JPH08242887A - 酢酸資化性メタン生成菌濃度測定方法及び装置 - Google Patents

酢酸資化性メタン生成菌濃度測定方法及び装置

Info

Publication number
JPH08242887A
JPH08242887A JP5532495A JP5532495A JPH08242887A JP H08242887 A JPH08242887 A JP H08242887A JP 5532495 A JP5532495 A JP 5532495A JP 5532495 A JP5532495 A JP 5532495A JP H08242887 A JPH08242887 A JP H08242887A
Authority
JP
Japan
Prior art keywords
concentration
generation rate
acetic acid
gas
assimilating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5532495A
Other languages
English (en)
Inventor
Akira Matsunaga
旭 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5532495A priority Critical patent/JPH08242887A/ja
Publication of JPH08242887A publication Critical patent/JPH08242887A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

(57)【要約】 【目的】 廃水の嫌気性処理制御において有用な情報と
なる酢酸資化性メタン生成菌濃度を、ガス発生速度との
相関関係を利用して簡易に測定する方法及び装置を提供
することを目的とする。 【構成】 嫌気性消化タンク21内の液を採取して恒温
槽5中の数個の小型消化発酵タンク11中に注入し、保
温下で撹拌後、該小型消化発酵タンク11内に自動注入
手段12により酢酸ナトリウムを数段階の注入率で添加
してガスを発生させ、このガスの発生速度をガス流量計
13で計測して瞬間最高ガス発生速度を選択し、この瞬
間最高ガス発生速度と酢酸資化性メタン生成菌濃度との
相関関係式を用いて計算器24により酢酸資化性メタン
生成菌濃度を算出するようにした酢酸資化性メタン生成
菌濃度測定方法と装置を提供する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は有機性廃棄物及び廃水の
嫌気性処理制御において有用な情報となる酢酸資化性メ
タン生成菌濃度を容易に測定するための方法及び装置に
関するものである。
【0002】
【従来の技術】有機性の廃棄物及び廃水の嫌気性処理と
しては、嫌気性微生物が関与する生物分解反応,例えば
メタン発酵槽が用いられている。このようなメタン発酵
槽における酢酸資化性メタン生成菌濃度は、槽の運転管
理とか制御面で有用な情報となり得るが、この酢酸資化
性メタン生成菌濃度の測定は困難であるため、研究報告
で測定された例が発表されてはいるものの実用的には測
定されていない状況にある。
【0003】本出願人は先に特願平6−324159号
により、有機性廃棄物及び廃水を嫌気性処理する際に、
反応槽への原水投入量の指標として、有機物・酢酸資化
性メタン細菌負荷という制御因子を求めて、この制御因
子が適正範囲にあるように原水の流量を調節するように
した嫌気性処理の制御方法を提案した。
【0004】これを簡単に説明すると、一般に嫌気性処
理の諸方式における基質投入量の制御は、HRT(水理
学的滞留時間)と有機物容積負荷によって行われる。但
し固形物含量が低い場合には、有機物容積負荷の代わり
にTOC(総有機炭素量),COD(化学的酸素要求
量),BOD(生物化学的酸素要求量)等の容積負荷が
用いられる。
【0005】上記の特願平6−324159号によれ
ば、反応槽に付設された酢酸資化性メタン細菌濃度測定
手段の測定値に基づいて、式を用いて有機物・酢酸資化
性メタン細菌負荷が計算され、この結果から反応槽に対
する原水流量の最適な制御が実施される。特に上記有機
物・酢酸資化性メタン細菌負荷が適正な範囲に入らない
場合には、適正な範囲に入るような原水の流量を計算に
より求めて、原水ポンプの流量を調節する制御が実施可
能となる。
【0006】負荷の指標として有機物・酢酸資化性メタ
ン細菌負荷を用いたことにより、F/M比とか汚泥負荷
の厳密な制御が行われ、過負荷によるプロセス不良とか
未消化等の現象が防止される。この酢酸資化性メタン細
