JP2018176262A - Manufacturing method of fin tube type heat exchanger and combustion device having fin tube heat exchanger - Google Patents

Manufacturing method of fin tube type heat exchanger and combustion device having fin tube heat exchanger Download PDF

Info

Publication number
JP2018176262A
JP2018176262A JP2017084266A JP2017084266A JP2018176262A JP 2018176262 A JP2018176262 A JP 2018176262A JP 2017084266 A JP2017084266 A JP 2017084266A JP 2017084266 A JP2017084266 A JP 2017084266A JP 2018176262 A JP2018176262 A JP 2018176262A
Authority
JP
Japan
Prior art keywords
pipe
heat transfer
diameter
expansion
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017084266A
Other languages
Japanese (ja)
Inventor
尚宏 伊藤
Naohiro Ito
尚宏 伊藤
武藤 誠一
Seiichi Muto
誠一 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2017084266A priority Critical patent/JP2018176262A/en
Priority to US15/947,951 priority patent/US20180304339A1/en
Priority to KR1020180043968A priority patent/KR20180118534A/en
Priority to CN201810360070.6A priority patent/CN108981168A/en
Publication of JP2018176262A publication Critical patent/JP2018176262A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/08Tube expanders
    • B21D39/20Tube expanders with mandrels, e.g. expandable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1832Arrangement or mounting of combustion heating means, e.g. grates or burners
    • F24H9/1836Arrangement or mounting of combustion heating means, e.g. grates or burners using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0024Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion apparatus, e.g. for boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a fin tube type heat exchanger which can use a pipe expansion device for a long period of a life, and improves productivity, and a combustion chamber having the fin tube type heat exchanger.SOLUTION: A manufacturing method of a fin tube type heat exchanger (51) includes a pipe expansion process for inserting a pipe expansion device (100) into a heat transmission pipe (21) which is inserted into a pipe penetration hole (20) of a heat transmission fin (2), and expanding the heat transmission pipe (21). The pipe expansion process has a first process for bringing the pipe expansion device (100) into a pipe-expanded state by expanding the heat expansion pipe (21) to a pipe expansion direction in a state that the pipe expansion device is stopped within a prescribed pipe expansion-scheduled range (22) in the heat transmission pipe (21), and makes the pipe expansion-scheduled range (22) adhere to the pipe penetration hole (20), and a second process for releasing the expansion of the pipe expansion device (100) to the pipe expansion direction, and moving the pipe expansion device (100) to a succeeding pipe expansion-scheduled range (22) in the heat transmission pipe (21). The manufacturing method repeatedly and alternately performs the first process and the second process.SELECTED DRAWING: Figure 4

Description

本発明は、フィンチューブ式熱交換器の製造方法及びフィンチューブ式熱交換器を備える燃焼装置に関する。   The present invention relates to a method of manufacturing a finned tube heat exchanger and a combustion apparatus provided with the finned tube heat exchanger.

給湯器に組み込まれる熱交換器として、図7に示すような薄板状の伝熱フィン(3)を所定の間隙をおいて多数並設させ、各伝熱フィン(3)に設けた管貫挿孔(30)に伝熱管(31)を貫挿させるフィンチューブ式熱交換器がある。伝熱フィン(3)の管貫挿孔(30)の周縁と伝熱管(31)の外周面とは熱効率を高めるために密着させることが望ましく、両者間に隙間が生じないように、伝熱管(31)を拡管させることが行われている。   As heat exchangers incorporated into water heaters, a large number of thin plate shaped heat transfer fins (3) as shown in FIG. 7 are arranged side by side with a predetermined gap, and the pipe is inserted in each heat transfer fin (3) There is a finned-tube heat exchanger which has a heat transfer tube (31) inserted into the hole (30). The peripheral edge of the through hole (30) of the heat transfer fin (3) and the outer peripheral surface of the heat transfer tube (31) are preferably in close contact in order to enhance the thermal efficiency. It is practiced to expand (31).

例えば、特許文献1には、金属管の拡管方法が開示されている。この拡管方法は、図8に示すように、金属管(31)の内径よりも大径な球形の本体部(40)が軸部(41)の先端に設けられた拡管治具(4)を金属管(31)内に強制的に挿入して押し進めることにより外径を拡管させる方法である。拡管治具(4)の本体部(40)にはダイヤモンドライクカーボン処理が施され、潤滑油を添加して金属管(31)内に強制挿入する方法であり、この方法では、金属管(31)として銅管あるいはアルミニウム管を対象としている。   For example, Patent Document 1 discloses a method of expanding a metal pipe. In this expansion method, as shown in FIG. 8, an expansion jig (4) in which a spherical main body (40) having a diameter larger than the inner diameter of the metal pipe (31) is provided at the tip of the shaft (41) In this method, the outer diameter is expanded by forcibly inserting the metal tube (31) and pushing it forward. This is a method in which diamond like carbon treatment is applied to the main body (40) of the pipe expansion jig (4), and a lubricating oil is added to force insertion into the metal pipe (31). In this method, the metal pipe (31 ) For copper tubes or aluminum tubes.

特開2008−93713号公報JP 2008-93713 A

しかしながら、ステンレス製の伝熱管の場合では、拡管治具(4)の本体部(40)を伝熱管内に強制的に挿入させて押し込むと、潤滑油を使用してもダイヤモンドライクカーボン処理が早期に剥がれ、摩擦熱が多く発生して本体部(40)の表面にステンレスが凝着してしまう。この状態のまま拡管治具(4)を使用し続けると、伝熱管(31)内にキズを付けてしまう不都合がある上に、本体部(40)の押し込みに対する負荷が大きくなって軸部(41)が破損してしまうことがある。そのため、拡管治具(4)の交換頻度が高く、また、伝熱管(31)内の潤滑油の乾燥除去作業も必要となることから、熱交換器の生産性が非常に悪い上にコストも高くなり量産体制に適した工法とは言えなかった。   However, in the case of the heat transfer tube made of stainless steel, if the main body (40) of the expansion jig (4) is forcedly inserted into the heat transfer tube and pushed in, diamond-like carbon treatment is early even if lubricating oil is used. As a result, a large amount of frictional heat is generated and stainless steel adheres to the surface of the main body (40). If the pipe expansion jig (4) is continued to be used in this state, there is a disadvantage that the heat transfer tube (31) will be scratched, and the load for pushing the main body (40) will increase and the shaft ( 41) may be damaged. Therefore, the frequency of replacement of the pipe expansion jig (4) is high, and the work of drying and removing the lubricating oil in the heat transfer pipe (31) is also required. Therefore, the productivity of the heat exchanger is very low and the cost is also low. It could not be said that the method was high enough to be suitable for mass production.

本発明は、上記事情に鑑みてなされたものであり、その目的は、拡管装置を長寿命に使用することができ、生産性を向上することが可能なフィンチューブ式熱交換器の製造方法及びフィンチューブ式熱交換器を備える燃焼装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a finned tube heat exchanger, which can use a pipe expansion device for a long life and can improve productivity. It is an object of the present invention to provide a combustion apparatus comprising a finned tube heat exchanger.

