JP2021127850A - Member and method of cooling the member - Google Patents

Member and method of cooling the member Download PDF

Info

Publication number
JP2021127850A
JP2021127850A JP2020022147A JP2020022147A JP2021127850A JP 2021127850 A JP2021127850 A JP 2021127850A JP 2020022147 A JP2020022147 A JP 2020022147A JP 2020022147 A JP2020022147 A JP 2020022147A JP 2021127850 A JP2021127850 A JP 2021127850A
Authority
JP
Japan
Prior art keywords
core material
base material
cooling
protrusion
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020022147A
Other languages
Japanese (ja)
Inventor
悠太 世古
Yuta Seko
悠太 世古
慎司 高根
Shinji Takane
慎司 高根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2020022147A priority Critical patent/JP2021127850A/en
Publication of JP2021127850A publication Critical patent/JP2021127850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

To provide a member with further excellent cooling capacity, and a method of cooling the member.SOLUTION: A member is used for a device used in a heating environment, and has a base material having a long hollow part for passing a cooling medium, a core material arranged in the hollow part along the longitudinal direction of the hollow part, and projections arranged projectingly from an outer surface of the core material into a space between the base material and the core material. The projections are spirally arranged in the axial direction of the core material.SELECTED DRAWING: Figure 1

Description

本発明は、加熱環境で用いられる装置用の部材であり、例えば、溶解炉周辺や溶解炉内のような高温雰囲気下で使用される装置用の部材、およびその部材の冷却方法に関する。 The present invention relates to a member for an apparatus used in a heating environment, for example, a member for an apparatus used in a high temperature atmosphere such as around a melting furnace or inside a melting furnace, and a cooling method for the member.

加熱環境で用いられる装置用の部材、例えば、溶解炉周辺や溶解炉内の溶融金属(溶融温度:500℃以上)近傍で使用される部材は、熱膨張による変形などを防止するために冷却することが必要である。例えば、溶解炉の溶融金属に挿入し、酸素の注入を行うための酸素ランスの冷却方法として、ランスが二重管になっており、二重管の内側管路が冷却エアーの往路、外側管路が帰路になっており、作業中に冷却エアーが循環され、ランスを内部から冷却する技術が開示されている(特許文献1)。 Members for equipment used in a heating environment, for example, members used around the melting furnace or near molten metal (melting temperature: 500 ° C or higher) in the melting furnace, are cooled to prevent deformation due to thermal expansion. It is necessary. For example, as a cooling method of the oxygen lance for inserting into the molten metal of the melting furnace and injecting oxygen, the lance is a double pipe, and the inner pipe of the double pipe is the outward pipe of the cooling air and the outer pipe. A technique is disclosed in which the road is a return route, cooling air is circulated during work, and the lance is cooled from the inside (Patent Document 1).

特開昭61−288007号公報JP-A-61-288007

しかしながら、特許文献1は、酸素ランスを炉内手前側に挿入させる場合にとどまり、部材を炉の対面(炉奥)まで挿入して使用する場合では、部材の大部分が高温雰囲気に晒されるため、部材に熱が流入しやすく、部材の冷却能が不十分である問題があった。 However, Patent Document 1 is limited to the case where the oxygen lance is inserted into the front side of the furnace, and when the member is inserted to the opposite side of the furnace (the inner part of the furnace) and used, most of the member is exposed to a high temperature atmosphere. There is a problem that heat easily flows into the member and the cooling capacity of the member is insufficient.

そこで、本発明では、冷却能にいっそう優れる部材、およびその部材の冷却方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a member having a more excellent cooling ability and a method for cooling the member.

本発明は、加熱環境で用いられる装置用の部材であって、冷却媒体を流すための長尺の中空部を有する基材と、前記中空部内に、前記中空部の長手方向に沿って配置された芯材と、前記芯材の外面から前記基材と前記芯材との間の空間に突出するように配置された突起部と、を有し、前記突起部が、前記芯材の軸方向に向かって、螺旋状に配されていることを特徴とする部材である。 The present invention is a member for an apparatus used in a heating environment, in which a base material having a long hollow portion for flowing a cooling medium and the hollow portion are arranged along the longitudinal direction of the hollow portion. It has a core material and a protrusion arranged so as to project from the outer surface of the core material into the space between the base material and the core material, and the protrusion is in the axial direction of the core material. It is a member characterized in that it is arranged spirally toward.