菌の量はメタン発生に直接関係する主要な活性微生物の
指標であるため、従来から処理経験がない基質とか処理
方式に対しても制御目標範囲を容易に予測することがで
きる。
【0007】前記文献に記載された嫌気性汚泥中の酢酸
資化性メタン細菌の菌体量を推定する実用的方法によれ
ば、メタン発酵に基づくメタン生成量の70%又はそれ
以上は酢酸が前駆体となっている。酢酸をメタンと二酸
化炭素に変換できるメタン菌の種類は限られており、一
例としてMethanobacter;Soehngenii;Methanosarcinabac
ter;Methanosarcina strain227等がある。
【0008】混液とか流入液中の酢酸資化性メタン細菌
数の測定は嫌気性消化においてしばしば問題となってお
り、菌体数を推定するいくつかの方法が提案されてき
た。しかしこれらの方法は間接的であるか、或いは操作
が複雑であるという問題がある。前記提案は、一連の汚
泥処理に対して酢酸塩の添加量を増加させることによっ
て混液1リットル当たりの最大メタン発生速度を測定す
るものである。最大24時間のインキュベーション内で
は生物体の成長は最小であり、酢酸変換速度は0次反応
式に従い、ある範囲内では基質濃度による影響を受けな
いという知見に基づいている。
【0009】最大酢酸変換速度を酢酸分解性メタン菌数
に変換するため、測定条件で最大比活性(菌重量当たり
メタン生成速度)が得られるものと仮定している。酢酸
資化性メタン細菌の最大比活性に関しては、無菌性培養
或いは準無菌増菌(強化)培養リアクターにおけるデー
タ数は少ない。従ってこの方法を嫌気性消化槽、とりわ
け酢酸性基質を主として供給する消化槽の制御に用いて
有効である。
【0010】更に有機物・酢酸資化性メタン細菌負荷の
制御目標範囲からHRTとか有機物容積負荷の適正範囲
を決定することができるので、運転の開始から定常運転
までの時間が短縮されるという作用が得られる。尚、具
体的な嫌気性処理の制御方法に関しては上記の特願平6
−324159号に詳細に述べられているので、説明の
重複を避ける。
【0011】一方、現在では上記酢酸資化性メタン生成
菌数或いは重量濃度を測定する方法は2つに大別され
る。第1の方法は嫌気性ロールチューブ法と呼称される
方法であり、大腸菌測定用のMPN法と言われる方法と
同じ測定原理を用いている。この方法は菌体を10n
に希釈した系列を作り、これを培地を満たした3本乃至
5本のビンに植種して一定期間培養した後、培地内の基
質が酢酸からメタンへ化学変化したか否かによって+と
−を判定し、最確数表を用いて菌体数を求める方法であ
る。
【0012】第2の方法は、文献(D.Valcke,W.Verstra
ete Journal WPCE,55(9)1191,1983)に記載された酢酸
資化性メタン生成菌重量濃度の簡易測定法であり、この
方法では汚泥の浮遊性固形有機物濃度(MLVSS)が
ほぼ一定になるように培地で希釈調製して数本のビンに
入れ、1日〜2日間30℃でインキュベーションしてか
ら酢酸ナトリウムを数段階に添加量を変えて添加してメ
タン発生量を測定し、1日当たりのメタン発生量が最大
となる系列を選んで最大メタン発生量とする。純粋な酢
酸資化性メタン生成菌の単位重量当たりのメタン発生量
は30℃で1(l/g・日)であることが知られている
ので、最大メタン発生量から酢酸資化性メタン菌濃度が
算出される。
【0013】
【発明が解決しようとする課題】しかしながらこのよう
な従来の酢酸資化性メタン生成菌数或いは重量濃度を測
定する方法は、操作が煩瑣であるとともに自動的に測定
することができる装置は実現がきわめて困難であるとい
う問題がある。
【0014】例えば前記した第1の方法は、現状では最
も信頼性が高い方法であるが、操作が煩瑣である上、高
度なテクニックを必要とし、しかも測定に長時間を要す
るので実用的でないという課題があり、前記第2の方法
は第1の方法に較べて操作は簡単であるが、自動測定が
困難であり、測定時間も最低2日を要するため実用的で
あるとは言い難い。
【0015】特に嫌気性消化槽であるメタン発酵槽にお
ける計測は一般に困難であると言われている。その理由
はメタン発酵槽が密閉された系であることと、固形物濃
度が高くて固液分離が困難であることに由来している。
しかしこの中でも計測が容易な測定項目としてガス発生
速度の測定を挙げることができる。従ってガス発生速度
と何らかの相関が見られる測定項目であれば、ガス発生
速度との相関関係を利用して計測値を推定することが可
能である。
【0016】そこで本発明は上記に鑑みてなされたもの
であって、ガス発生速度との相関関係を利用して簡易に
