JPH082427Y2 - Combustion chamber of direct injection diesel engine - Google Patents

Combustion chamber of direct injection diesel engine

Info

Publication number
JPH082427Y2
JPH082427Y2 JP1989026609U JP2660989U JPH082427Y2 JP H082427 Y2 JPH082427 Y2 JP H082427Y2 JP 1989026609 U JP1989026609 U JP 1989026609U JP 2660989 U JP2660989 U JP 2660989U JP H082427 Y2 JPH082427 Y2 JP H082427Y2
Authority
JP
Japan
Prior art keywords
wall surface
fuel
combustion chamber
injected fuel
collision wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989026609U
Other languages
Japanese (ja)
Other versions
JPH02118132U (en
Inventor
一郎 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1989026609U priority Critical patent/JPH082427Y2/en
Publication of JPH02118132U publication Critical patent/JPH02118132U/ja
Application granted granted Critical
Publication of JPH082427Y2 publication Critical patent/JPH082427Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、直噴式ディーゼルエンジンの燃焼室に関
し、とくに、燃料噴射ノズルの噴射燃料を、燃焼室の壁
面に衝突、反射させて反射方向に良好な混合気を形成し
燃焼させるタイプの燃焼室の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a combustion chamber of a direct injection diesel engine, and more particularly, to the direction of reflection by injecting and injecting fuel injected from a fuel injection nozzle against the wall surface of the combustion chamber. The present invention relates to improvement of a combustion chamber of a type that forms and burns a good air-fuel mixture.

〔従来の技術〕[Conventional technology]

本出願人は、特願昭62−141450号において、燃料衝
突、反射タイプの直噴式ディーゼルエンジンの燃焼室を
提案した。そこでは、燃焼室は、ピストン頂部に形成さ
れた上方に向って開口するキャビティ内に郭成され、該
キャビティの開口部には、半径方向内方に突出し下面が
ピストン軸芯を含む面内にて凹曲面に形成されたリップ
部が形成されており、この凹曲面が燃料噴射ノズルから
の噴射燃料の噴射燃料衝突壁面とされている。噴射燃料
衝突壁面が凹曲面から成るので、ピストンの上下動に伴
なって燃料衝突位置が凹曲面に沿って上下に変わり、燃
焼反射方向が燃焼室の外周縁部近傍から燃焼室中心方向
に変化し、反射燃料噴霧が燃焼室を広い範囲にわたって
走査し、良好な混合気形成が可能となる。
The applicant has proposed in Japanese Patent Application No. 62-141450 a combustion chamber of a fuel injection, reflection type direct injection diesel engine. There, the combustion chamber is defined within a cavity formed in the top of the piston that opens upwards, the opening of the cavity projecting radially inward and the lower surface in a plane containing the piston axis. Is formed as a concave curved surface, and this concave curved surface serves as an injection fuel collision wall surface of the injected fuel from the fuel injection nozzle. Since the injected fuel collision wall surface is a concave curved surface, the fuel collision position changes up and down along the concave curved surface as the piston moves up and down, and the combustion reflection direction changes from near the outer peripheral edge of the combustion chamber to the combustion chamber center direction. However, the reflected fuel spray scans the combustion chamber over a wide range, and good mixture formation is possible.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、従来の燃焼室構造は燃焼室軸芯に関して全周
にわたって対称であり、噴射燃料衝突壁面はエンジン低
回転時もエンジン高回転時にも同じに作用する。
However, the conventional combustion chamber structure is symmetric with respect to the entire axis of the combustion chamber axis, and the injected fuel collision wall surface acts in the same manner at low engine speed and high engine speed.

このため、冷間アイドル運転時に、HC排出量が増大
し、白煙、悪臭が生じるという問題が生じる。冷間アイ
ドル運転時においては、燃焼室内において着火しても、
壁面での冷却によりクエンチ状態となりやすいので、で
きるだけ燃焼室中央部で燃焼を行わせることが望まし
い。しかし、従来技術においては、凹曲面から成る燃料
衝突壁面の作用がいかなる運転時においても不変である
ため、当然、冷間アイドル運転時において燃焼室の外周
縁部の壁面近傍にも反射燃料噴霧が供給されてしまい、
上記問題を生じる。
Therefore, during the cold idling operation, the amount of HC emission increases, and white smoke and a foul odor are generated. During cold idle operation, even if ignition occurs in the combustion chamber,
Since quenching is likely to occur due to cooling on the wall surface, it is desirable to burn as much as possible in the center of the combustion chamber. However, in the prior art, since the action of the fuel collision wall surface composed of the concave curved surface is invariable during any operation, naturally, during the cold idle operation, the reflected fuel spray is also generated near the wall surface of the outer peripheral edge portion of the combustion chamber. Has been supplied,
The above problem occurs.

また、エンジン低回転時にも、HC排出量の増大、白
煙、臭い性能の悪化の問題が生じる。これは、エンジン
低回転時にはスワールの強さが弱いので、噴射燃料は強
い貫徹力をもって燃料衝突壁面に飛行し、大粒子の燃料
粒子が壁面をぬらしてしまうからである。
Further, even when the engine speed is low, there are problems of increased HC emissions, white smoke, and deterioration of odor performance. This is because the swirl strength is low at low engine speeds, so the injected fuel flies to the fuel collision wall surface with a strong penetration force, and large particles of fuel particles wet the wall surface.