本発明に係るフィンチューブ式熱交換器の製造方法は、
伝熱フィンと、前記伝熱フィンに設けられた管貫挿孔に貫挿させたアルミニウム製又はステンレス製の伝熱管とを備えたフィンチューブ式熱交換器の製造方法であって、
前記管貫挿孔に貫挿させた伝熱管内に拡管装置を挿入して伝熱管を拡管する拡管工程を含み、
前記拡管工程は、
前記拡管装置を、伝熱管内の所定の拡径予定範囲に停止させた状態で伝熱管の管径方向に拡大させて拡径状態とすることで、前記拡径予定範囲を前記管貫挿孔に密着するように拡管させる第1工程と、
前記拡管装置の管径方向への拡大を解除した縮径状態で、前記拡管装置を当該伝熱管内の次の拡径予定範囲へ移動させる第2工程とを有し、
前記第1工程と前記第2工程とを交互に繰り返し実行する方法である。
The method for manufacturing a finned tube heat exchanger according to the present invention is
A method of manufacturing a finned tube heat exchanger, comprising: a heat transfer fin; and a heat transfer tube made of aluminum or stainless steel which is inserted into a through hole provided in the heat transfer fin.
Including an expanding step of inserting a pipe expansion device into a heat transfer pipe inserted through the pipe penetration hole to expand the heat transfer pipe;
The pipe expansion step is
The diameter expansion scheduled range is the through hole insertion hole by enlarging the diameter expansion scheduled in the pipe diameter direction of the heat transfer pipe while stopping the pipe expansion device in a predetermined diameter expansion planned range in the heat transfer pipe. A first step of expanding the tube so as to be in close contact with the
A second step of moving the pipe expansion device to a next planned diameter expansion range in the heat transfer pipe in a diameter-reduced state in which the expansion of the pipe expansion device in the pipe radial direction is released;
It is a method of repeatedly and alternately executing the first step and the second step.

この製造方法では、拡管装置は拡径状態のままで伝熱管内を移動させられることがない。すなわち、拡管装置の外周面が伝熱管の内周面に摺動することがないから、ステンレス製の伝熱管であっても、摩擦熱によりステンレスが拡管装置の表面に焼き付いて凝着することがない。よって、拡管装置を高頻度で交換する必要がない上に、潤滑油も必要としないから、潤滑油を乾燥除去する工程も費用も不要となる。
また、第1工程と第2工程を繰り返すことにより、伝熱管の略全長にわたって、その外周面を伝熱フィンの管貫挿孔に密着させることができ、伝熱管と伝熱フィンとのロウ付け率を上昇させることが出来るから、熱効率の高い熱交換器を製造することが出来る。
In this manufacturing method, the pipe expansion device can not be moved in the heat transfer pipe while maintaining the diameter expansion state. That is, since the outer peripheral surface of the pipe expansion device does not slide on the inner peripheral surface of the heat transfer pipe, stainless steel may be seized and adhered to the surface of the pipe expansion device by frictional heat even with a stainless steel heat transfer pipe. Absent. Therefore, since it is not necessary to replace the pipe expansion device frequently and also the lubricating oil is not required, the process of drying and removing the lubricating oil and the cost become unnecessary.
Further, by repeating the first step and the second step, the outer peripheral surface of the heat transfer tube can be closely adhered to the through hole of the heat transfer fin over substantially the entire length of the heat transfer tube, and brazing of the heat transfer tube and the heat transfer fin Since the rate can be increased, a heat exchanger with high thermal efficiency can be manufactured.

上記フィンチューブ式熱交換器の製造方法において、好ましくは、
前記拡管装置は、
筒体を構成すると共に周方向に分割された複数の分割ヘッド部と、
伝熱管の管端から、伝熱管内の前記筒体の開放部内に押し込まれる芯棒と、
前記芯棒の軸線方向の押し込み力を前記分割ヘッド部の拡管方向への移動に変換する変換機構とを備え、
前記芯棒を押し込むと、複数の分割ヘッド部は拡管方向へ移動して前記筒体は拡径状態となり、芯棒を引き抜くと、複数の分割ヘッド部は縮径方向へ移動して前記筒体は縮径状態となるものが使用される。
In the method of manufacturing the finned tube heat exchanger, preferably
The pipe expansion device is
A plurality of divided head portions which constitute a cylinder and are divided in the circumferential direction;
A core rod pushed from the end of the heat transfer tube into the open portion of the cylindrical body in the heat transfer tube;
And a conversion mechanism for converting the pushing force in the axial direction of the core rod into the movement of the divided head portion in the expansion direction of the pipe;
When the core rod is pushed in, the divided head portions move in the expanding direction, and the cylinder is expanded in diameter, and when the core rod is pulled out, the divided head portions move in the diameter reducing direction and the cylinder The thing used as a diameter reduction state is used.

このものでは、複数の分割ヘッド部で構成される筒体の外径は、その開放部から押し込まれる芯棒の外径又は押込み量によって、筒体を構成する複数の分割ヘッド部の拡管方向への移動量が調整可能となる。これにより、伝熱管の拡管寸法を自由に調整することが出来る。また、分割ヘッド部の形状を変更することにより、各種の外形の伝熱管の拡管に対応可能となる。   In this structure, the outer diameter of the cylindrical body constituted by the plurality of divided head portions is in the direction of expansion of the plurality of divided head portions constituting the cylindrical body, depending on the outer diameter or pushing amount of the core rod pushed from the open portion. The movement amount of can be adjusted. Thereby, the expanded tube size of the heat transfer tube can be freely adjusted. Further, by changing the shape of the divided head portion, it is possible to cope with the expansion of heat transfer tubes of various outer shapes.

また、本発明に係るフィンチューブ式熱交換器を備える燃焼装置は、
伝熱フィンと、前記伝熱フィンに設けられた管貫挿孔に貫挿させるアルミニウム製又はステンレス製の伝熱管とを有するフィンチューブ式熱交換器を備えた燃焼装置であって、
前記管貫挿孔に貫挿させた伝熱管は、拡管装置を伝熱管内の所定の拡径予定範囲に停止させた状態で伝熱管の管径方向に拡大させて拡径状態とすることで、前記拡径予定範囲が前記管貫挿孔に密着するように拡管され、
前記拡管装置は、管径方向への拡大が解除された縮径状態で伝熱管内を次の拡径予定範囲へ移動可能とし、前記次の拡径予定範囲で停止させた状態で再度管径方向に拡大させて前記拡径状態とすることで、前記次の拡径予定範囲が前記管貫挿孔に密着するように拡管される構造を有する。
Further, a combustion apparatus provided with a finned tube heat exchanger according to the present invention is
What is claimed is: 1. A combustion apparatus comprising: a finned tube heat exchanger comprising: a heat transfer fin; and a heat transfer tube made of aluminum or stainless steel which is inserted into a through hole provided in the heat transfer fin.
The heat transfer tube inserted into the tube insertion hole is expanded in the radial direction of the heat transfer tube in a state where the expansion device is stopped within a predetermined diameter expansion scheduled range in the heat transfer tube, and the diameter is increased. The pipe is expanded such that the diameter expansion scheduled range is in close contact with the through hole;
The pipe expansion device can move to the next diameter expansion scheduled range in the heat transfer pipe in a diameter-reduced state in which the expansion in the pipe radial direction has been cancelled, and the pipe diameter is again stopped in the next diameter expansion planned range. By expanding in the direction to the diameter expansion state, the next diameter expansion scheduled range is expanded so as to be in close contact with the through hole.