酢酸資化性メタン生成菌濃度を測定する方法及び装置を
提供することを目的とするものである。
【0017】
【課題を解決するための手段】本発明は上記の目的を達
成するために、先ず請求項1により、嫌気性消化タンク
内の液を採取して恒温槽中の数個の小型消化発酵タンク
中に注入し、保温下で撹拌後、該小型消化発酵タンク内
に自動注入手段により酢酸ナトリウムを注入してガスを
発生させ、該ガスの発生速度をガス流量計で計測して計
算器により瞬間最高ガス発生速度を選択し、この瞬間最
高ガス発生速度と酢酸資化性メタン生成菌濃度との相関
関係式を用いて酢酸資化性メタン生成菌濃度を算出する
ようにした酢酸資化性メタン生成菌濃度測定方法を提供
する。
【0018】上記瞬間最高ガス発生速度を用いて下記の
(2)式により酢酸資化性メタン生成速度を算出する。 酢酸資化性メタン生成濃度(g/l) ={瞬間最高ガス発生速度(l/m3・時)−2.53}×(1/80.6) ・・・・・(2) 更に請求項3により、恒温槽中に配置されて嫌気性消化
タンク内の液が注入されて保温下で撹拌される数個の小
型消化発酵タンクと、該小型消化発酵タンク内に酢酸ナ
トリウムを注入してガスを発生させる自動注入手段と、
このガスの発生速度を計測するガス流量計と、該計測値
から瞬間最高ガス発生速度を選択する手段と、得られた
瞬間最高ガス発生速度から相関関係式に基づいて酢酸資
化性メタン生成菌濃度を算出する計算手段とを具備した
酢酸資化性メタン生成菌濃度測定装置を提供する。
【0019】
【作用】かかる酢酸資化性メタン生成菌濃度を測定する
方法及び装置によれば、嫌気性消化タンク内の液をオー
トサンプラー等により採取し、恒温槽中の数個の小型消
化発酵タンク中に注入してから保温、撹拌して酢酸ナト
リウムの自動注入手段から酢酸ナトリウムを数段階の注
入率で添加すると、この酢酸ナトリウムは内部の液と混
合されてガスが発生する。発生したガスの発生速度をガ
ス流量計で計測する。このガス流量計の計測した値が電
気信号に変換されてから計算器によって瞬間最高ガス発
生速度が選択され、この瞬間最高ガス発生速度と酢酸資
化性メタン生成菌濃度との相関関係式によって酢酸資化
性メタン生成菌濃度が算出される。酢酸ナトリウムの注
入後は数時間で瞬間最高ガス発生速度が低下してくるの
で、ここで測定が終了する。
【0020】尚、上記酢酸資化性メタン細菌濃度の制御
目標範囲からHRTとか有機物容積負荷の適正範囲を決
定することができるので、嫌気性消化槽の運転開始から
定常運転までの時間とか、他の制御因子として利用され
る。
【0021】
【実施例】以下本発明にかかる酢酸資化性メタン生成菌
濃度測定方法及び装置の具体的な実施例を説明する。
【0022】前記したようにガス発生速度と酢酸資化性
メタン生成菌との間に何らかの関係があると見られる根
拠は、次に実験事実に基づいている。即ち、図3に示す
消化槽制御室内実験装置を用いた下水の遠心濃縮生汚泥
を基質として用いたフィルアンドドロー方式による半連
続消化実験において、HRT(水理学的滞留時間)を4
0日として酢酸ナトリウムをパルス投入した場合のガス
発生速度の経時変化をプロットした結果を図4に示す。
【0023】図3において、投入試料容器1内の試料と
酢酸ナトリウムとをローラポンプ2を用いて培養槽3
(有効容積10L)内に投入し、撹拌機4の作動下で恒
温水槽5に配備された温水循環ポンプ6からジャケット
水7を循環させて嫌気性の消化処理を行い、ローラポン
プ8で受器9に汚泥を引き抜く。9aはガス組成測定
器、10はガスホルダである。
【0024】図4によれば、培養槽7に生汚泥と酢酸ナ
トリウムを同時に投入してから数時間以内にガス発生速
度のピークがあり、その後に徐々に減少する傾向が見ら
れる。特に酢酸ナトリウムの投入量が多いほど時間が経
過してもガス発生速度は低下しにくい傾向が見られる
が、時間単位の最高ガス発生速度(以下瞬間最高ガス発
生速度と呼称)は酢酸ナトリウム投入量が変化しても著
しい変化が見られなかった。この時にD.Valckeらの簡易
測定法により測定した酢酸資化性メタン生成菌の濃度は
830〜770(g/l)の範囲にあり、著しい変化は
なかった。この事実は酢酸資化性メタン生成菌が瞬間最
高ガス発生速度を決定する要因になり得ることを示して
いる。
【0025】次に酢酸資化性メタン生成菌濃度と瞬間最
高ガス発生速度の関係を明らかにするため、次のような
汚泥消化室内実験を行った。これは下水の遠心濃縮性汚
泥及び自然沈降濃縮生汚泥を基質としたフィルアンドド
ロー方式によるHRT制御半連続実験において、消化温
度を33℃としてHRTを30日、20日、15日、1
0日、5日と次第に短縮しながら酢酸資化性メタン生成