エンジン高回転時には、逆に、スワールの強さが強
く、噴霧貫徹力が不足して良好な混合気形成がなされな
いため、黒煙排出特性が悪化する。
On the other hand, at high engine speed, conversely, the swirl strength is strong, the spray penetration force is insufficient, and a good mixture is not formed, so the black smoke emission characteristics deteriorate.

本考案は、エンジン低回転時にもエンジン高回転時に
も、壁面反射による混合気形成を最適に保つようにする
燃焼室構造を提供することを目的とする。
It is an object of the present invention to provide a combustion chamber structure that keeps the formation of an air-fuel mixture optimally by reflection on the wall surface when the engine speed is low and when the engine speed is high.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、本考案によれば、次の直噴式ディーゼル
エンジンの燃焼室によって達成される。
According to the present invention, the above object is achieved by the following combustion chamber of a direct injection diesel engine.

すなわち、 (1)吸気スワールを有する直噴式ディーゼルエンジン
の燃焼室であって、前記燃焼室は、ピストン頂部に形成
された上方に向って開口するキャビティ内に郭成され、
該キャビティの開口部には半径方向内方に突出し下面が
ピストン軸芯を含む面内にてピストン下方に開いた凹曲
面に形成されたリップ部が形成されていて該凹曲面を燃
料噴射ノズルからの噴射燃料を衝突、反射させる噴射燃
料衝突壁面としている燃焼室であって、 エンジン低回転時に噴射燃料が衝突する第1の噴射燃
料衝突壁面部の傾斜角度とエンジン高回転時に噴射燃料
が衝突する第2の噴射燃料衝突壁面部の傾斜角度とを、
互いに異ならせ、前記第1の噴射燃料衝突壁面部での衝
突燃料の反射方向をキャビティ中心寄りに向け、前記第
2の噴射燃料衝突壁面部での衝突燃料の反射方向をキャ
ビティ外周寄りに向けたことを特徴とする直噴式ディー
ゼルエンジンの燃焼室。
That is, (1) a combustion chamber of a direct injection diesel engine having an intake swirl, wherein the combustion chamber is defined in a cavity formed at the top of the piston and opening upward
At the opening of the cavity, a lip portion is formed which is formed inwardly in the radial direction and whose lower surface is formed as a concave curved surface opened downwardly of the piston in a plane including the piston axis. In the combustion chamber having an injected fuel collision wall surface that causes the injected fuel to collide with and be reflected, the injected fuel collides at high engine speed with the inclination angle of the first injected fuel collision wall surface portion at which the injected fuel collides at low engine speed. The inclination angle of the second injected fuel collision wall surface portion is
Differently from each other, the reflection direction of the collision fuel on the first injected fuel collision wall surface portion is directed toward the center of the cavity, and the reflection direction of the collision fuel on the second injection fuel collision wall surface portion is directed toward the cavity outer periphery. Combustion chamber of a direct injection diesel engine characterized by

上記直噴式ディーゼルエンジンの燃焼室は、より具体
的には、次の何れか少なくとも一つの態様をとることが
できる。
More specifically, the combustion chamber of the direct injection diesel engine can take any one of the following aspects.

(2)リップ部の下部のうち、第1の噴射燃料衝突壁面
部のリップ部下部を第2の噴射燃料衝突壁面部のリップ
部下部よりも燃焼室中心側に近づけることにより、第1
の噴射燃料衝突壁面部の傾斜角度を第2の噴射燃料衝突
壁面部の傾斜角度よりも立てた燃焼室(後述の第1実施
例に対応)。
(2) Of the lower part of the lip part, the lower part of the lip part of the first injected fuel collision wall surface part is brought closer to the combustion chamber center side than the lower part of the lip part of the second injected fuel collision wall surface part.
A combustion chamber in which the angle of inclination of the wall surface portion of the injected fuel collision is set to be larger than the angle of inclination of the wall surface portion of the second injected fuel collision (corresponding to the first embodiment described later).

(3)リップ部の上部のうち、第1の噴射燃料衝突壁面
部のリップ部上部をその他のリップ部上部部分よりも燃
焼室中心から遠ざけることにより、第1の噴射燃料衝突
壁面部の傾斜角度を第2の噴射燃料衝突壁面部の傾斜角
度よりも立てるとともに、第1の噴射燃料衝突壁面部の
燃料噴射ノズル側直近に乱流発生用凹部を形成した燃焼
室(後述の第2実施例に対応)。
(3) The inclination angle of the first injected fuel collision wall surface portion is set by making the upper portion of the lip portion of the first injected fuel collision wall surface portion of the upper portion of the lip portion farther from the center of the combustion chamber than the other lip portion upper portions. Is set at an angle greater than the inclination angle of the second injected fuel collision wall surface portion, and a turbulent flow generation concave portion is formed near the fuel injection nozzle side of the first injected fuel collision wall surface portion (see the second embodiment described later). Correspondence).

(4)第1の噴射燃料衝突壁面部を第2の噴射燃料衝突
壁面部よりも傾斜角度を立てかつ燃料噴射ノズルから遠
ざけるとともに、第1の噴射燃料衝突壁面部の燃料噴射
ノズル側直近に乱流発生用凹部を形成した燃焼室(後述
の第3実施例に対応)。
(4) The first injected fuel collision wall surface portion is inclined with respect to the second injected fuel collision wall surface portion and is kept away from the fuel injection nozzle, and the first injected fuel collision wall surface portion is disturbed near the fuel injection nozzle side. A combustion chamber in which a flow generating recess is formed (corresponding to a third embodiment described later).

