋設したと
しても、コスト的にもその負担は小さい。本発明につい
て、添付した実施例の図面を参照してさらに詳述する。
Originally, the vicinity of the tip of the oxygen blowing hole for blowing is cooled by the surrounding cooling water flow as backside cooling,
The cooling water amount 4 at this time is usually about 3 Nm 3 / min. At this time, as shown in FIG. 1, even if the cooling water in the cooling water passage 8 is forced to collide with the back surface of the wall surface to cool it by the water guiding holes 12a and 12b as shown in FIG. In the method of cooling by colliding running water directly on the back,
As a result, the cooling effect is naturally limited, and the amount of heat on the ordinary heat receiving surface tends to be insufficient. In the present invention, in order to compensate for this cooling shortage and further promote cooling, the heat of the heat receiving surface 9 is conducted to the inner side by the copper heat pipe 5 embedded in the wall surface of the blowing oxygen blowing hole 7, Achieved efficient cooling at an internal position with a large rear surface cooling capacity. Further, the copper heat pipe 5 of the present invention is generally a pipe body in which a small amount of a volatile liquid (working liquid) is exhausted from the inside, and is also called a heat pipe, which has a low loss of heat conduction. Is feasible. In the present invention, water is enclosed as this hydraulic fluid, and the latent heat is absorbed and released by the evaporation and condensation of the water to realize internal recirculation by the natural fall of the condensed water.
As a result, even if a plurality of copper heat pipes 5 are buried, the cost is small. The invention will be described in more detail with reference to the accompanying exemplary drawings.

【0014】[0014]

【実施例】従来のノズル酸素孔直径φ60mm×5孔のノ
ズルに、直径φ6mm×長さ70mmのヒートパイプを酸素
孔円周方向に6本配置した。通常の製造法で製作したラ
ンスノズルを酸素供給管側から吹錬用酸素吹出し孔壁に
ドリルで穴をあけ、リーマ加工を行い所定の形状・精度
に加工した。その後、所定の嵌め合いに加工しているヒ
ートパイプを、吹錬用酸素吹出し孔側から挿入し、挿入
完了後、断熱材を介してスクリューキャップで抜け出さ
ないように固定する。本ランスノズルを実機に使用した
結果を図2に示す。酸素吹出し孔コーナーからの距離を
横軸に、各位置での壁面温度を測定したものである。こ
の図より、本発明のランスノズルでは、従来のランスノ
ズルに比較して、温度差が解消されていることがわか
る。また、従来120回の使用で全体の変形量が12mm
であったものが、1mm以下、コーナー部の損傷は従来品
が10mmのところ2mmとすることができた。また、又変
形量、コーナー部損傷量が従来の交換基準になるまで使
用したところ2倍以上の寿命を有することを確認した。
Example Nozzles having a conventional oxygen hole diameter of φ60 mm × 5 holes, and six heat pipes having a diameter of φ6 mm × length of 70 mm were arranged in the circumferential direction of the oxygen hole. A lance nozzle manufactured by a conventional manufacturing method was drilled from the oxygen supply pipe side to the wall of the oxygen blowing hole for blowing, and reaming was performed to obtain a predetermined shape and accuracy. After that, a heat pipe processed into a predetermined fit is inserted from the side of the oxygen blowing hole for blowing, and after the insertion is completed, it is fixed with a screw cap through a heat insulating material so as not to come out. The results of using this lance nozzle in an actual machine are shown in FIG. The wall temperature at each position is measured with the horizontal axis representing the distance from the oxygen outlet hole corner. From this figure, it is understood that the lance nozzle of the present invention eliminates the temperature difference as compared with the conventional lance nozzle. In addition, the total amount of deformation is 12 mm after 120 uses.
However, the damage to the corner could be 2 mm at 10 mm in the conventional product. In addition, it was confirmed that the product had a life more than twice as long as it was used until the amount of deformation and the amount of damage at the corners became the conventional replacement standard.

【0015】[0015]

【発明の効果】本発明のヒートパイプの冷却効果によ
り、ノズル酸素孔金属部の温度を低下させ、かつ金属部
に発生する内部熱応力を緩和し、酸素孔の変形、コーナ
ー部の損傷防止がはかれる。また、吹錬用酸素吹出し孔
の長期間使用による変形、コーナー部の損傷の発生がな
く、ランスノズルの寿命延長をはかることができる。
By the cooling effect of the heat pipe of the present invention, the temperature of the nozzle oxygen hole metal part is lowered, the internal thermal stress generated in the metal part is relaxed, and the deformation of the oxygen hole and the damage of the corner part are prevented. Be peeled off. Further, the oxygen blowing hole for blowing has no deformation due to long-term use, and the corner portion is not damaged, and the life of the lance nozzle can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る銅製ヒートパイプの埋設状況を示
す概要図である。
FIG. 1 is a schematic view showing a buried state of a copper heat pipe according to the present invention.

【図2】本発明の実施例における従来法と本発明法の比
較を示す図である。
FIG. 2 is a diagram showing a comparison between the conventional method and the method of the present invention in Examples of the present invention.

【図3】従来の転炉吹錬用ランスノズルの概要を示す図
である。
FIG. 3 is a diagram showing an outline of a conventional converter blowing lance nozzle.

【図4】従来の転炉吹錬用ランスノズルを示す図で、図
3のAA矢視図である。
4 is a diagram showing a conventional converter blowing lance nozzle, which is a view as seen from the direction of arrow AA in FIG. 3. FIG.