菌濃度をD.Valckeらの簡易測定法を用いて測定した。
【0026】遠心濃縮性生汚泥のHRT制御半連続消化
実験の結果を図5,図6に示す。この図によれば、HR
Tが30日から10日までの範囲では、ガス発生速度、
瞬間最高ガス発生速度、酢酸資化性メタン生成菌濃度と
も増加しているが、HRTを5日にしたところ、当初は
前記三者は上昇したが、途中から急激に低下する現象が
見られた。又、pHの低下と揮発性有機酸濃度の上昇が
見られたことから過負荷により遊離有機酸濃度が上昇し
て酢酸資化性メタン生成菌が阻害され、菌体濃度が低下
したものと考えられる。
【0027】この実験結果から酢酸資化性メタン生成菌
濃度及び瞬間最高ガス発生速度と相関がありそうな項目
を選んで相関解析を行い、相関係数を算出した結果を表
1に示す。
【0028】
【表1】
【0029】表1によれば、酢酸資化性メタン生成菌濃
度と瞬間最高ガス発生速度は相関係数が0.8910で
あり、高い相関関係が認められた。この瞬間最高ガス発
生速度は有機物容積負荷とも相関係数0.8以上の相関
が認められた。但しこの場合に限りHRTが5日で有機
物容積負荷7.07(kg/m3・日)の条件でガス発生
速度が低下した時のデータは除外した。
【0030】一方、酢酸資化性メタン生成菌と浮遊性固
形有機物濃度(MLVSS)とは、0.8以上の相関が
認められなかった。この酢酸資化性メタン生成菌濃度と
瞬間最高ガス発生速度の関係を図7に示す。両者の相関
の回帰式は(1)式で表すことができる。
【0031】 Y=80.6X+2.53(R=0.8910,N=22)・・・・・(1) ここでY:瞬間最高ガス発生速度(l/m3・時) X:酢酸資化性メタン生成菌濃度(g/l) 以上の実験事実から酢酸資化性メタン生成菌濃度は瞬間
最高ガス発生速度と相関があることが判明した。
【0032】〔実施例1〕上記の瞬間最高ガス発生速度
は測定が容易であり、これを測定するとともに前記
(1)式を変形した下記の(2)式に瞬間最高ガス発生
速度の測定値を代入して数値計算により酢酸資化性メタ
ン生成菌濃度を推定することが可能である。
【0033】 酢酸資化性メタン生成濃度(g/l) ={瞬間最高ガス発生速度(l/m3・時)−2.53}×(1/80.6) ・・・・・(2) この実施例1では嫌気性消化槽であるメタン発酵タンク
からの瞬間最高ガス発生速度を測定しているが、該メタ
ン発酵タンクが低負荷無負荷状態で運転されている場合
には誤差が大きくなるものと予想される。このような場
合に測定精度を高める予備実験として以下に記す実施例
2を行った。
【0034】〔実施例2〕嫌気性消化槽(メタン発酵タ
ンク)から汚泥を適量採取して図2に示す小型の消化発
酵タンク11の数個に入れ、酢酸ナトリウム自動注入手
段12により酢酸ナトリウムを数段階の注入率で添加し
た。段階としては例えば0,0.5,1,1.5,2,3
(g/l)とした。そして恒温水槽5により消化発酵タ
ンク11を30℃に保温し、撹拌機4で撹拌してからガ
ス発生速度をガス流量計13で数時間計測し、このガス
発生速度が最高となるところを選択してこれを瞬間最高
ガス発生速度とした。
【0035】次に前記(2)式に得られた瞬間最高ガス
発生速度を代入して酢酸資化性メタン生成菌濃度を算出
した。
【0036】図2に示した例によれば、ガス流量計13
の計測値を電気信号にして図外の計算器に入力し、計算
により酢酸資化性メタン生成菌濃度を出力することが可
能である。従って汚泥を自動採取するためのオートサン
プラーとか酢酸ナトリウムを一定量注入する装置を組み
合わせることにより、酢酸資化性メタン生成菌濃度を自
動測定することができる。
【0037】以上の結果に基づいて、本実施例では図1
に示す酢酸資化性メタン生成菌濃度の自動測定装置を創
案した。同図において、21はメタン発酵槽等の嫌気性
消化タンク、22はオートサンプラー、11は小型の消
化発酵タンク、4は撹拌機、5は恒温槽、12は酢酸ナ
トリウム自動注入手段、13はガス流量計、24は計算
器、25はCRT等の表示手段、26は汚泥引抜手段、
27は洗浄液注入手段である。
【0038】かかる自動測定装置の作用を以下に説明す
る。先ず嫌気性消化タンク21の内部の液(汚泥)をオ
ートサンプラー22によって採取し、数個の小型消化発
酵タンク11中に注入する。この小型消化発酵タンク1
1は恒温槽5の中に入っており、30℃に保温されなが
ら撹拌機4によって撹拌が行われる。
【0039】そして酢酸ナトリウムの自動注入手段12
から小型消化発酵タンク11内に酢酸ナトリウムを数段
階の注入率で添加すると、この酢酸ナトリウムは内部の
液と混合されてガスが発生する。発生したガスはガス出
口管路28を通ってガス流量計13に達して、このガス