〔作用〕[Action]

上記(1)の燃焼室では、第1の噴射燃料衝突壁面部
での衝突燃料の反射方向をキャビティ中心寄りに向け、
第2の噴射燃料衝突壁面部での衝突燃料の反射方向をキ
ャビティ外周寄りに向けたので、エンジン低回転時のク
エンチが防止され、HC排出量が減少し、白煙、悪臭も低
減し、高回転時には多量の空気と混合して出力が向上さ
れる。
In the combustion chamber of (1) above, the collision fuel reflection direction at the first injected fuel collision wall surface portion is directed toward the cavity center,
Since the collision fuel reflected on the wall surface of the second injected fuel collision is directed toward the outer periphery of the cavity, quenching at low engine speed is prevented, HC emissions are reduced, white smoke and odor are reduced, and high At the time of rotation, the output is improved by mixing with a large amount of air.

より具体的には、上記(2)の場合は、第1の噴射燃
料衝突壁面部の傾斜がより立っているので、第1の噴射
燃料衝突壁面部での反射燃料は第2の噴射燃料衝突壁面
部での反射燃料に比べて、より燃焼室中央側へと向か
い、エンジン低回転時において反射燃料は燃焼室外周縁
部近傍に供給されない。このため、冷間アイドル運転時
において、HC排出量が減少し、白煙、悪臭も低減する。
More specifically, in the case of (2) above, since the inclination of the first injected fuel collision wall surface portion is higher, the reflected fuel at the first injected fuel collision wall surface portion is the second injected fuel collision wall portion. Compared to the reflected fuel on the wall surface, the reflected fuel is more toward the center of the combustion chamber and the reflected fuel is not supplied to the vicinity of the outer peripheral edge of the combustion chamber when the engine is running at low speed. Therefore, during cold idling, HC emissions are reduced, and white smoke and odor are also reduced.

上記(3)の構造をとれば、エンジン低回転時におい
て上記(2)の同様の作用がある他、スワール流が上流
の壁面から離れることにより第1の噴射燃料衝突壁面部
直近の凹部内に微小乱流が形成され、これが低回転時の
強い噴射燃料貫徹力を弱め、第1の噴射燃料衝突壁面部
のぬれを抑制し、HC排出量、白煙、悪臭の低減作用を助
長する。
If the structure of (3) above is adopted, in addition to the same effect as (2) above when the engine is running at low speed, the swirl flow separates from the wall surface on the upstream side, so that the swirl flow enters the recess near the wall surface of the first injected fuel collision. A minute turbulent flow is formed, which weakens the strong injected fuel penetration force at low rotation speed, suppresses the wetting of the first injected fuel collision wall surface portion, and promotes the action of reducing HC emissions, white smoke, and odor.

上記(4)の構造によれば、第1の噴射燃料衝突壁面
部と燃料噴射ノズルとの距離が、第2の噴射燃料衝突壁
面部と燃料噴射ノズルとの距離よりも大のため、飛行噴
射燃料の貫徹力がスワールによってより弱められ、かつ
第1の噴射燃料衝突壁面部直近の凹部中の微小乱流によ
っても弱められ、第1の噴射燃料衝突壁面部への燃料付
着が減少し、エンジン低回転時における、HC排出量、白
煙、悪臭が低減される。
According to the structure of (4), since the distance between the first injected fuel collision wall surface portion and the fuel injection nozzle is larger than the distance between the second injected fuel collision wall surface portion and the fuel injection nozzle, flight injection is performed. The penetration force of the fuel is weakened by the swirl and weakened by the minute turbulent flow in the concave portion in the immediate vicinity of the first injected fuel collision wall surface portion, and the adhesion of fuel to the first injected fuel collision wall surface portion is reduced. HC emissions, white smoke, and odors are reduced at low speeds.

〔実施例〕〔Example〕

以下に、本考案の直噴式ディーゼルエンジンの燃焼室
の望ましい実施例を、3例、図面を参照して説明する。
なお、第1図〜第5図は第1実施例を、第6図〜第10図
は第2実施例を、第11図〜第14図は第3実施例を、それ
ぞれ示している。全図を通じて、共通部材には同じ番号
が付してある。
Hereinafter, three preferred embodiments of the combustion chamber of the direct injection type diesel engine of the present invention will be described with reference to the drawings.
1 to 5 show the first embodiment, FIGS. 6 to 10 show the second embodiment, and FIGS. 11 to 14 show the third embodiment. Throughout the figures, common members are numbered the same.

始めに、たとえば第1図〜第5図を参照して各実施例
に共通な構成を説明する。
First, a configuration common to each embodiment will be described with reference to FIGS. 1 to 5, for example.