また、上記フィンチューブ式熱交換器を備える燃焼装置において、
前記拡管装置は、
筒体を構成すると共に周方向に分割された複数の分割ヘッド部と、
伝熱管の管端から、伝熱管内の前記筒体の開放部内に押し込まれる芯棒と、
前記芯棒の軸線方向の押し込み力を前記分割ヘッド部の拡管方向への移動に変換する変換機構とを備え、
前記芯棒を押し込むことにより、複数の分割ヘッド部は拡管方向へ移動して前記筒体は拡径状態となり、芯棒を引き抜くことにより、複数の分割ヘッド部は縮径方向へ移動して前記筒体は縮径状態となるものが好ましい。
Further, in the combustion apparatus provided with the finned tube heat exchanger,
The pipe expansion device is
A plurality of divided head portions which constitute a cylinder and are divided in the circumferential direction;
A core rod pushed from the end of the heat transfer tube into the open portion of the cylindrical body in the heat transfer tube;
And a conversion mechanism for converting the pushing force in the axial direction of the core rod into the movement of the divided head portion in the expansion direction of the pipe;
By pushing in the core rod, the plurality of divided head parts move in the expansion direction and the cylindrical body is expanded in diameter, and by pulling out the core rod, the plurality of divided head parts move in the diameter decreasing direction It is preferable that the cylinder be in a diameter-reduced state.

このものでは、伝熱管を、拡管装置によってその略全長にわたって拡径させて、伝熱フィンと伝熱管との密着性を向上させることにより、確実に、伝熱管を伝熱フィンの管貫挿孔にロウ付け固定できる。従って、ロウ付け率が上がることから、熱効率の高い熱交換器を備えた燃焼装置を提供することが出来る。   In this case, the heat transfer tube is expanded by the pipe expansion apparatus over substantially the entire length thereof to improve the adhesion between the heat transfer fin and the heat transfer tube, thereby reliably inserting the heat transfer tube through the heat transfer fin Can be fixed by brazing. Therefore, since the brazing ratio is increased, it is possible to provide a combustion apparatus provided with a heat exchanger with high thermal efficiency.

本発明のフィンチューブ式熱交換器の製造方法によれば、拡管装置を、伝熱管内の次の拡径予定範囲まで、摺動させずに移動させることが出来るから、伝熱管と拡管装置との間に摩擦熱が発生することはなく、ステンレス製の伝熱管であっても、拡管装置の表面にステンレスが凝着することはない。よって、拡管装置を高頻度で交換する必要がなく、拡管装置の長寿命化を図ることが出来る。また、拡管装置は潤滑油なしで伝熱管内を移動させることが出来るから、コストを抑えることが出来る上に、潤滑油を乾燥除去する工程も不要となり、生産性が向上する。
本発明のフィンチューブ式熱交換器を備える燃焼装置によれば、伝熱フィンと伝熱管との密着性を向上させることにより、ロウ付け率を高めることが出来るので、熱効率の高い熱交換器を備えた燃焼装置を提供することができる。
According to the method for manufacturing a finned tube heat exchanger of the present invention, the pipe expansion device can be moved to the next diameter expansion scheduled range in the heat transfer pipe without sliding, so the heat transfer pipe and the pipe expansion device In the meantime, friction heat is not generated, and even in the case of a stainless steel heat transfer tube, stainless steel does not adhere to the surface of the expansion device. Therefore, it is not necessary to replace the pipe expansion device at high frequency, and the life of the pipe expansion device can be extended. In addition, since the pipe expansion apparatus can be moved in the heat transfer pipe without the lubricating oil, the cost can be suppressed, and the process of drying and removing the lubricating oil is not necessary, and the productivity is improved.
According to the combustion apparatus provided with the finned tube heat exchanger of the present invention, the brazing ratio can be increased by improving the adhesion between the heat transfer fins and the heat transfer tubes, so a heat exchanger with high thermal efficiency can be obtained. The provided combustion device can be provided.

熱交換器の斜視図である。It is a perspective view of a heat exchanger. 図1に示した熱交換器を備えた給湯器の模式図である。It is a schematic diagram of the water heater provided with the heat exchanger shown in FIG. 本発明の実施の形態に係る伝熱管の拡管方法に採用する拡管装置の縮径状態の説明図である。It is explanatory drawing of the diameter-reduction state of the pipe expansion apparatus employ | adopted as the pipe expansion method of the heat exchanger tube which concerns on embodiment of this invention. 本発明の実施の形態に係る伝熱管の拡管方法に採用する拡管装置の縮径状態の断面図である。It is sectional drawing of the diameter-reduction state of the pipe expansion apparatus employ | adopted as the pipe expansion method of the heat exchanger tube which concerns on embodiment of this invention. 本発明の実施の形態に係る伝熱管の拡管方法に採用する拡管装置の拡径状態の説明図である。It is explanatory drawing of the diameter expansion state of the pipe expansion apparatus employ | adopted to the pipe expansion method of the heat exchanger tube which concerns on embodiment of this invention. 本発明の実施の形態に係る伝熱管の拡管方法に採用する拡管装置の拡径状態の断面図である。It is sectional drawing of the diameter-expanded state of the pipe expansion apparatus employ | adopted as the pipe expansion method of the heat exchanger tube which concerns on embodiment of this invention. 従来の伝熱フィンと伝熱管との説明図である。It is an explanatory view of a conventional heat transfer fin and a heat transfer pipe. 従来の拡管装置の説明図である。It is explanatory drawing of the conventional pipe expansion apparatus.

上記した本発明を実施するための形態について、添付図面を参照しながら詳述する。
図1に示す熱交換器(51)は、ケース体(5)の対向する前後の側壁(501)(502)間に、吸熱用の薄肉板状の伝熱フィン(2)を、両側壁(501)(502)に平行に多数並列させている。
なお、本明細書では、前側壁(501)の外側面を熱交換器(51)の正面とし、ケース体(5)を正面側から見たときの奥行き方向を前後方向、幅方向を左右方向、高さ方向を上下方向という。
The above-described embodiment of the present invention will be described in detail with reference to the attached drawings.
The heat exchanger (51) shown in FIG. 1 has thin plate-like heat transfer fins (2) for heat absorption between opposing front and rear side walls (501) (502) of the case body (5). 501) A large number of parallel arrangements are made parallel to (502).
In this specification, the outer side surface of the front side wall (501) is the front of the heat exchanger (51), and the depth direction when the case body (5) is viewed from the front side is the front and back direction, and the width direction is the left and right direction. The height direction is called the vertical direction.