また、前記部材は、前記突起部の先端の少なくとも一部と前記基材の内壁とが離間していることが好ましい。 Further, in the member, it is preferable that at least a part of the tip of the protrusion and the inner wall of the base material are separated from each other.

また、前記芯材は、筒状部材であり、表面に少なくとも1つの開口部とを有することが好ましい。 Further, the core material is a tubular member, and preferably has at least one opening on the surface.

また、本発明は、冷却媒体を用いて、加熱環境で用いられる装置用の部材を冷却する冷却方法であって、前記部材は、長尺の中空部を有する基材と、前記中空部内に、その長手方向に沿って配置された芯材と、前記芯材の外面から前記基材と前記芯材との間の空間に突出するように配置された突起部とを有し、前記冷却媒体を前記中空部内に流通させ、前記突起部に沿って進行する流れと、前記基材の内壁と前記突起部とで形成された間隙空間を進行する流れとによって前記部材を冷却することを特徴とする部材の冷却方法である。 Further, the present invention is a cooling method for cooling a member for an apparatus used in a heating environment by using a cooling medium, wherein the member has a base material having a long hollow portion and a base material having a long hollow portion in the hollow portion. The cooling medium has a core material arranged along the longitudinal direction thereof and a protrusion arranged so as to project from the outer surface of the core material into the space between the base material and the core material. The member is cooled by a flow flowing through the hollow portion and traveling along the protrusion and a flow traveling in a gap space formed by the inner wall of the base material and the protrusion. This is a method for cooling members.

本発明によれば、冷却能にいっそう優れる部材、およびその部材の冷却方法を提供できる。 According to the present invention, it is possible to provide a member having a more excellent cooling ability and a method for cooling the member.

第1実施形態における装置用の部材100の内部模式図である。It is an internal schematic diagram of the member 100 for a device in 1st Embodiment. 本発明に係る突起部が、らせん状に配されている状態を示す内部模式図である。It is an internal schematic diagram which shows the state in which the protrusions according to this invention are arranged in a spiral shape. 第1実施形態における装置用の部材100内を流れる冷却媒体の挙動を示した模式図である。It is a schematic diagram which showed the behavior of the cooling medium flowing in the member 100 for an apparatus in 1st Embodiment. 第2実施形態における装置用の部材200の内部模式図である。It is an internal schematic diagram of the member 200 for a device in 2nd Embodiment. 第2実施形態における装置用の部材200内を流れる冷却媒体の挙動を示した模式図である。It is a schematic diagram which showed the behavior of the cooling medium flowing in the member 200 for an apparatus in 2nd Embodiment.

以下、本発明に係る部材およびその部材の冷却方法の実施形態について、図面を参照しながら詳細に説明する。但し、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。 Hereinafter, embodiments of the member according to the present invention and the method for cooling the member will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. Further, in order to clarify the explanation, the following description and drawings have been simplified as appropriate.

(第1実施形態)
図1に示すように、本実施形態である、加熱環境で用いられる装置用の部材100は、冷却媒体を流すための長尺の中空部を有する基材1と、基材1の中空部内に、中空部の長手方向(基材1の長手方向)に沿って配置された芯材2と、芯材2の外面から基材1と芯材2との間の間隙空間に突出するように配置された突起部3と、を有している。加熱環境には、直接的または間接的に加熱された環境が含まれ、加熱された環境自体およびその近傍も含まれる。例えば、本実施形態の部材は、溶解炉周辺や溶解炉内のような高温雰囲気下で使用される熱源の周囲、すなわち、強度等の特性を維持するために、冷却機構を必要とする環境で用いられる。
(First Embodiment)
As shown in FIG. 1, the member 100 for an apparatus used in a heating environment according to the present embodiment has a base material 1 having a long hollow portion for flowing a cooling medium and a hollow portion in the base material 1. , The core material 2 arranged along the longitudinal direction of the hollow portion (longitudinal direction of the base material 1) and arranged so as to project from the outer surface of the core material 2 into the gap space between the base material 1 and the core material 2. It has a protrusion 3 and a protrusion 3. The heated environment includes a directly or indirectly heated environment, and also includes the heated environment itself and its vicinity. For example, the member of the present embodiment is around a heat source used in a high temperature atmosphere such as around a melting furnace or inside a melting furnace, that is, in an environment requiring a cooling mechanism in order to maintain characteristics such as strength. Used.