第1図、第2図において、10は吸気スワールを有する
直噴式ディーゼルエンジンの燃焼室を示す。燃焼室10
は、ピストン12の頂部に形成された上方に向って開口す
るキャビティ14内に郭成されている。キャビティ14の開
口部には、半径方向内方に突出する環状のリップ部16が
形成され、リップ部16の下面には、ピストン軸芯を含む
面内にてピストン下方に開いた凹曲面に形成された噴射
燃料衝突壁面18が形成されている。燃料噴射ノズル20は
燃焼室中央部の上方にシリンダヘッドに固定して設けら
れ、少なくとも1個の燃料噴口を有し、それを通して噴
射される噴射燃料22は、ピストン12が上死点又は上死点
近傍にあるときに、噴射燃料衝突壁面18に衝突する。キ
ャビティ14の深部24は、噴射燃料衝突壁面18から半径方
向にさらに外方にえぐられて形成されている。キャビテ
ィ14の底面は平坦面である。
1 and 2, reference numeral 10 denotes a combustion chamber of a direct injection diesel engine having an intake swirl. Combustion chamber 10
Is enclosed in a cavity 14 formed at the top of the piston 12 and opening upward. An annular lip portion 16 that protrudes inward in the radial direction is formed at the opening of the cavity 14, and the lower surface of the lip portion 16 is formed into a concave curved surface that opens downwardly of the piston within a plane including the piston axis. The injected fuel collision wall surface 18 is formed. The fuel injection nozzle 20 is fixedly provided on the cylinder head above the center of the combustion chamber, and has at least one fuel injection port. The injection fuel 22 injected through the fuel injection nozzle 20 has a piston 12 at a top dead center or a top dead center. When it is near the point, it collides with the injected fuel collision wall surface 18. The deep portion 24 of the cavity 14 is formed by being further scooped outward in the radial direction from the injected fuel collision wall surface 18. The bottom surface of the cavity 14 is a flat surface.

噴射燃料衝突壁面18はピストン下方に開いた凹曲面か
ら成り、ピストン12の上昇に伴なって噴射燃料22の反射
方向が第3図、第4図において22aから22bへと変化し、
縦断面方向に、燃焼室内を外周側から中心に向って広い
範囲に走査する曲面形状に形成されている。また、噴射
燃料22の飛行方向は、第1図、第5図に示すように、横
断面方向に、スワール26の存在によってスワール方向に
偏向する。エンジン低回転時には吸気量が少ないためス
ワール26の強さは弱く、低回転時の噴射燃料22Lの偏向
量は少なくほぼ直進する。エンジン高回転時には吸気量
が多くスワール22の強さが強いので、高回転時の噴射燃
料22Hの偏向量は大である。噴射燃料衝突壁面18のう
ち、低回転時の噴射燃料22Lが衝突し反射される部分を
第1の噴射燃料衝突壁面部18Lと定義し、高回転時の噴
射燃料22Hが衝突し反射される部分を第2の噴射燃料衝
突壁面部18Hと定義する。第1の噴射燃料衝突壁面部18L
と第2の噴射燃料衝突壁面部部18Hとは、それらの傾斜
角度が互いに異ならされて形成されている。従来はこれ
が互いに同じであった。さらに、具体的には、第1の噴
射燃料衝突壁面部18Lでの衝突燃料の反射方向はキャビ
ティ中心寄りに向けられており、第2の噴射燃料衝突壁
面部18Hでの衝突燃料の反射方向はキャビティ外周寄り
に向けられている。
The injected fuel collision wall surface 18 is composed of a concave curved surface opened below the piston, and as the piston 12 rises, the reflected direction of the injected fuel 22 changes from 22a to 22b in FIGS. 3 and 4,
It is formed into a curved surface shape that scans a wide range from the outer peripheral side toward the center of the combustion chamber in the longitudinal sectional direction. Also, the flight direction of the injected fuel 22 is deflected in the cross-sectional direction in the swirl direction due to the presence of the swirl 26, as shown in FIGS. 1 and 5. At low engine speed, the swirl 26 is weak because the amount of intake air is small, and when the engine is running at low speed, the amount of deflection of the injected fuel 22L is small and goes straight. Since the intake amount is large and the swirl 22 is strong at high engine speed, the amount of deflection of the injected fuel 22H at high engine speed is large. The portion of the injected fuel collision wall surface 18 where the injected fuel 22L collides and is reflected at low speed is defined as the first injected fuel collision wall surface portion 18L, and the portion where the injected fuel 22H at high speed is impinged and reflected. Is defined as the second injected fuel collision wall surface portion 18H. First injection fuel collision wall surface part 18L
And the second injected fuel collision wall surface portion 18H are formed so that their inclination angles are different from each other. Previously this was the same as each other. Further, specifically, the reflection direction of the collision fuel at the first injected fuel collision wall surface portion 18L is directed toward the cavity center, and the reflection direction of the collision fuel at the second injected fuel collision wall surface portion 18H is It is directed toward the outer periphery of the cavity.

つぎに、本考案の各実施例特有の構成を説明する。 Next, a configuration unique to each embodiment of the present invention will be described.