この種の熱交換器(51)は、例えば、図2の模式図に示すような燃焼装置に相当する給湯器に使用される。この給湯器では、上部域に下向きの燃焼面(33a)を有するバーナ(33)が備えられた器体(53)と、これに連通し且つモータ(M)の駆動により空気と燃料ガスの混合気を器体(53)内のバーナ(33)に送り込むファン(34a)が備えられたファンケース(34)とが、ケーシング(55)内に設けられている。   This type of heat exchanger (51) is used, for example, in a water heater corresponding to a combustion apparatus as shown in the schematic view of FIG. In this water heater, a body (53) provided with a burner (33) having a downward burning surface (33a) in the upper region, and a mixture of air and fuel gas communicated with this and driven by a motor (M) A fan case (34) provided with a fan (34a) for feeding air to the burner (33) in the housing (53) is provided in the casing (55).

熱交換器(51)は、器体(53)の中間部に設置された顕熱回収型の熱交換器であり、下方の熱交換器(52)は、潜熱回収型の熱交換器である。この給湯器では、下方の熱交換器(52)の上流側に連なる給水管(38)からの水を熱交換器(52)にて、バーナ(33)からの燃焼排ガスの潜熱で加熱した後、上方の熱交換器(51)にて、燃焼排ガスの顕熱で加熱し、熱交換器(51)の下流側に連なる出湯管(39)から、所定の設定温度に加熱された温水が出湯される構成となっている。
なお、図1に示すケース体(5)は、器体(53)の一部を構成しており、下向きバーナ(33)の燃焼面(33a)によって、その上方から加熱され、燃焼排ガスはケース体(5)の上から下へ流れる構成となっている。
The heat exchanger (51) is a sensible heat recovery type heat exchanger installed in the middle part of the body (53), and the lower heat exchanger (52) is a latent heat recovery type heat exchanger . In this water heater, the water from the water supply pipe (38) connected to the upstream side of the lower heat exchanger (52) is heated by the heat exchanger (52) with the latent heat of the combustion exhaust gas from the burner (33) The hot water heated to a predetermined set temperature is discharged from the hot water discharge pipe (39) which is heated by the sensible heat of the combustion exhaust gas in the upper heat exchanger (51) and continues to the downstream side of the heat exchanger (51). It is configured to be
The case body (5) shown in FIG. 1 constitutes a part of the case (53) and is heated from above by the combustion surface (33a) of the downward burner (33), and the combustion exhaust gas is a case It is configured to flow down from the top of the body (5).

伝熱管(21)は、縦長楕円形状の断面を有するステンレス管であり、ケース体(5)内の略下半域の空間に、上下二段で且つ上段側と下段側とで中心相互が左右方向に半ピッチ偏心させた所謂千鳥状に並設されている。また、伝熱管(21)は、前後の側壁(501)(502)を貫通しており、外方に突出した伝熱管(21)の端縁を二つずつ囲むように、ケース体(5)の前後の側壁(501)(502)にそれぞれ、カバー部(5a)が固定されている。これにより、伝熱管(21)に通水される流体は、カバー部(5a)を介して、蛇行しながら流れて行く。   The heat transfer tube (21) is a stainless steel tube having a cross section of a vertically-long oval shape, and in the space of the lower half region in the case body (5), the upper and lower sides of the upper and lower sides have their centers mutually right and left They are arranged side by side in a so-called staggered fashion in which a half pitch is eccentric in the direction. Further, the heat transfer tube (21) penetrates the front and rear side walls (501) (502), and surrounds the end edges of the heat transfer tube (21) projecting outward in a case body (5). The cover part (5a) is being fixed to the side wall (501) (502) of back and front, respectively. Thus, the fluid flowing through the heat transfer tube (21) flows meandering through the cover portion (5a).

伝熱フィン(2)は、ステンレス製の薄肉金属板からなり、伝熱管(21)を貫挿させるための管貫挿孔(20)が、伝熱管(21)の配置と同様、上下二段で且つ中心相互が下段側と上段側とで左右方向に半ピッチ偏心させた千鳥状に、バーリング加工によって開設されている。   The heat transfer fin (2) is made of a thin metal plate made of stainless steel, and the through hole (20) for inserting the heat transfer tube (21) is the same as the arrangement of the heat transfer tube (21). And, the centers are opened by burring in a zigzag form in which the lower sides and the upper sides are offset by half a pitch in the left-right direction.

管貫挿孔(20)は、伝熱管(21)の組み付け上、伝熱管(21)が略接触状態に貫挿可能な大きさの縦長楕円形状に形成されるが、ロウ付け率及び熱効率の向上のために、管貫挿孔(20)の内周縁と伝熱管(21)の外周面とは密着させることが望ましい。そこで、伝熱管(21)内に拡管装置(100)を挿入させて伝熱管(21)の径を拡管させる。   The tube penetration hole (20) is formed in a vertically-long oval shape having a size that allows the heat transfer tube (21) to be inserted substantially in contact with the heat transfer tube (21). For the improvement, it is desirable that the inner peripheral edge of the through hole (20) and the outer peripheral surface of the heat transfer tube (21) be in close contact. Therefore, the pipe expansion device (100) is inserted into the heat transfer pipe (21) to expand the diameter of the heat transfer pipe (21).

拡管装置(100)は、図3に示すように、伝熱管(21)内に収容可能な楕円筒部(11)の両端に小径円筒部(10)を延設させた筒体(1)と、各小径円筒部(10)の開放部(10a)(10b)から筒体(1)内にそれぞれ押し込まれる一対の芯棒(12)(13)とからなる。楕円筒部(11)の外形は、伝熱管(21)の楕円形状と略一致している。
なお、図に示す伝熱フィン(2)は、便宜上、管貫挿孔(20)が1つ形成された矩形板とする。
The pipe expansion apparatus (100), as shown in FIG. 3, includes a cylindrical body (1) in which a small diameter cylindrical portion (10) is extended at both ends of an elliptical cylindrical portion (11) which can be accommodated in a heat transfer pipe (21). And a pair of core rods (12) and (13) which are respectively pushed into the cylinder (1) from the open portions (10a) and (10b) of the small diameter cylindrical portions (10). The outer shape of the elliptical cylindrical portion (11) substantially matches the elliptical shape of the heat transfer tube (21).
In addition, let the heat-transfer fin (2) shown to a figure be a rectangular board in which one tube penetration insertion hole (20) was formed for convenience.