【符号の説明】[Explanation of symbols]

1…冷却外管 2…冷却内管 3…酸素供給管 4…冷却水流 5…ヒートパイプ 6…酸素吹出し孔壁 7…吹錬用酸素吹出し孔 8…冷却水通路 9…受熱面 10…酸素吹出し孔出側 11…酸素吹出し孔入側 12a、12b、12c…導水孔 13…変形部 14…コーナー損傷部 15…酸素ジェット流 1 ... Cooling outer pipe 2 ... Cooling inner pipe 3 ... Oxygen supply pipe 4 ... Cooling water flow 5 ... Heat pipe 6 ... Oxygen blowing hole wall 7 ... Blowing oxygen blowing hole 8 ... Cooling water passage 9 ... Heat receiving surface 10 ... Oxygen blowing Outlet side 11 ... Oxygen blowout hole entry side 12a, 12b, 12c ... Water guide hole 13 ... Deformation part 14 ... Corner damage part 15 ... Oxygen jet flow

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内部の気体酸素噴出方向、および壁背面
の冷却水流方向が平行なる吹錬用酸素吹出し孔を有する
ランスノズルにおいて、該吹錬用酸素吹出し孔周囲の壁
内に、該吹錬用酸素吹出し孔に沿って、銅製ヒートパイ
プを埋設し壁面に平行な熱伝達を促進することを特徴と
する転炉吹錬用ランスノズル。
1. A lance nozzle having a blowing oxygen blowing hole in which the direction of jetting gaseous oxygen and the flow direction of cooling water on the back surface of the wall are parallel to each other, in the wall around the blowing oxygen blowing hole. A converter lance nozzle for blowing a converter characterized in that a copper heat pipe is embedded along the oxygen outlet to promote heat transfer parallel to the wall surface.
【請求項2】 前記銅製ヒートパイプが、吹錬用酸素吹
出し孔の受熱面先端部から15〜30mmの位置から、
吹錬用酸素吹出し孔入側より少なくとも100mm位置
まで延在する請求項1記載の転炉吹錬用ランスノズル。
2. The copper heat pipe is located 15 to 30 mm from the tip of the heat receiving surface of the oxygen blowing hole for blowing.
The lance nozzle for converter blowing according to claim 1, which extends to a position of at least 100 mm from the inlet side of the blowing oxygen blowing hole.
【請求項3】 前記銅製ヒートパイプの作動流体が水で
ある請求項1記載の転炉吹錬用ランスノズル。
3. A converter blowing lance nozzle according to claim 1, wherein the working fluid of the copper heat pipe is water.
JP4760895A 1995-03-07 1995-03-07 Lance nozzle for blowing-in converter Withdrawn JPH08246022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4760895A JPH08246022A (en) 1995-03-07 1995-03-07 Lance nozzle for blowing-in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4760895A JPH08246022A (en) 1995-03-07 1995-03-07 Lance nozzle for blowing-in converter

Publications (1)

Publication Number Publication Date
JPH08246022A true JPH08246022A (en) 1996-09-24

Family

ID=12779958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4760895A Withdrawn JPH08246022A (en) 1995-03-07 1995-03-07 Lance nozzle for blowing-in converter

Country Status (1)

Country Link
JP (1) JPH08246022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022032A1 (en) * 1997-10-24 1999-05-06 Mcgill University Inclined heat pipe lance or tuyere with controllable heat extraction
FR2860243A1 (en) * 2003-09-30 2005-04-01 Air Liquide Multi-jet nozzle for a steelmaking oxygen injection lance with divergent optimized Laval tuyeres for improved injection speeds
KR101407504B1 (en) * 2007-12-21 2014-06-17 재단법인 포항산업과학연구원 Apparatus for supplying oxygen in furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022032A1 (en) * 1997-10-24 1999-05-06 Mcgill University Inclined heat pipe lance or tuyere with controllable heat extraction
FR2860243A1 (en) * 2003-09-30 2005-04-01 Air Liquide Multi-jet nozzle for a steelmaking oxygen injection lance with divergent optimized Laval tuyeres for improved injection speeds
KR101407504B1 (en) * 2007-12-21 2014-06-17 재단법인 포항산업과학연구원 Apparatus for supplying oxygen in furnace

Similar Documents

Publication Publication Date Title
BRPI0509990B1 (en) Heat Exchanger System Used in Steel Confection
JPH08246022A (en) Lance nozzle for blowing-in converter
RU2516116C2 (en) Electrode for electric arc dc furnace of continuous action
JP2007056334A (en) Cooling zone in horizontal type continuous treating furnace and method for threading steel strip in cooling zone
JP2001255094A (en) Heat exchanger
JPH08302414A (en) Lance nozzle for blowing of converter
JPH08246021A (en) Lance nozzle for blowing-in converter
KR20050055265A (en) Water-cooled walls in a fluidized bed reactor
CN103572005B (en) A kind of refrigerating unit for steel mill RH refining furnace downtake and method of cooling
JPH0641610B2 (en) Converter exhaust gas cooling device
JPH08246019A (en) Lance nozzle for blowing-in converter
JPH0619555Y2 (en) Converter body cooling device
JPH08246020A (en) Lance nozzle for blowing-in converter
KR100939318B1 (en) Method for bonding pipe and nozzle of oxygen lance
JP2001304502A (en) Method for preventing corrosion of boiler tube and structure of boiler tube
JPS639580Y2 (en)
RU2449022C2 (en) Method for cooling air blowing tuyere and supplying natural gas to blast furnace, and device for its implementation
KR100962168B1 (en) Tuyere nozzle for protecting from heating damage by blast furnace
KR100509519B1 (en) annealing process to purge a oxygen
JPS6318141A (en) Temperature reducer for gas turbine
JP2000160216A (en) Lance for blowing powdery material into blast furnace
JPH10280026A (en) Lance nozzle for converter blowing and manufacture thereof
KR200313247Y1 (en) A heat exchanger
JP2002080908A (en) Cooling stave
JP2021127850A (en) Member and method of cooling the member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507