本考案の第1実施例においては、第1図、第2図に示
すように、リップ部16の下部のうち、第1の噴射燃料衝
突壁面部18Lのリップ部下部を第2の噴射燃料衝突壁面
部18Hのリップ部下部よりも燃焼室中心側に近づけてあ
り、リップ上部の内径は周方向に同一としてある。これ
によって第1の噴射燃料衝突壁面部18Lの傾斜角度は比
較的立っており、第2の噴射燃料衝突壁面部18Hの傾斜
角度は比較的ねている。換言すれば、噴射燃料衝突壁面
18と噴射燃料22の狭角度αは、第1の噴射燃料衝突壁面
部18Lの方が第2の噴射燃料衝突壁面部18Hよりも大であ
る。したがって、噴射燃料衝突壁面18とキャビティ深部
24の上壁面との交わる角部30は、第1図に示すように、
周方向に波うち、第1の噴射燃料衝突壁面部18Lにおい
て他の部分よりも内周側に突出する。第1の噴射衝突壁
面部18Lと第2の噴射燃料衝突壁面部18Hとは周方向に湾
曲してなめらかに接続している。
In the first embodiment of the present invention, as shown in FIGS. 1 and 2, of the lower portion of the lip portion 16, the lower portion of the lip portion of the first injected fuel collision wall surface portion 18L is subjected to the second injected fuel collision. The wall portion 18H is located closer to the center of the combustion chamber than the lower portion of the lip portion, and the inner diameter of the upper portion of the lip is the same in the circumferential direction. As a result, the inclination angle of the first injected fuel collision wall surface portion 18L is relatively high, and the inclination angle of the second injected fuel collision wall surface portion 18H is relatively high. In other words, the injected fuel collision wall surface
The narrow angle α between 18 and the injected fuel 22 is larger in the first injected fuel collision wall surface portion 18L than in the second injected fuel collision wall surface portion 18H. Therefore, the injected fuel collision wall surface 18 and the cavity deep
The corner portion 30 where the upper wall surface of 24 intersects is
The corrugations in the circumferential direction project inward from the other portions of the first injected fuel collision wall surface portion 18L. The first injection collision wall surface portion 18L and the second injection fuel collision wall surface portion 18H are curved in the circumferential direction and are connected smoothly.

本考案の第2実施例においては、第6図、第7図に示
すように、リップ部16の上部のうち、第1の噴射燃料衝
突壁面部18Lのリップ部上部をその他のリップ部上部よ
りも燃焼室中心から遠ざけてある。噴射燃料衝突壁面18
とキャビティ深部24の上壁面との交わる角部30は、第6
図、第10図に示すように、周方向に、径が一定である。
これによって、第1の噴射衝突壁面部18Lの傾斜は第2
の噴射燃料衝突壁面部18Hの傾斜よりも立つ。リップ部1
6の上部の内周面は、周方向に波うち、第1の噴射燃料
衝突壁面部18Lにおいて外周側に凹む。これによって、
第1の噴射燃料衝突壁面部18Lの燃料噴射ノズル側直近
に凹部28が形成され、スワール26が上流側のリップ部内
周壁面から離れて凹部28に流入したときに、剥離の微小
乱流、いわゆるマイクロタービュレンスを凹部28内方に
形成する。
In the second embodiment of the present invention, as shown in FIG. 6 and FIG. 7, among the upper portions of the lip portion 16, the upper portion of the lip portion of the first injected fuel collision wall surface portion 18L is located above the other lip portions. Is also away from the center of the combustion chamber. Injection fuel collision wall surface 18
And the corner 30 where the cavity deep part 24 intersects the upper wall surface is
As shown in FIG. 10 and FIG. 10, the diameter is constant in the circumferential direction.
As a result, the inclination of the first injection collision wall surface portion 18L becomes the second
Stand up from the slope of the injected fuel collision wall surface portion 18H. Lip part 1
The inner peripheral surface of the upper portion of 6 is corrugated in the circumferential direction, and is recessed toward the outer peripheral side in the first injected fuel collision wall surface portion 18L. by this,
A concave portion 28 is formed in the first injected fuel collision wall surface portion 18L in the immediate vicinity of the fuel injection nozzle, and when the swirl 26 flows into the concave portion 28 away from the upstream lip portion inner peripheral wall surface, a minute turbulent flow of separation, so-called A microturbulence is formed inside the recess 28.

本考案の第3実施例においては、第11図、第12図に示
すように、第1の噴射燃料衝突壁面部18Lを第2の噴射
燃料衝突壁面部18Hよりも傾斜を立てるとともに、燃料
噴射ノズル20から遠ざける。これによって、リップ部16
の内周には、第1の噴射燃料衝突壁面部18Lの燃料噴射
ノズル側直近に、第2実施例と同じような、微小乱流発
生用の凹部28が形成される。
In the third embodiment of the present invention, as shown in FIGS. 11 and 12, the first injected fuel collision wall surface portion 18L is inclined more than the second injected fuel collision wall surface portion 18H and the fuel injection is performed. Keep away from nozzle 20. As a result, the lip 16
A concave portion 28 for generating a minute turbulent flow, which is similar to that of the second embodiment, is formed on the inner periphery of the first injection fuel collision wall surface portion 18L in the immediate vicinity of the fuel injection nozzle side.

つぎに本考案の作用について説明する。 Next, the operation of the present invention will be described.