筒体(1)は、筒体(1)の周方向に4つに分割された分割ヘッド部(1a)(1b)(1c)(1d)からなり、これら分割ヘッド部(1a)〜(1d)を相互にほぼ隙間が生じないように結束させると共に、この結束状態が保持されるように、小径円筒部(10)の基端部に、結束部材としてのOリング(14)を装着させる。なお、結束部材としては、Oリングに限らず、バネ等の弾性体でもよい。この状態が、筒体(1)の縮径状態であり、図3に示すように、その外径は、伝熱管(21)の内径よりやや小さく構成されており、伝熱管(21)内を摺動させずに移動させることが出来る。   The cylinder (1) comprises divided head portions (1a) (1b) (1c) (1d) divided into four in the circumferential direction of the cylinder (1), and these divided head portions (1a) to (1d) And the O-ring (14) as a binding member is attached to the proximal end of the small diameter cylindrical portion (10) so that the binding state is maintained. The binding member is not limited to the O-ring, but may be an elastic body such as a spring. This state is a diameter reduction state of the cylinder (1), and as shown in FIG. 3, the outer diameter thereof is slightly smaller than the inner diameter of the heat transfer tube (21), and the inside of the heat transfer tube (21) is It can be moved without sliding.

芯棒(12)(13)の先端は、断面円形の先細のテーパ軸部(12a)(13a)となっていると共に、筒体(1)の両側には、両開放部(10a)(10b)に向かって拡径する断面円形のテーパ面部(15a)(15b)が形成されている。両テーパ面部(15a)(15b)は、図4に示すように、筒体(1)の中央部に形成され且つテーパ面部(15a)(15b)の最小径部よりも大径の空間部(16)を介して連通している。
一方の芯棒(13)のテーパ軸部(13a)の先端には、同図に示すように、テーパ面部(15b)の最小径部より大径で且つ空間部(16)よりも小径な頭部(130)を有する係止部材(13b)を突出させている。この頭部(130)が筒体(1)の空間部(16)内に位置し且つテーパ面部(15b)内にテーパ軸部(13a)が隙間を介して位置するように、芯棒(13)と分割ヘッド部(1a)〜(1d)を組み合わせ、Oリング(14)で結束させる。
The tip of the core rod (12) (13) is a tapered shaft (12a) (13a) having a circular cross section, and both open portions (10a) (10b) are provided on both sides of the cylinder (1). A tapered surface portion (15a) (15b) having a circular cross-section which is expanded in diameter toward. Both tapered surface portions (15a, 15b) are, as shown in FIG. 4, formed in the central portion of the cylinder (1) and having a larger diameter than the minimum diameter portion of the tapered surface portions (15a, 15b) 16) communicate with each other.
As shown in the figure, at the tip of the tapered shaft portion (13a) of one of the core rods (13), a head larger in diameter than the minimum diameter portion of the tapered surface portion (15b) and smaller in diameter than the space portion (16) A locking member (13b) having a portion (130) is projected. The core rod (13) is positioned such that the head (130) is located in the space (16) of the cylinder (1) and the tapered shaft (13a) is located in the tapered surface (15b) with a gap. ) And the split head parts (1a) to (1d) and bind them with an O-ring (14).

第1工程として、伝熱フィン(2)の管貫挿孔(20)に組み付けた伝熱管(21)に対して、一方の開放部(10b)から芯棒(13)が突出し且つ縮径状態にある筒体(1)を、伝熱管(21)の所定の拡径予定範囲(22)にセットし、停止させた状態にて、筒体(1)の他方の開放部(10a)から、芯棒(12)の先端のテーパ軸部(12a)を筒体(1)のテーパ面部(15a)内に押し込む。テーパ軸部(12a)を筒体(1)のテーパ面部(15a)内に押し込んでいくにつれて、筒体(1)が押されて、テーパ軸部(13a)もテーパ面部(15b)内に強制的に押し込まれていく。これにより、筒体(1)のテーパ面部(15a)(15b)は、芯棒(12)(13)のテーパ軸部(12a)(13a)によって、半径方向に押圧される。この押込み力がOリング(14)の弾性復帰力に抗して、分割ヘッド部(1a)〜(1d)を半径方向に離反する方向へ移動させる力に変換される。これにより、分割ヘッド部(1a)〜(1d)間に、図5に示すような隙間(S)が形成され、筒体(1)の外径が均等に拡径される。この状態が筒体(1)の拡径状態であり、伝熱管(21)の拡管予定範囲(22)を拡径させることが出来る。
上記第1工程において、筒体(1)の両側の開放部(10a)(10b)に、それぞれ芯棒(12)(13)が押し込まれていくので、筒体(1)は拡径時に拡管予定範囲(22)からの位置ズレを抑制することが出来る。
As a first step, the core rod (13) protrudes from one open portion (10b) to the heat transfer pipe (21) assembled to the through hole insertion hole (20) of the heat transfer fin (2) and the diameter is reduced From the other open part (10a) of the cylinder (1) in a state where the cylinder (1) located in the heat transfer tube (21) is set in the predetermined diameter expansion scheduled range (22) of the heat Push the tapered shaft (12a) at the tip of the core rod (12) into the tapered surface (15a) of the cylinder (1). As the tapered shaft (12a) is pushed into the tapered surface (15a) of the cylinder (1), the cylinder (1) is pushed and the tapered shaft (13a) is also forced into the tapered surface (15b). It will be pushed down. As a result, the tapered surface portions (15a, 15b) of the cylindrical body (1) are pressed in the radial direction by the tapered shaft portions (12a, 13a) of the core rods (12, 13). This pushing force is converted to a force for moving the divided head portions (1a) to (1d) in the radial direction away from each other against the elastic return force of the O-ring (14). Thereby, a gap (S) as shown in FIG. 5 is formed between the divided head portions (1a) to (1d), and the outer diameter of the cylindrical body (1) is uniformly enlarged. This state is the diameter expansion state of the cylindrical body (1), and the diameter expansion scheduled range (22) of the heat transfer tube (21) can be expanded.
In the first step, the core rods (12) and (13) are pushed into the open portions (10a) and (10b) on both sides of the cylinder (1). The positional deviation from the planned range (22) can be suppressed.