基材1の材質は、銅やアルミニウムなどの軽合金、ステンレス鋼や一般構造用圧延鋼材や超耐熱合金(Fe基、Ni基、Co基など)、およびセラミックスや黒鉛などの成形体等を用いることができ、例えば700℃〜800℃で使用する場合には、SUS304、より高温の環境下(例えば1000℃以上)で使用する場合にはSUS310S、熱による変形を抑制したい場合には、一般構造用圧延鋼材にアルミナイジング(カロライジング処理)を施したものを用いることができる。
形状としては、中空の構造を有していればよく、軸方向に垂直な断面が、円形状の他、多角形状であってもよい。例えば、筒状部材や配管部材などを用いることができる。
As the material of the base material 1, light alloys such as copper and aluminum, stainless steel, rolled steel materials for general structures, super heat resistant alloys (Fe group, Ni group, Co group, etc.), and molded bodies such as ceramics and graphite are used. For example, SUS304 when used at 700 ° C. to 800 ° C., SUS310S when used in a higher temperature environment (for example, 1000 ° C. or higher), general structure when it is desired to suppress deformation due to heat. It is possible to use a rolled steel material that has been aluminized (calorizing treatment).
The shape may have a hollow structure, and the cross section perpendicular to the axial direction may be a circular shape or a polygonal shape. For example, a tubular member, a piping member, or the like can be used.

芯材2の材質は、基材1同様、銅やアルミニウムなどの軽合金、ステンレス鋼や一般構造用圧延鋼材や超耐熱合金(Fe基、Ni基、Co基など)、およびセラミックスや黒鉛などの成形体等を用いることができる。例えば700℃〜800℃で使用する場合には、SUS304、より高温の環境下(例えば、1000℃以上)で使用する場合にはSUS310S、熱による変形を抑制したい場合には、一般構造用圧延鋼材にアルミナイジング(カロライジング処理)を施したものを用いることができる。
形状としては、突起部3を接合するための面積を確保する。また、連続的に突起部3を接合する場合には、軸方向に対して垂直な断面が、多角形状の棒材を用いることが好ましい。また、中空の構造を有していればよく、例えば、筒状部材や配管部材などを用いることができる。
Like the base material 1, the core material 2 is made of light alloys such as copper and aluminum, stainless steel, rolled steel materials for general structures, super heat resistant alloys (Fe group, Ni group, Co group, etc.), ceramics, graphite, etc. A molded body or the like can be used. For example, SUS304 when used at 700 ° C to 800 ° C, SUS310S when used in a higher temperature environment (for example, 1000 ° C or higher), and rolled steel for general structure when it is desired to suppress deformation due to heat. Can be used after being subjected to aluminazing (calorizing treatment).
As for the shape, an area for joining the protrusions 3 is secured. Further, when the protrusions 3 are continuously joined, it is preferable to use a bar having a polygonal cross section perpendicular to the axial direction. Further, it suffices to have a hollow structure, and for example, a tubular member, a piping member, or the like can be used.

突起部3の材質は、基材1および芯材2同様、銅やアルミニウムなどの軽合金、ステンレス鋼や一般構造用圧延鋼材や超耐熱合金(Fe基、Ni基、Co基など)、およびセラミックスや黒鉛などの成形体等を用いることができ、例えば700℃〜800℃で使用する場合には、SUS304、より高温の環境下(例えば、1000℃以上)で使用する場合にはSUS310S、熱による変形を抑制したい場合には、一般構造用圧延鋼材にアルミナイジング(カロライジング処理)を施したものを用いることができる。 Similar to the base material 1 and the core material 2, the material of the protrusion 3 is a light alloy such as copper or aluminum, stainless steel, rolled steel for general structure, super heat resistant alloy (Fe group, Ni group, Co group, etc.), and ceramics. A molded product such as or graphite can be used, for example, SUS304 when used at 700 ° C to 800 ° C, SUS310S when used in a higher temperature environment (for example, 1000 ° C or higher), and heat. When it is desired to suppress deformation, a rolled steel material for general structure that has been subjected to aluminaization (calorizing treatment) can be used.