まず、各実施例共通の作用を説明する。ピストン12が
上死点近傍に上ってきたときに、燃料噴射ノズル20から
燃料が噴射され、噴射燃料22は、吸気スワール26が旋回
している燃焼室10内を飛行して、噴射燃料衝突壁面18に
衝突し、反射される。エンジン低回転時にはスワール26
が弱いので噴射燃料22はほぼ直進し、エンジン高回転時
はスワール26が強いのでスワール26方向に偏向される。
従って、低回転時に噴射燃料22が衝突する第1の噴射燃
料衝突壁面部18Lと高回転時に噴射燃料22が衝突する第
2の噴射燃料衝突壁面部18Hとは、位置がスワール方向
にずれている。第1の噴射燃料衝突壁面部18Lと第2の
噴射燃料衝突壁面部18Hとの構造を互いに異ならしめる
ことにより、衝突特性、反射特性は、エンジン低回転時
とエンジン高回転時とで変化する。さらに、具体的に
は、第1の噴射燃料衝突壁面部18Lでの衝突燃料の反射
方向をキャビティ中心寄りに向けたので、エンジン低回
転時、とくに冷間アイドル運転時に燃料がまだ十分に温
まっていないキャビティ外周壁面に触れて不完全燃焼す
ることが防止され、HC排出量、白煙、悪臭が低減され
る。また、第2の噴射燃料衝突壁面部18Hでの衝突燃料
の反射方向をキャビティ外周寄りに向けたので、エンジ
ン低回転時(キャビティ外周壁面は十分に温まってい
る)、燃料はキャビティ外周にある十分なエアと混合し
て完全燃焼され、エンジン出力が向上される。
First, the operation common to each embodiment will be described. When the piston 12 moves up near the top dead center, fuel is injected from the fuel injection nozzle 20, and the injected fuel 22 flies in the combustion chamber 10 in which the intake swirl 26 is swirling and collides with the injected fuel. It collides with the wall surface 18 and is reflected. Swirl 26 at low engine speed
Is weak, the injected fuel 22 travels almost straight, and at high engine speed, the swirl 26 is strong and is deflected toward the swirl 26.
Therefore, the positions of the first injected fuel collision wall surface portion 18L with which the injected fuel 22 collides at low speed and the second injected fuel collision wall surface portion 18H with which the injected fuel 22 collides at high speed are displaced in the swirl direction. . By making the structures of the first injected fuel collision wall surface portion 18L and the second injected fuel collision wall surface portion 18H different from each other, the collision characteristics and the reflection characteristics change at low engine speed and high engine speed. Further, specifically, since the reflection direction of the collision fuel on the first injected fuel collision wall surface portion 18L is directed toward the cavity center, the fuel is still sufficiently warm at low engine speed, especially during cold idle operation. Prevents incomplete combustion by touching the outer peripheral wall surface of the cavity, reducing HC emissions, white smoke, and odor. Further, since the reflection direction of the collision fuel at the second injected fuel collision wall surface portion 18H is directed toward the outer periphery of the cavity, the fuel is sufficiently in the outer periphery of the cavity when the engine is running at low speed (the outer wall surface of the cavity is sufficiently warm). It is mixed with various air and completely burned, improving the engine output.

つぎに本考案の各実施例特有の作用について説明す
る。
Next, the operation peculiar to each embodiment of the present invention will be described.

本考案の第1実施例においては、第1の噴射燃料衝突
壁面部18Lの傾斜が立っているので、エンジン低回転時
に噴射された噴射燃料22は、第3図に示すように、ピス
トンの上下動により走査的に反射されるものの、比較的
ピストン中心側に反射される。このため、エンジン低回
転時には、反射燃料がキャビティ深部24の外周縁部直近
に供給されることがなくなりまたは少なくなる。したが
って、エンジン低回転時に含まれる冷間アイドル運転時
における、HC排出量、白煙、悪臭が大幅に低減される。
エンジン高回転時には、第4図に示すように、噴射燃料
22は比較的ねている第2の噴射燃料衝突壁面部18Hにあ
たって反射され、燃焼室10内を広い範囲にわたって走査
し、従来同様の良好な燃焼が得られる。
In the first embodiment of the present invention, since the first injected fuel collision wall surface portion 18L is sloping, the injected fuel 22 injected at the time of low engine speed, as shown in FIG. Although it is reflected in a scanning manner due to movement, it is reflected relatively toward the center of the piston. For this reason, when the engine is running at low speed, the reflected fuel is not supplied to the outer peripheral edge portion of the cavity deep portion 24 in the immediate vicinity or is reduced. Therefore, the amount of HC emission, white smoke, and bad odor during the cold idle operation, which is included when the engine speed is low, are significantly reduced.
At high engine speed, as shown in Fig. 4, injected fuel
22 is reflected by the relatively injured second injected fuel collision wall surface portion 18H, scans the inside of the combustion chamber 10 over a wide range, and good combustion as in the conventional case can be obtained.