上記第1工程終了後、次の第2工程において、芯棒(12)(13)を筒体(1)から引き抜き方向に移動させる。すると、芯棒(12)(13)のテーパ軸部(12a)(13a)による筒体(1)の半径方向への押圧力が解除され、筒体(1)は、Oリング(14)の弾性復帰力によって、図3、図4の縮径状態に戻る。このとき、芯棒(12)は、開放部(10a)から外方へ引き抜かれるが、芯棒(13)は、テーパ軸部(13a)の先端に突出させた係止部材(13b)の頭部(130)が、テーパ面部(15b)と空間部(16)との境界部分に引っ掛かるため、芯棒(13)は開放部(10b)から引き抜かれない。この状態で、芯棒(13)を引き抜き方向(図4の矢印の方向)に引くことにより、筒体(1)は、縮径状態に保持されたまま、頭部(130)に引っ張られて、伝熱管(21)内における次の拡径予定範囲(22)へ移動させることが出来る。
次の拡径予定範囲(22)に停止させた状態で、再度、上記第1工程を行う。次の拡径予定範囲(22)は、通常、第1工程で拡管した範囲に隣接した未拡管の範囲である。
このように、上記した第1工程と第2工程を交互に繰り返し行うことにより、伝熱管(21)は順に拡径させていくことが出来、伝熱管(21)の外周面を伝熱フィン(2)の管貫挿孔(20)に密着させることが出来る。
After the completion of the first step, in the next second step, the core rods (12) and (13) are moved from the cylinder (1) in the pulling direction. Then, the pressing force in the radial direction of the cylindrical body (1) by the tapered shaft portions (12a) and (13a) of the core rods (12) and (13) is released, and the cylindrical body (1) is an O-ring (14). By the elastic return force, it returns to the diameter-reduced state of FIG. 3, FIG. At this time, the core rod (12) is pulled outward from the open portion (10a), but the core rod (13) is the head of the locking member (13b) which is made to project from the tip of the tapered shaft (13a). The core rod (13) is not pulled out from the open portion (10b) because the portion (130) is caught at the boundary between the tapered surface portion (15b) and the space portion (16). In this state, by pulling the core rod (13) in the pulling direction (the direction of the arrow in FIG. 4), the cylindrical body (1) is pulled by the head (130) while being held in the reduced diameter state. , Can be moved to the next diameter expansion scheduled range (22) in the heat transfer tube (21).
The above first step is performed again in a state where it is stopped in the next diameter expansion scheduled range (22). The next diameter expansion scheduled range (22) is a range of unexpanded pipes adjacent to the area expanded in the first step.
As described above, by alternately repeating the first step and the second step described above, the diameter of the heat transfer tube (21) can be increased in order, and the outer peripheral surface of the heat transfer tube (21) It can be closely attached to the through hole (20) of 2).

この製造方法によれば、拡管装置(100)は、筒体(1)を縮径状態にして伝熱管(21)内を移動させることが出来るから、筒体(1)が伝熱管(21)内を摺動することによる摩擦熱で、ステンレス製の伝熱管(21)の内周面のステンレスが、筒体(1)の外表面に凝着することがない。よって、拡管装置(100)の筒体(1)を度々交換する必要がなく、拡管装置(100)の長期の使用が可能となる。また、伝熱管(21)内を移動させる際に潤滑油も必要ないから、生産コストが安価となると共に、潤滑油が不要となることで、それを乾燥除去させる工程も不要となり、熱交換器(51)の生産性が向上する。   According to this manufacturing method, since the expansion device (100) can move the inside of the heat transfer tube (21) with the diameter reduction of the cylinder (1), the cylinder (1) is a heat transfer tube (21) The friction heat caused by sliding inside does not cause the stainless steel on the inner circumferential surface of the stainless steel heat transfer tube (21) to adhere to the outer surface of the cylinder (1). Therefore, it is not necessary to replace | exchange the cylinder (1) of pipe expansion apparatus (100) frequently, and the long-term use of the pipe expansion apparatus (100) is attained. In addition, since no lubricating oil is required when moving the inside of the heat transfer pipe (21), the production cost is low, and no lubricating oil is required, so that the process of drying and removing the same is also unnecessary. Productivity of (51) is improved.

上記拡管装置(100)を用いることにより、伝熱管(21)の大きさ形状を伝熱フィン(2)の管貫挿孔(20)に隙間を生じさせることなく密着させることが出来るので、伝熱管(21)と管貫挿孔(20)との間のロウ付け率を向上させることが出来ると共に、これら密着性の高い伝熱管(21)と伝熱フィン(2)とを熱交換器(51)に採用することにより、熱効率に優れた熱交換器(51)を提供することが出来る。そして、上記熱交換器(51)を組み込むことにより、熱効率の高い燃焼装置としての給湯器を提供することができる。   By using the above-described pipe expansion device (100), the size and shape of the heat transfer tube (21) can be brought into close contact with the through hole (20) of the heat transfer fin (2) without creating a gap. The rate of brazing between the heat pipe (21) and the through hole (20) can be improved, and the heat transfer pipe (21) and the heat transfer fin (2) having high adhesiveness can be By adopting 51), it is possible to provide a heat exchanger (51) excellent in thermal efficiency. And the water heater as a combustion apparatus with high thermal efficiency can be provided by incorporating the said heat exchanger (51).

また、拡管装置(100)の筒体(1)は、複数の分割ヘッド部(1a)〜(1d)で形成するので、円形ではなく楕円形の伝熱管(21)でも均等に拡管することができる点で有利である。
なお、上記実施の形態の拡管装置(100)の筒体(1)の外形は、伝熱管(21)の断面形状に合わせて縦長楕円形状としたが、分割ヘッド部(1a)〜(1d)の形状を変更することにより、円形はもちろん、種々の断面形状を有する伝熱管に対応させることが出来る。
また、芯棒(12)(13)の先端及び筒体(1)の両開放部(10a)(10b)に、それぞれテーパ軸部(12a)(13a)及びテーパ面部(15a)(15b)が形成されているから、芯棒(12)(13)のテーパ面部(15a)(15b)への押込み量によって、拡径度合いを種々変更することが出来る。よって、伝熱管(21)と伝熱フィン(2)の密着性を向上することができる。
Moreover, since the cylinder (1) of the pipe expansion device (100) is formed by the plurality of divided head portions (1a) to (1d), the heat transfer tube (21) may be expanded equally even if it is not circular. It is advantageous in that it can be done.
In addition, although the external shape of the cylinder (1) of the pipe expansion apparatus (100) of the said embodiment was made into longitudinally long elliptical shape according to the cross-sectional shape of a heat exchanger tube (21), split head part (1a)-(1d) By changing the shape of, it is possible to correspond to heat transfer tubes having various cross-sectional shapes as well as circular shapes.
In addition, tapered shaft portions (12a) and (13a) and tapered surface portions (15a) and (15b) are provided at the tip of the core rod (12) (13) and at both open portions (10a) (10b) of the cylinder (1). Since it is formed, the degree of diameter expansion can be variously changed depending on the amount of depression of the core rods (12) (13) into the tapered surface portions (15a) (15b). Therefore, the adhesion between the heat transfer tube (21) and the heat transfer fin (2) can be improved.

また、上記実施の形態では、筒体(1)の両側方の開放部(10a)(10b)に芯棒(12)(13)の先端のテーパ軸部(12a)(13a)を差し込む構成としたが、図示しないが、筒体(1)の一方端をストッパ―等で仮固定しておき、他方側から芯棒を押し込んで拡径させる構成としても良い。
また、テーパ軸部(12a)(13a)及びテーパ面部(15a)(15b)は、断面円形を有するものを採用したが、この形状は、適宜選択可能である。
なお、筒体(1)は縮径状態で伝熱管(21)内を移動させることが出来るから、拡管予定範囲(22)を自由に設定することが出来る上に、芯棒(13)を軸線方向に沿って移動させることにより、伝熱管(21)内における筒体(1)の位置ズレを容易に修正することが出来る。
In the above embodiment, the tapered shaft portions (12a) and (13a) at the ends of the core rods (12) and (13) are inserted into the open portions (10a and 10b) on both sides of the cylinder (1). However, although not shown, one end of the cylinder (1) may be temporarily fixed by a stopper or the like, and the core rod may be pushed in from the other side to expand the diameter.
In addition, although the tapered shaft portions (12a) and (13a) and the tapered surface portions (15a) and (15b) have adopted circular cross sections, this shape can be appropriately selected.
In addition, since the cylindrical body (1) can be moved in the heat transfer tube (21) in a diameter-reduced state, the planned expansion range (22) can be freely set, and the core rod (13) can be used as an axis By moving along the direction, the positional deviation of the cylindrical body (1) in the heat transfer tube (21) can be easily corrected.