図1に示す実施形態では、突起部3は、図2に示すような、軸方向に螺旋状に連続したフィン形状、すなわちスクリュー状のものを有している。突起部3の形状としては、図3中に示す突起部3のように、芯材2の軸方向に沿った断面が、芯材2の径方向に等幅に伸びているものや、図5中に示す突起部3のように、芯材2の軸方向に沿った断面が、芯材2の径方向に先細るフィン形状のものを用いることができる。また、突起部3は全体として螺旋状に配置されていればよく、一部に切欠き部、開口部等を設けることも可能であるし、断続的に螺旋状に配置することも可能である。 In the embodiment shown in FIG. 1, the protrusion 3 has a fin shape that is spirally continuous in the axial direction, that is, a screw shape, as shown in FIG. As for the shape of the protrusion 3, as shown in the protrusion 3 shown in FIG. 3, the cross section of the core material 2 along the axial direction extends to the same width in the radial direction of the core material 2, and FIG. Like the protrusion 3 shown inside, a fin shape having a cross section along the axial direction of the core material 2 that tapers in the radial direction of the core material 2 can be used. Further, the protrusions 3 may be arranged in a spiral shape as a whole, and it is possible to provide a notch, an opening or the like in a part thereof, or to arrange the protrusions 3 in a spiral shape intermittently. ..

突起部3は、芯材2の軸方向に所定の間隔(ピッチ)ごとに設けることができ、目的に応じてその間隔を変えることができる。間隔が狭いほど熱伝達率は大きくなる方向となり、導入する冷却媒体41は、基材1と芯材2と突起部33で形成された間隙空間を流れる過程で、圧力が低下しやすくなる。一方、間隔を広くしていくと、熱伝達率は小さくなる方向となり、導入する冷却媒体41は、基材1と芯材2と突起部3で形成された間隙空間を流れる過程で、圧力が低下し難くなる。即ち、冷却効率を高める目的ならば、間隔を小さくし、導入する冷却媒体41および基材1と芯材2と突起部3で形成された間隙空間を流れる冷却媒体42の圧力の低下を避けたい場合には、間隔を広くすることが好ましい。 The protrusions 3 can be provided at predetermined intervals (pitch) in the axial direction of the core material 2, and the intervals can be changed according to the purpose. The narrower the interval, the higher the heat transfer coefficient, and the pressure of the cooling medium 41 to be introduced tends to decrease in the process of flowing through the gap space formed by the base material 1, the core material 2, and the protrusion 33. On the other hand, as the interval is widened, the heat transfer coefficient tends to decrease, and the pressure of the cooling medium 41 to be introduced is increased in the process of flowing through the gap space formed by the base material 1, the core material 2, and the protrusion 3. It becomes difficult to decrease. That is, for the purpose of increasing the cooling efficiency, it is desired to reduce the interval and avoid a decrease in the pressure of the cooling medium 41 to be introduced and the cooling medium 42 flowing through the gap space formed by the base material 1, the core material 2 and the protrusion 3. In some cases, it is preferable to increase the interval.

突起部3は、芯材2の軸方向に沿って、螺旋状に配される。また、突起部3は、突起部3の先端の少なくとも一部と基材1の内壁とが、離間していることが好ましく、突起部3の先端と基材1の内壁とが、すべて離間しているとさらに好ましい。突起部3の先端と基材1の内壁とが離間していることで、導入された冷却媒体41が、突起部3と基材1の内壁との間に沿うように流れることで、基材1の内壁と接触する面積増加させることができ、効率的に冷却することが期待できる。突起部3の先端と基材1の内壁とを離間させる距離としては、例えば、0.1mm以上5.0mm以下程度離間させることができ、0.1mm以上1.0mm以下だとさらに好ましい。 The protrusions 3 are spirally arranged along the axial direction of the core material 2. Further, in the protrusion 3, it is preferable that at least a part of the tip of the protrusion 3 and the inner wall of the base material 1 are separated from each other, and the tip of the protrusion 3 and the inner wall of the base material 1 are all separated from each other. Is even more preferable. Since the tip of the protrusion 3 and the inner wall of the base material 1 are separated from each other, the introduced cooling medium 41 flows along between the protrusion 3 and the inner wall of the base material 1, so that the base material The area in contact with the inner wall of 1 can be increased, and efficient cooling can be expected. The distance between the tip of the protrusion 3 and the inner wall of the base material 1 can be, for example, 0.1 mm or more and 5.0 mm or less, and more preferably 0.1 mm or more and 1.0 mm or less.