本考案の第2実施例においては、エンジン低回転時に
は噴射燃料22は、第8図に示すように、比較的立った第
1の噴射燃料衝突壁面部18Lに衝突して、ピストン中心
側に反射される。また、エンジン高回転時には噴射燃料
22は、第9図に示すように、比較的ねている第2の噴射
燃料衝突壁面部18Hに衝突して、燃焼室10を広い範囲に
わたって走査する。このため、第1実施例と同様の作用
がある。この他に、第2実施例では、第1の噴射燃料衝
突壁面部18Lをより立てるに際しリップ部上部を半径方
向外方に後退させるので、リップ部16内周に、第1の噴
射燃料衝突壁面部18L直近に凹部28が形成される。これ
によってリップ部16の凹部28上流側の内周面に沿って流
れてきたスワール26は凹部28に微小乱流を生成する。燃
料噴射ノズル20からエンジン低回転時に第1の噴射燃料
衝突壁面部18Lに向って飛行してくる噴射燃料22は、凹
部28にきたときにこの微小乱流によって乱され壁面への
付着量が低減する。また、凹部28の存在によって第1の
噴射燃料衝突壁面部18Lは、第2の噴射燃料衝突壁面部1
8Hよりも燃料噴射ノズル20から遠ざけられるので、それ
だけ飛行中に噴射燃料22は貫徹力を弱められ、これによ
っても第1の噴射燃料衝突壁面部18Lの燃料付着量は低
減する。これらの総合結果として、第1の噴射燃料衝突
壁面部18Lへの燃料付着は低減し、エンジン低回転時のH
C排出量は低減し、白煙、悪臭も低減する。エンジン高
回転時は第1実施例と同様良好な燃焼が得られる。
In the second embodiment of the present invention, when the engine speed is low, the injected fuel 22 collides with the relatively high first injected fuel collision wall surface portion 18L and is reflected toward the piston center side as shown in FIG. To be done. In addition, the injected fuel is
As shown in FIG. 9, 22 collides with the relatively injured second injected fuel collision wall surface portion 18H and scans the combustion chamber 10 over a wide range. Therefore, there is an effect similar to that of the first embodiment. In addition to this, in the second embodiment, when the first injected fuel collision wall surface portion 18L is stood upright, the upper portion of the lip portion is retracted outward in the radial direction. A recess 28 is formed in the immediate vicinity of the portion 18L. As a result, the swirl 26 flowing along the inner peripheral surface of the lip portion 16 on the upstream side of the recess 28 generates a minute turbulent flow in the recess 28. The injected fuel 22 flying from the fuel injection nozzle 20 toward the first injected fuel collision wall surface portion 18L at the time of low engine speed is disturbed by the minute turbulence when it reaches the recess 28, and the amount of adhesion to the wall surface is reduced. To do. Further, due to the presence of the concave portion 28, the first injected fuel collision wall surface portion 18L becomes the second injected fuel collision wall surface portion 1L.
Since the fuel is injected farther from the fuel injection nozzle 20 than 8H, the penetrating force of the injected fuel 22 is weakened during the flight, which also reduces the amount of fuel adhered to the first injected fuel collision wall surface portion 18L. As a result of these, the fuel adhesion to the first injected fuel collision wall surface portion 18L is reduced, and H
C emission is reduced, and white smoke and odor are also reduced. At high engine speed, good combustion can be obtained as in the first embodiment.

本考案の第3実施例においては、第1の噴射燃料衝突
壁面部18Lが第2の噴射燃料衝突壁面部18Hよりも傾斜角
度が立てられるとともに、燃料噴射ノズル20から遠ざけ
られているので、第1実施例と同様の作用が得られる
他、エンジン低回転時に燃料噴射ノズル20から第1の噴
射燃料衝突壁面部18Lに飛行する噴射燃料22の飛行距離
は大となり、貫徹力が低減し、凹部28の微小乱流によっ
ても乱され、かくして第1の噴射燃料衝突壁面部18Lへ
の燃料付着量は低減する。したがって、エンジン低回転
時のHC排出量は低減し、白煙、悪臭も低減される。エン
ジン高回転時は、第1実施例と同様良好な燃焼が得られ
る。
In the third embodiment of the present invention, the first injected fuel collision wall surface portion 18L is inclined more than the second injected fuel collision wall surface portion 18H and is further away from the fuel injection nozzle 20. In addition to the same effect as that of the first embodiment, the flight distance of the injected fuel 22 flying from the fuel injection nozzle 20 to the first injected fuel collision wall surface portion 18L becomes large at low engine speed, the penetration force is reduced, and the recessed portion is reduced. It is also disturbed by the minute turbulent flow of 28, thus reducing the amount of fuel adhering to the first injected fuel collision wall surface portion 18L. Therefore, HC emissions at low engine speeds are reduced, and white smoke and odor are also reduced. At high engine speed, good combustion can be obtained as in the first embodiment.

〔考案の効果〕[Effect of device]