なお、熱交換器(51)は、上記したような給湯器の他、コンデンシング給湯器、貯湯式給湯システムの熱源機、風呂追焚機能を有する給湯器、給湯機能のみ有する給湯器、給湯暖房用熱源機、温水暖房機など各種の燃焼装置に組み込まれる熱交換器に適用できる。   In addition, the heat exchanger (51) is, besides the above-described water heater, a condensing water heater, a heat source device of a hot water storage type hot water supply system, a water heater having a bath tracking function, a water heater having only a hot water supply function, hot water heating The present invention can be applied to heat exchangers incorporated in various combustion devices such as heat source machines and hot water heaters.

(100)・・拡管装置
(20) ・・管貫挿孔
(21) ・・伝熱管
(22) ・・拡管予定範囲
(51)・・熱交換器
(100) .. Pipe expansion device
(20) ..
(21) · · Heat transfer tube
(22) · · Expansion range
(51) .. Heat exchanger

Claims (4)

伝熱フィンと、前記伝熱フィンに設けられた管貫挿孔に貫挿させたアルミニウム製又はステンレス製の伝熱管とを備えたフィンチューブ式熱交換器の製造方法であって、
前記管貫挿孔に貫挿させた伝熱管内に拡管装置を挿入して伝熱管を拡管する拡管工程を含み、
前記拡管工程は、
前記拡管装置を、伝熱管内の所定の拡径予定範囲に停止させた状態で伝熱管の管径方向に拡大させて拡径状態とすることで、前記拡径予定範囲を前記管貫挿孔に密着するように拡管させる第1工程と、
前記拡管装置の管径方向への拡大を解除した縮径状態で、前記拡管装置を当該伝熱管内の次の拡径予定範囲へ移動させる第2工程とを有し、
前記第1工程と前記第2工程とを交互に繰り返し実行することを特徴とするフィンチューブ式熱交換器の製造方法。
A method of manufacturing a finned tube heat exchanger, comprising: a heat transfer fin; and a heat transfer tube made of aluminum or stainless steel which is inserted into a through hole provided in the heat transfer fin.
Including an expanding step of inserting a pipe expansion device into a heat transfer pipe inserted through the pipe penetration hole to expand the heat transfer pipe;
The pipe expansion step is
The diameter expansion scheduled range is the through hole insertion hole by enlarging the diameter expansion scheduled in the pipe diameter direction of the heat transfer pipe while stopping the pipe expansion device in a predetermined diameter expansion planned range in the heat transfer pipe. A first step of expanding the tube so as to be in close contact with the
A second step of moving the pipe expansion device to a next planned diameter expansion range in the heat transfer pipe in a diameter-reduced state in which the expansion of the pipe expansion device in the pipe radial direction is released;
A manufacturing method of a finned-tube type heat exchanger characterized by repeating and performing said 1st process and said 2nd process alternately.
請求項1に記載のフィンチューブ式熱交換器の製造方法において、
前記拡管装置は、
筒体を構成すると共に周方向に分割された複数の分割ヘッド部と、
伝熱管の管端から、伝熱管内の前記筒体の開放部内に押し込まれる芯棒と、
前記芯棒の軸線方向の押し込み力を前記分割ヘッド部の拡管方向への移動に変換する変換機構とを備え、
前記芯棒を押し込むと、複数の分割ヘッド部は拡管方向へ移動して前記筒体は拡径状態となり、芯棒を引き抜くと、複数の分割ヘッド部は縮径方向へ移動して前記筒体は縮径状態となるフィンチューブ式熱交換器の製造方法。
In the method of manufacturing a finned tube heat exchanger according to claim 1,
The pipe expansion device is
A plurality of divided head portions which constitute a cylinder and are divided in the circumferential direction;
A core rod pushed from the end of the heat transfer tube into the open portion of the cylindrical body in the heat transfer tube;
And a conversion mechanism for converting the pushing force in the axial direction of the core rod into the movement of the divided head portion in the expansion direction of the pipe;
When the core rod is pushed in, the divided head portions move in the expanding direction, and the cylinder is expanded in diameter, and when the core rod is pulled out, the divided head portions move in the diameter reducing direction and the cylinder Is a method of manufacturing a finned tube heat exchanger in which the diameter is reduced.
伝熱フィンと、前記伝熱フィンに設けられた管貫挿孔に貫挿させるアルミニウム製又はステンレス製の伝熱管とを有するフィンチューブ式熱交換器を備えた燃焼装置であって、
前記管貫挿孔に貫挿させた伝熱管は、拡管装置を伝熱管内の所定の拡径予定範囲に停止させた状態で伝熱管の管径方向に拡大させて拡径状態とすることで、前記拡径予定範囲が前記管貫挿孔に密着するように拡管され、
前記拡管装置は、管径方向への拡大が解除された縮径状態で伝熱管内を次の拡径予定範囲へ移動可能とし、前記次の拡径予定範囲で停止させた状態で再度管径方向に拡大させて前記拡径状態とすることで、前記次の拡径予定範囲が前記管貫挿孔に密着するように拡管される構造を有するフィンチューブ式熱交換器を備える燃焼装置。
What is claimed is: 1. A combustion apparatus comprising: a finned tube heat exchanger comprising: a heat transfer fin; and a heat transfer tube made of aluminum or stainless steel which is inserted into a through hole provided in the heat transfer fin.
The heat transfer tube inserted into the tube insertion hole is expanded in the radial direction of the heat transfer tube in a state where the expansion device is stopped within a predetermined diameter expansion scheduled range in the heat transfer tube, and the diameter is increased. The pipe is expanded such that the diameter expansion scheduled range is in close contact with the through hole;
The pipe expansion device can move to the next diameter expansion scheduled range in the heat transfer pipe in a diameter-reduced state in which the expansion in the pipe radial direction has been cancelled, and the pipe diameter is again stopped in the next diameter expansion planned range. A combustion apparatus comprising a finned tube heat exchanger having a structure in which the next diameter expansion scheduled range is expanded so as to be in close contact with the through hole by making the diameter expanded to be in the expanded state.
請求項3に記載のフィンチューブ式熱交換器を備える燃焼装置において、
前記拡管装置は、
筒体を構成すると共に周方向に分割された複数の分割ヘッド部と、
伝熱管の管端から、伝熱管内の前記筒体の開放部内に押し込まれる芯棒と、
前記芯棒の軸線方向の押し込み力を前記分割ヘッド部の拡管方向への移動に変換する変換機構とを備え、
前記芯棒を押し込むことにより、複数の分割ヘッド部は拡管方向へ移動して前記筒体は拡径状態となり、芯棒を引き抜くことにより、複数の分割ヘッド部は縮径方向へ移動して前記筒体は縮径状態となるフィンチューブ式熱交換器を備える燃焼装置。
A combustion apparatus comprising the finned tube heat exchanger according to claim 3.
The pipe expansion device is
A plurality of divided head portions which constitute a cylinder and are divided in the circumferential direction;
A core rod pushed from the end of the heat transfer tube into the open portion of the cylindrical body in the heat transfer tube;
And a conversion mechanism for converting the pushing force in the axial direction of the core rod into the movement of the divided head portion in the expansion direction of the pipe;
By pushing in the core rod, the plurality of divided head parts move in the expansion direction and the cylindrical body is expanded in diameter, and by pulling out the core rod, the plurality of divided head parts move in the diameter decreasing direction A combustion apparatus provided with a finned-tube heat exchanger in which a cylindrical body is in a diameter-reduced state.
JP2017084266A 2017-04-21 2017-04-21 Manufacturing method of fin tube type heat exchanger and combustion device having fin tube heat exchanger Pending JP2018176262A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017084266A JP2018176262A (en) 2017-04-21 2017-04-21 Manufacturing method of fin tube type heat exchanger and combustion device having fin tube heat exchanger
US15/947,951 US20180304339A1 (en) 2017-04-21 2018-04-09 Method for manufacturing fin-tube heat exchanger and combustion apparatus including fin-tube heat exchanger
KR1020180043968A KR20180118534A (en) 2017-04-21 2018-04-16 Manufacturing method of fin tube typed heat exchanger and combustion apparatus having the same
CN201810360070.6A CN108981168A (en) 2017-04-21 2018-04-20 The manufacturing method of fin tube type heat exchanger and the burner for having it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017084266A JP2018176262A (en) 2017-04-21 2017-04-21 Manufacturing method of fin tube type heat exchanger and combustion device having fin tube heat exchanger