流量計13でガス発生速度が計測される。
【0040】ガス流量計13の計測した値は電気信号に
変換されてから計算器24に入力され、計算器24によ
り瞬間最高ガス発生速度を選択するとともに酢酸資化性
メタン生成菌濃度と瞬間最高ガス発生速度の相関関係式
を用いて酢酸資化性メタン生成菌濃度を算出し、その計
算結果をCRT等の表示手段25に表示する。
【0041】酢酸ナトリウムの注入後、数時間で瞬間最
高ガス発生速度が低下してくるので、ここで測定が終了
する。測定終了後は汚泥引抜手段26と洗浄液注入手段
27により小型消化発酵タンク11の内部が洗浄され、
空にしてから同一のサイクルによって繰り返し測定が実
施される。
【0042】本実施例の結果に関しては以下のように考
察される。即ち、実施例1によれば、従来酢酸資化性メ
タン生成菌濃度の測定操作が煩瑣であり、測定に長時間
を要するという問題点があったが、実施例1では計測が
容易なガス発生速度から数式を用いて酢酸資化性メタン
生成菌濃度を推定することができるため、特に迅速な測
定が要求される場合に採用して有効である。図5におけ
る測定値のばらつき具合から判断すると、酢酸資化性メ
タン生成菌の測定平均値0.8(g/l)に対して最大
誤差は±0.3(g/l)の範囲に入っている。
【0043】実施例2によれば、実施例1に比較すると
測定精度は高くなるが、操作が比較的煩瑣になる上、測
定時間も長いという問題はある。しかし既存の測定方法
では最低でも2日を要するので、これに較べれば大幅な
時間短縮となり、しかも自動測定が可能であるという効
果を有している。
【0044】この方法は瞬間最大ガス発生速度は酢酸資
化性メタン生成菌濃度によって決定され、酢酸ナトリウ
ムの添加量にはあまり関係がないという酢酸パルス投入
実験によって観測された事実、及びD.Valkeらによる酢
酸資化性メタン生成菌の測定方法において、酢酸ナトリ
ウムの添加量を数段階変えることによって最大ガス発生
速度が得られるところを選択する方法が適用可能である
という知見に基づいている。低負荷又は無負荷で運転中
の嫌気性消化タンク(メタン発酵槽)では酢酸資化性メ
タン生成菌濃度が高くてもガス発生速度が低く、ガス発
生速度から前記式(2)を用いて酢酸資化性メタン生成
菌濃度を計算すると、実際の濃度よりも低めの測定値が
得られることが予想される。そこで酢酸ナトリウムを添
加することによって瞬間最高ガス発生速度が酢酸資化性
メタン生成菌濃度に対応して高くなるので、誤差を小さ
くすることができる。
【0045】
【発明の効果】以上詳細に説明したように、本発明にか
かる酢酸資化性メタン生成菌濃度測定方法及び装置によ
れば、嫌気性消化タンク内の液を採取して恒温槽中の数
個の小型消化発酵タンク中に注入してから酢酸ナトリウ
ムの自動注入手段から酢酸ナトリウムを数段階の注入率
で添加することにより、この酢酸ナトリウムが内部の液
と混合されてガスが発生するので、発生したガスの発生
速度を計測して瞬間最高ガス発生速度を選択し、この瞬
間最高ガス発生速度と酢酸資化性メタン生成菌濃度との
相関関係式に基づいて酢酸資化性メタン生成菌濃度を算
出することができる。酢酸資化性メタン細菌濃度の制御
目標範囲からHRTとか有機物容積負荷の適正範囲を決
定することができるので、嫌気性消化槽の運転開始から
定常運転までの時間とか、他の制御因子として有効に利
用することができる。
【0046】従来から密閉された系である嫌気性消化槽
における計測は一般に困難であると言われており、特に
操作の煩瑣性から測定が困難とされてきた酢酸資化性メ
タン生成菌数或いは重量濃度を本発明に基づいて比較的
短時間で容易に測定することが可能となり、しかも測定
の自動化がはかれるので、実用的価値の高い方法と装置
を提供することができる。
【図面の簡単な説明】
【図1】本実施例を適用した酢酸資化性メタン生成菌濃
度測定装置例を示す概要図。
【図2】本実施例の予備実験装置例を示す概要図。
【図3】遠心濃縮生汚泥を基質として用いたフィルアン
ドドロー方式による半連続消化実験装置例を示す概要
図。
【図4】図3の装置におけるガス発生速度の経時変化を
プロットしたグラフ。
【図5】遠心濃縮性生汚泥のHRT制御半連続消化実験
の結果(その1)を示すグラフ。
【図6】遠心濃縮性生汚泥のHRT制御半連続消化実験
の結果(その2)を示すグラフ。
【図7】酢酸資化性メタン生成菌濃度と瞬間最高ガス発
生速度の関係を示すグラフ。
【符号の説明】
11…消化発酵タンク 12…酢酸ナトリウム自動注入手段 13…ガス流量計 21…嫌気性消化タンク 22…オートサンプラー 24…計算器 25…表示手段 26…汚泥引抜手段 27…洗浄液注入手段