第1実施形態である装置用の部材100においては、基材1と芯材2および突起部3とで形成された間隙空間に、冷却媒体41を導入する。基材1と芯材2との間の間隙空間を進行する冷却媒体41は、その間隙空間内に螺旋状に配置されている突起部3によって、突起部3のらせん方向に沿って進行する冷却媒体42として進行し、部材を冷却する。 In the member 100 for the apparatus according to the first embodiment, the cooling medium 41 is introduced into the gap space formed by the base material 1, the core material 2, and the protrusion 3. The cooling medium 41 traveling in the gap space between the base material 1 and the core material 2 is cooled by the protrusions 3 spirally arranged in the gap space along the spiral direction of the protrusions 3. It proceeds as a medium 42 and cools the member.

以上、第1実施形態である装置用の部材であれば、本来、層流であった冷却媒体41が、突起部3のらせん方向に沿って進行する、乱流化した冷却媒体42となるため、熱伝達率が向上し、温度を効率的に下げることができる。
またさらには、突起部3の先端の少なくとも一部と基材1の内壁とを、離間させて形成した間隙空間によって、間隙空間を進行する冷却媒体43が生じることによって流速が上昇して、熱伝達率の更なる向上が期待でき、温度をより効率的に下げることができる。
As described above, in the case of the member for the apparatus according to the first embodiment, the cooling medium 41 which was originally a laminar flow becomes a turbulent cooling medium 42 which advances along the spiral direction of the protrusion 3. , The heat transfer coefficient is improved and the temperature can be lowered efficiently.
Furthermore, the gap space formed by separating at least a part of the tip of the protrusion 3 and the inner wall of the base material 1 creates a cooling medium 43 that advances in the gap space, so that the flow velocity increases and heat is generated. Further improvement in transmission rate can be expected, and the temperature can be lowered more efficiently.

(第2実施形態)
次に、第2実施形態である装置用の部材200について、説明する。なお、本実施形態は、第1実施形態の一部を変更したものであり、図3において、第1実施形態と同一部分には同一符号を付している。
(Second Embodiment)
Next, the member 200 for the device according to the second embodiment will be described. It should be noted that this embodiment is a modification of a part of the first embodiment, and in FIG. 3, the same parts as those of the first embodiment are designated by the same reference numerals.