Publications (1)

Publication Number Publication Date
JP2018176262A true JP2018176262A (en) 2018-11-15

Family

ID=63852865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017084266A Pending JP2018176262A (en) 2017-04-21 2017-04-21 Manufacturing method of fin tube type heat exchanger and combustion device having fin tube heat exchanger

Country Status (4)

Country Link
US (1) US20180304339A1 (en)
JP (1) JP2018176262A (en)
KR (1) KR20180118534A (en)
CN (1) CN108981168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021183352A (en) * 2020-05-22 2021-12-02 東芝三菱電機産業システム株式会社 Method for manufacture of heat exchanger for rotary electrical machine and pressing device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135325B2 (en) * 2018-01-24 2022-09-13 株式会社ノーリツ Heat exchange device and heat source machine
JP7182070B2 (en) * 2018-09-27 2022-12-02 株式会社ノーリツ Heat exchanger and manufacturing method thereof
JP7215156B2 (en) * 2018-12-26 2023-01-31 株式会社ノーリツ heat exchanger and water heater
US20230302525A1 (en) * 2022-03-25 2023-09-28 Carrier Corporation Hydraulic expansion of oval tubes in tube sheet
CN117428098B (en) * 2023-12-20 2024-03-05 成都天科航空制造股份有限公司 Pipe fitting spinning processing device and processing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1813096A (en) * 1929-08-14 1931-07-07 Karl A Stenner Tube expander and method of expanding tubes
JPS5416362A (en) * 1978-05-15 1979-02-06 Hitachi Ltd Pipe expander
US4570317A (en) * 1985-01-18 1986-02-18 Ford Motor Company Method of attaching a tube to a fin
KR20010106089A (en) * 1999-11-10 2001-11-29 히다카 쇼타로 Method of expanding heat exchanger tube and tube expander
US6857185B2 (en) * 2002-05-24 2005-02-22 Iap Research, Inc. Method for electromagnetically joining tubes to sheets in a tubular heat transfer system
JP2004268115A (en) * 2003-03-11 2004-09-30 Toyo Eng Works Ltd Method of manufacturing heat transfer coil for heat exchanger
JP2008025918A (en) * 2006-07-21 2008-02-07 Mitsubishi Heavy Ind Ltd Pipe expansion method
JP4992098B2 (en) * 2007-06-05 2012-08-08 株式会社水研 Non-bolt joint structure and method for forming non-bolt joint structure
US8857036B2 (en) * 2011-03-07 2014-10-14 GM Global Technology Operations LLC Leak-tight connection between pipe and port
JP6124044B2 (en) * 2011-07-20 2017-05-10 京進工業株式会社 Manufacturing method of gripping body of heat exchanger insertion tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021183352A (en) * 2020-05-22 2021-12-02 東芝三菱電機産業システム株式会社 Method for manufacture of heat exchanger for rotary electrical machine and pressing device
JP7249971B2 (en) 2020-05-22 2023-03-31 東芝三菱電機産業システム株式会社 Manufacturing method and pressing device for heat exchanger for rotary electric machine

Also Published As

Publication number Publication date
US20180304339A1 (en) 2018-10-25
KR20180118534A (en) 2018-10-31
CN108981168A (en) 2018-12-11

Similar Documents

Publication Publication Date Title
JP2018176262A (en) Manufacturing method of fin tube type heat exchanger and combustion device having fin tube heat exchanger
US11359838B2 (en) Heat exchanger and manufacturing method therefor
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
EP2199703A2 (en) Spiral heat exchanger for producing heating and/or sanitary use hot water, specifically designed for condensation applications
KR102559356B1 (en) Compact gas-gas heat exchange tube and method of manufacturing and using the same
Stehlík et al. Possibilities of intensifying heat transfer through finned surfaces in heat exchangers for high temperature applications
JPWO2019189924A1 (en) Header plateless heat exchanger
JP2010214404A (en) Method for manufacturing heat exchanger, and air-conditioner using the heat exchanger
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
JP5929773B2 (en) Manufacturing method and manufacturing apparatus for fin-integrated tube for heat exchanger
KR20140054727A (en) Combustion gas pipe for heat exchange
US1979859A (en) Tube for boilers, heat exchangers, and the like
JP5689341B2 (en) Double tube heat exchanger and method for manufacturing the same
JP2013142454A (en) Pipe joint, heat exchanger, and method of manufacturing heat exchanger
JP2014105951A (en) Heat exchanger
JP2019219079A (en) Water heat exchanger and gas cooler
RU2493526C2 (en) Heat-exchanger of annealing furnace for heat exchange between two fluid media
RU190475U1 (en) COIL HEAT EXCHANGER TYPE "PIPE IN A PIPE"
JPH10197186A (en) Heat exchanger
RU168320U1 (en) HEAT EXCHANGER
JP2016205764A (en) Heat exchanger and heat pump water heater using the same
RU212101U1 (en) HEAT EXCHANGER ELEMENT
RU182729U1 (en) DIAGRAGED CURVED PIPE
JP6972947B2 (en) Fin tube heat exchanger
RU2266498C2 (en) Air heater hear-exchange tube production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406