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 嫌気性消化タンク内の液を採取して恒温
    槽中の数個の小型消化発酵タンク中に注入し、保温下で
    撹拌後、該小型消化発酵タンク内に自動注入手段により
    酢酸ナトリウムを数段階の注入率で添加してガスを発生
    させ、該ガスの発生速度をガス流量計で計測して瞬間最
    高ガス発生速度を選択し、この瞬間最高ガス発生速度と
    酢酸資化性メタン生成菌濃度との相関関係式を用いて酢
    酸資化性メタン生成菌濃度を算出することを特徴とする
    酢酸資化性メタン生成菌濃度測定方法。
  2. 【請求項2】 上記瞬間最高ガス発生速度を用いて下記
    の(2)式により酢酸資化性メタン生成速度を算出する
    ことを特徴とする請求項1記載の酢酸資化性メタン生成
    菌濃度測定方法。 酢酸資化性メタン生成濃度(g/l) ={瞬間最高ガス発生速度(l/m3・時)−2.53}×(1/80.6) ・・・・・(2)
  3. 【請求項3】 恒温槽中に配置されて嫌気性消化タンク
    内の液が注入されて保温下で撹拌される数個の小型消化
    発酵タンクと、該小型消化発酵タンク内に酢酸ナトリウ
    ムを数段階の注入率で添加してガスを発生させる自動注
    入手段と、このガスの発生速度を計測するガス流量計
    と、該計測値から瞬間最高ガス発生速度を選択する手段
    と、得られた瞬間最高ガス発生速度から相関関係式に基
    づいて酢酸資化性メタン生成菌濃度を算出する計算手段
    とを具備して成ることを特徴とする酢酸資化性メタン生
    成菌濃度測定装置。
JP5532495A 1995-03-15 1995-03-15 酢酸資化性メタン生成菌濃度測定方法及び装置 Pending JPH08242887A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5532495A JPH08242887A (ja) 1995-03-15 1995-03-15 酢酸資化性メタン生成菌濃度測定方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5532495A JPH08242887A (ja) 1995-03-15 1995-03-15 酢酸資化性メタン生成菌濃度測定方法及び装置