図4に示すように、本実施形態の装置用の部材200は、芯材2の形状が、第1実施形態と異なっている。そして、本実施形態の装置用の部材200では、芯材2が中空な筒状部材として中空部21を有し、芯材2の表面に少なくとも1つ(例えば、芯材2の一端側)の開口部22を備えている。
第2実施形態200においては、他端側から芯材2の中に導入された冷却媒体は、芯材2(の一端側)の側面に設けた開口部22に到達すると、開口部22を通じて基材1と芯材2との間の間隙空間に放出される。図4に示すように、基材1の一端側は閉じられているため、放出された冷却媒体41は、押し出される圧力により、基材1と芯材2と突起部3と形成された間隙空間を、中空部21内を流れてきた方向の逆方向に進行する。また、図5に示すように、基材1と芯材2との間の間隙空間を進行する冷却媒体41は、その間隙空間内に螺旋状に配置されている突起部3によって、突起部3のらせん方向に沿って進行する冷却媒体42と、突起部3の先端と基材1の内壁とで形成された間隙空間を進行する冷却媒体43とに分かれながら進行し、冷却する。そして、基材1と芯材2、および突起部3で形成された間隙空間を流通した後、基材1の他端側の側面に設けた開口部11(排出口)を通じて、排出される。
As shown in FIG. 4, the shape of the core member 2 of the member 200 for the apparatus of this embodiment is different from that of the first embodiment. Then, in the member 200 for the apparatus of the present embodiment, the core material 2 has a hollow portion 21 as a hollow tubular member, and at least one (for example, one end side of the core material 2) is provided on the surface of the core material 2. It has an opening 22.
In the second embodiment 200, when the cooling medium introduced into the core material 2 from the other end side reaches the opening 22 provided on the side surface of the core material 2 (one end side), the cooling medium is formed through the opening 22. It is discharged into the gap space between the material 1 and the core material 2. As shown in FIG. 4, since one end side of the base material 1 is closed, the released cooling medium 41 is a gap space formed between the base material 1, the core material 2, and the protrusion 3 by the pressure of being pushed out. In the direction opposite to the direction in which the hollow portion 21 has flowed through the hollow portion 21. Further, as shown in FIG. 5, the cooling medium 41 traveling in the gap space between the base material 1 and the core material 2 has a protrusion 3 formed by a protrusion 3 spirally arranged in the gap space. The cooling medium 42 that travels along the spiral direction and the cooling medium 43 that travels in the gap space formed by the tip of the protrusion 3 and the inner wall of the base material 1 proceed and cool. Then, after flowing through the gap space formed by the base material 1, the core material 2, and the protrusion 3, the material is discharged through the opening 11 (discharge port) provided on the side surface on the other end side of the base material 1.

また、冷却媒体41を所定の位置(例えば、部材の一端側)まで搬送せることができるため、部材200全体を効率的に冷却するという優れた冷却性能に加えて、例えば、部材200の一端側に熱が集中する場合に、その一端側を局所的に冷却することができる。 Further, since the cooling medium 41 can be conveyed to a predetermined position (for example, one end side of the member), in addition to the excellent cooling performance of efficiently cooling the entire member 200, for example, one end side of the member 200. When heat is concentrated on, one end side of the heat can be locally cooled.

次に、図4に示す実施形態と同様の構成を用い、以下の条件で冷却効果をシミュレーションにて評価した。
シミュレーションに用いたモデルについて、基材は、内径:30.7mmで、肉厚:1.65mmのSUS304製のパイプであり一端側の側面には、冷却媒体を基材内部から排出させるための直径15.0mmの開口部(排出口)を1か所配置した。芯材は、内径:7.1mmで、肉厚:1.7mmのSUS304製の筒材であり、筒材の一端側の側面に、基材と芯材および突起部で形成された間隙空間に冷却媒体を供給するための、直径:6.0mmの開口部(供給口)を1か所配置した。突起部は、外径:30.0mm、(厚さ1.7mm)、間隔:3.0mmのスクリュー状であり、開口部(供給口)から芯材の軸方向に10.0mmだけ離した位置に螺旋状に配置した。
また、比較例は、実施例の基材と同じ内径、同じ厚みの直管とした。
Next, using the same configuration as that of the embodiment shown in FIG. 4, the cooling effect was evaluated by simulation under the following conditions.
For the model used in the simulation, the base material is a SUS304 pipe with an inner diameter of 30.7 mm and a wall thickness of 1.65 mm, and the side surface on one end side has a diameter for discharging the cooling medium from the inside of the base material. One 15.0 mm opening (exhaust port) was arranged. The core material is a tubular material made of SUS304 having an inner diameter of 7.1 mm and a wall thickness of 1.7 mm. One opening (supply port) having a diameter of 6.0 mm was arranged to supply the cooling medium. The protrusions are screw-shaped with an outer diameter of 30.0 mm (thickness 1.7 mm) and an interval of 3.0 mm, and are positioned 10.0 mm away from the opening (supply port) in the axial direction of the core material. Arranged in a spiral shape.
Further, in the comparative example, a straight pipe having the same inner diameter and the same thickness as the base material of the example was used.

(シミュレーション条件)
環境温度を500Kとし、冷却媒体には、温度:300K、供給圧力:0.5MPaの圧縮空気を用いた。
該圧縮空気を用いて、冷却媒体を上記部材の芯材内部に導入し、芯材側面の開口部(供給口)を通じて、基材であるパイプと芯材とで形成された間隙空間にて吐出させ、吐出させた冷却媒体を、フィン10ピッチ分の位置まで流通させた場合、すなわち、開口部(供給口)から38.5mm後方における熱伝達率[W/(m・K)]について評価した。また、圧縮空気導入時の流速は、10m/sec、15m/sec、20m/secに設定し、それぞれの流速において評価をおこなった。
(Simulation conditions)
The environment temperature was 500 K, and compressed air having a temperature of 300 K and a supply pressure of 0.5 MPa was used as the cooling medium.
Using the compressed air, a cooling medium is introduced into the core material of the above member, and is discharged through an opening (supply port) on the side surface of the core material in a gap space formed by a pipe as a base material and the core material. Evaluate the heat transfer coefficient [W / (m 2 · K)] 38.5 mm behind the opening (supply port) when the discharged cooling medium is circulated to the position of 10 pitches of fins. bottom. Further, the flow velocities at the time of introducing compressed air were set to 10 m / sec, 15 m / sec, and 20 m / sec, and evaluation was performed at each flow velocity.

表1に、実施例と比較例について、熱伝達率[W/(m・K)]を比較した結果を示す。表1に示すように、流速10m/sec、15m/sec、20m/secいずれの場合においても、実施例1の方が、比較例よりも熱伝達率が高く、優れた冷却性能を有していることが分かった。
これは、開口部(供給口)から吐出された圧縮空気が、突起部のフィンと衝突し、乱流になりながららせん方向に沿って、開口部(排出口)に向かって進行したことに加えて、フィンの先端と基材となる筒材の内壁とに形成された間隙空間を流れる圧縮空気が、流路が制限されることにより、流速が向上したことに起因する。
なお、環境温度が1500Kの場合においても、熱伝達率[W/(m・K)]が同様の値を示すことを確認した。
以上、この2つの効果が奏することによって、熱伝達率が向上し、直管による冷却よりも優れた冷却性能を示す結果となった。

Figure 2021127850
Table 1 shows the results of comparing the heat transfer coefficient [W / (m 2 · K)] between the examples and the comparative examples. As shown in Table 1, at any of the flow velocities of 10 m / sec, 15 m / sec, and 20 m / sec, Example 1 has a higher heat transfer coefficient than Comparative Example and has excellent cooling performance. It turned out that there was.
This is because the compressed air discharged from the opening (supply port) collides with the fins of the protrusion and travels toward the opening (discharge port) along the spiral direction while forming a turbulent flow. This is because the flow velocity of the compressed air flowing through the gap space formed between the tip of the fin and the inner wall of the tubular material as the base material is improved by limiting the flow path.
It was confirmed that the heat transfer coefficient [W / (m 2 · K)] shows the same value even when the environmental temperature is 1500 K.
As described above, by achieving these two effects, the heat transfer coefficient is improved, and the result shows that the cooling performance is superior to that of the cooling by the straight pipe.
Figure 2021127850

1 :基材
11:開口部
2 :芯材
21:中空部
22:開口部
3 :突起部
4 :冷却媒体
41:冷却媒体
42:冷却媒体
43:冷却媒体
100:部材
200:部材
1: Base material 11: Opening 2: Core material 21: Hollow part 22: Opening 3: Protruding part 4: Cooling medium 41: Cooling medium 42: Cooling medium 43: Cooling medium 100: Member 200: Member

Claims (4)