Publications (1)

Publication Number Publication Date
JPH08242887A true JPH08242887A (ja) 1996-09-24

Family

ID=12995372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5532495A Pending JPH08242887A (ja) 1995-03-15 1995-03-15 酢酸資化性メタン生成菌濃度測定方法及び装置

Country Status (1)

Country Link
JP (1) JPH08242887A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010739A1 (fr) * 1997-08-27 1999-03-04 Asahi Breweries, Ltd. Instrument de mesure de l'activite de methanation
CN103675214A (zh) * 2013-12-23 2014-03-26 上海交通大学 一种测量生化产甲烷潜力的装置和方法
WO2024130844A1 (zh) * 2022-12-21 2024-06-27 南开大学 一种生物降解测试装置及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010739A1 (fr) * 1997-08-27 1999-03-04 Asahi Breweries, Ltd. Instrument de mesure de l'activite de methanation
US6416994B1 (en) * 1997-08-27 2002-07-09 Asahi Breweries, Ltd. Methanation activity measuring instrument
CN103675214A (zh) * 2013-12-23 2014-03-26 上海交通大学 一种测量生化产甲烷潜力的装置和方法
CN103675214B (zh) * 2013-12-23 2015-07-15 上海交通大学 一种测量生化产甲烷潜力的装置和方法
WO2024130844A1 (zh) * 2022-12-21 2024-06-27 南开大学 一种生物降解测试装置及方法

Similar Documents

Publication Publication Date Title
Ince Performance of a two-phase anaerobic digestion system when treating dairy wastewater
Kaparaju et al. Optimisation of biogas production from manure through serial digestion: Lab-scale and pilot-scale studies
Elefsiniotis et al. Influence of pH on the acid‐phase anaerobic digestion of primary sludge
Sharma et al. Inclined-plug-flow type reactor for anaerobic digestion of semi-solid waste
Skiadas et al. Modelling of the periodic anaerobic baffled reactor (PABR) based on the retaining factor concept
CN101786721B (zh) 城市污水处理厂出水有机物浓度的随机过程预测方法
JPH1090249A (ja) 連続型迅速生化学的酸素要求量(bod)測定方法及び装置
Shi et al. Modeling the dynamic volatile fatty acids profiles with pH and hydraulic retention time in an anaerobic baffled reactor during the startup period
Massé et al. The start‐up of anaerobic sequencing batch reactors at 20° C and 25° C for the treatment of slaughterhouse wastewater
CN102183910A (zh) 通过变频调速在线检测活性污泥微生物比耗氧速率的方法
Pechan et al. Anaerobic digestion of poultry manure at high ammonium nitrogen concentrations
CN106010950A (zh) 一种简易测定硝化细菌活性方法及装置
Bohn et al. Effect of temperature decrease on the microbial population and process performance of a mesophilic anaerobic bioreactor
JPH08242887A (ja) 酢酸資化性メタン生成菌濃度測定方法及び装置
RU2192474C2 (ru) Способ мониторинга микробиологического процесса в потоке жидкости (варианты)
CN110129409A (zh) 一种厌氧消化过程进入稳定阶段的判定方法
Buitrón et al. Evaluation of the methane production rate from an acidogenic effluent generated in a two-stage process treating winery wastewater
Morello et al. Operational strategies enhancing sewage sludge minimization in a combined integrated fixed-film activated sludge–oxic settling anaerobic system
JPH08173993A (ja) 嫌気性処理の制御方法
Lay et al. Influence of hydraulic loading rate on UASB reactor treating phenolic wastewater
Zamouche et al. Oxygen transfer and energy savings in a pilot-scale batch reactor for domestic wastewater treatment
JP3147491B2 (ja) 有機酸濃度の測定方法及びメタン発酵処理装置
JPH10277583A (ja) メタン発酵制御方法
Isaacs et al. Automatic monitoring of denitrification rates and capacities in activated sludge processes using fluorescence or redox potential
JP4016474B2 (ja) メタン発酵における負荷推定装置及び負荷推定方法