加熱環境で用いられる装置用の部材であって、
冷却媒体を流すための長尺の中空部を有する基材と、
前記中空部内に、前記中空部の長手方向に沿って配置された芯材と、
前記芯材の外面から前記基材と前記芯材との間の空間に突出するように配置された突起部と、を有し、
前記突起部が、前記芯材の軸方向に向かって、螺旋状に配されていることを特徴とする部材。
A member for equipment used in a heating environment.
A base material having a long hollow part for flowing a cooling medium,
A core material arranged in the hollow portion along the longitudinal direction of the hollow portion,
It has a protrusion arranged so as to project from the outer surface of the core material into the space between the base material and the core material.
A member characterized in that the protrusions are spirally arranged in the axial direction of the core material.
前記突起部の先端の少なくとも一部と前記基材の内壁とが、離間していることを特徴とする請求項1に記載の部材。 The member according to claim 1, wherein at least a part of the tip of the protrusion and the inner wall of the base material are separated from each other. 前記芯材は、
筒状部材であり、
表面に少なくとも1つの開口部を有することを特徴とする請求項1または2に記載の部材。
The core material is
It is a tubular member
The member according to claim 1 or 2, wherein the member has at least one opening on the surface.
冷却媒体を用いて、加熱環境で用いられる装置用の部材を冷却する冷却方法であって、
前記部材は、長尺の中空部を有する基材と、
前記中空部内に、その長手方向に沿って配置された芯材と、
前記芯材の外面から前記基材と前記芯材との間の空間に突出するように、かつ螺旋状に配置された突起部と、を有し、
前記冷却媒体を前記中空部内に流通させ、
前記突起部に沿って進行する流れと、前記基材の内壁と前記突起部とで形成された間隙空間を進行する流れとによって前記部材を冷却することを特徴とする部材の冷却方法。

A cooling method that uses a cooling medium to cool members for equipment used in a heating environment.
The member includes a base material having a long hollow portion and
A core material arranged along the longitudinal direction in the hollow portion,
It has protrusions that are spirally arranged so as to project from the outer surface of the core material into the space between the base material and the core material.
The cooling medium is circulated in the hollow portion, and the cooling medium is circulated in the hollow portion.
A method for cooling a member, which comprises cooling the member by a flow traveling along the protrusion and a flow traveling in a gap space formed by the inner wall of the base material and the protrusion.

JP2020022147A 2020-02-13 2020-02-13 Member and method of cooling the member Pending JP2021127850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020022147A JP2021127850A (en) 2020-02-13 2020-02-13 Member and method of cooling the member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020022147A JP2021127850A (en) 2020-02-13 2020-02-13 Member and method of cooling the member

Publications (1)

Publication Number Publication Date
JP2021127850A true JP2021127850A (en) 2021-09-02

Family

ID=77488279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022147A Pending JP2021127850A (en) 2020-02-13 2020-02-13 Member and method of cooling the member

Country Status (1)

Country Link
JP (1) JP2021127850A (en)

Similar Documents

Publication Publication Date Title
EP2738506A2 (en) Heat exchanger and method of manufacturing the same
JP2018176262A (en) Manufacturing method of fin tube type heat exchanger and combustion device having fin tube heat exchanger
JP5366395B2 (en) Flux recovery device
PT1317978E (en) Mould pipe for continuous casting of metals
JP2009291839A (en) Method of forming, inserting, and permanently bonding rib in boiler tube
JP2021127850A (en) Member and method of cooling the member
JP2009535603A (en) User selectable heat exchange equipment and usage
JP2011191049A (en) Heat exchanger, and heating device using heat exchanger
JP2005514522A (en) Cold plate for metallurgical furnace and method of manufacturing such a cold plate
TW496901B (en) Stave for metallurgical furnace
EA020127B1 (en) Method for producing a cooling element for pyrometallurgical reactor and the cooling element
JP3297838B2 (en) Heat transfer tube and method of manufacturing the same
PT934907E (en) Internally cooled glass gob deflector and method of transferring gobs using said deflector
JPH04257655A (en) Small size gas combustion air heater
CN105937776B (en) Sequential liner for gas turbine combustor
US20150219405A1 (en) Cladded brazed alloy tube for system components
US3450193A (en) Corrugated tubing
MX2011004231A (en) Heat exchanger for an annealing furnace for exchanging heat between two fluids.
CN105973053B (en) A kind of longitudinal wings finned tube and the heating furnace with the finned tube
JP3106875B2 (en) Radiant heating tube
JP6391407B2 (en) Component joint structure
US2337106A (en) Blowpipe head
KR100640290B1 (en) Manufacture method of tube using for heat exchanger
CN212239507U (en) Nitrogen rapid preheating device
JP6237300B2 (en) Manufacturing method of ribbed copper tube and continuous casting mold