本考案によれば、冷間時アイドル運転時を含み、エン
ジン低回転時には、HC排出量、白煙、悪臭が低減し、エ
ンジン高回転時には良好な燃焼が維持される。
According to the present invention, HC emission, white smoke, and bad odor are reduced at low engine speeds, including during cold idle operation, and good combustion is maintained at high engine speeds.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の第1実施例に係る直噴式ディーゼルエ
ンジンの燃焼室の平面図、 第2図は第1図のII−II線に沿う断面図、 第3図は第2図の燃焼室のエンジン低回転時における半
断面図、 第4図は第2図の燃焼室のエンジン高回転時における半
断面図、 第5図は第1図におけるスワールによる噴射燃料の偏向
図、 第6図は本考案の第2実施例に係る直噴式ディーゼルエ
ンジンの燃焼室の平面図、 第7図は第6図のVII−VII線に沿う断面図、 第8図は第7図の燃焼室のエンジン低回転時における半
断面図、 第9図は第7図の燃焼室のエンジン高回転時における半
断面図、 第10図は第6図におけるスワールによる噴射燃料の偏向
図、 第11図は本考案の第3実施例に係る直噴式ディーゼルエ
ンジンの燃焼室の平面図、 第12図は第11図のXII−XII線に沿う断面図、 第13図は第12図の燃焼室のエンジン低回転時における半
断面図、 第14図は第11図におけるスワールによる噴射燃料の偏向
図、 である。 10……燃焼室 12……ピストン 14……キャビティ 16……リップ部 18……噴射燃料衝突壁面 18L……第1の噴射燃料衝突壁面部 18H……第2の噴射燃料衝突壁面部 20……燃料噴射ノズル 22……噴射燃料 28……凹部
1 is a plan view of a combustion chamber of a direct injection diesel engine according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIG. 3 is combustion of FIG. 4 is a half sectional view of the combustion chamber at low engine speed, FIG. 4 is a half sectional view of the combustion chamber of FIG. 2 at high engine speed, and FIG. 5 is a deflection diagram of fuel injected by the swirl in FIG. 1; Is a plan view of a combustion chamber of a direct injection diesel engine according to a second embodiment of the present invention, FIG. 7 is a sectional view taken along line VII-VII of FIG. 6, and FIG. 8 is an engine of the combustion chamber of FIG. Fig. 9 is a half sectional view at low speed, Fig. 9 is a half sectional view at high engine speed in the combustion chamber of Fig. 7, Fig. 10 is a deflection diagram of injected fuel by swirl in Fig. 6, and Fig. 11 is the present invention. FIG. 12 is a plan view of the combustion chamber of the direct injection diesel engine according to the third embodiment of the present invention, and FIG. 12 is a line XII-XII in FIG. Sectional view taken along, Fig. 13 half-sectional view at the time of low engine speed of the combustion chamber of Fig. 12, Fig. 14 is a deflection diagram of the injected fuel due to the swirl in Figure 11. 10 …… Combustion chamber 12 …… Piston 14 …… Cavity 16 …… Lip portion 18 …… Injection fuel collision wall surface 18L …… First injection fuel collision wall surface portion 18H …… Second injection fuel collision wall surface portion 20 …… Fuel injection nozzle 22 …… Injected fuel 28 …… Concave

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】吸気スワールを有する直噴式ディーゼルエ
ンジンの燃焼室であって、前記燃焼室は、ピストン頂部
に形成された上方に向って開口するキャビティ内に郭成
され、該キャビティの開口部には半径方向内方に突出し
下面がピストン軸芯を含む面内にてピストン下方に開い
た凹曲面に形成されたリップ部が形成されていて該凹曲
面を燃料噴射ノズルからの噴射燃料を衝突、反射させる
噴射燃料衝突壁面としている燃焼室であって、 エンジン低回転時に噴射燃料が衝突する第1の噴射燃料
衝突壁面部の傾斜角度とエンジン高回転時に噴射燃料が
衝突する第2の噴射燃料衝突壁面部の傾斜角度とを、互
いに異ならせ、前記第1の噴射燃料衝突壁面部での衝突
燃料の反射方向をキャビティ中心寄りに向け、前記第2
の噴射燃料衝突壁面部での衝突燃料の反射方向をキャビ
ティ外周寄りに向けたことを特徴とする直噴式ディーゼ
ルエンジンの燃焼室。
1. A combustion chamber of a direct-injection diesel engine having an intake swirl, the combustion chamber being defined by an upwardly-opening cavity formed at the top of the piston, and the opening of the cavity being defined by the cavity. Is a lip portion that is formed in a concave curved surface that projects inward in the radial direction and the lower surface opens downwardly of the piston in a plane including the piston axis, and the concave curved surface is collided with the fuel injected from the fuel injection nozzle, A combustion chamber having a reflected injection fuel collision wall surface, and a second injection fuel collision in which the injection fuel collides at the time of high engine speed, and the inclination angle of the first injection fuel collision wall surface portion at which the injected fuel collides at low engine speed The inclination angle of the wall surface portion is different from each other, and the reflection direction of the collision fuel on the first injected fuel collision wall surface portion is directed toward the center of the cavity,
A combustion chamber of a direct injection diesel engine, characterized in that the direction of reflection of the impinging fuel on the wall surface of the impinging fuel colliding with is directed toward the outer periphery of the cavity.
JP1989026609U 1989-03-10 1989-03-10 Combustion chamber of direct injection diesel engine Expired - Lifetime JPH082427Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989026609U JPH082427Y2 (en) 1989-03-10 1989-03-10 Combustion chamber of direct injection diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989026609U JPH082427Y2 (en) 1989-03-10 1989-03-10 Combustion chamber of direct injection diesel engine

Publications (2)

Publication Number Publication Date
JPH02118132U JPH02118132U (en) 1990-09-21
JPH082427Y2 true JPH082427Y2 (en) 1996-01-29

Family

ID=31248392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989026609U Expired - Lifetime JPH082427Y2 (en) 1989-03-10 1989-03-10 Combustion chamber of direct injection diesel engine

Country Status (1)

Country Link
JP (1) JPH082427Y2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135U (en) * 1985-06-18 1987-01-06
JPS6247728U (en) * 1985-09-11 1987-03-24
JPS6447606U (en) * 1987-09-16 1989-03-23
JPH0218619U (en) * 1988-07-18 1990-02-07

Also Published As

Publication number Publication date
JPH02118132U (en) 1990-09-21

Similar Documents

Publication Publication Date Title
JPS636728B2 (en)
JP3534480B2 (en) Diesel engine combustion chamber structure
JPH082427Y2 (en) Combustion chamber of direct injection diesel engine
JP3220192B2 (en) Combustion chamber of internal combustion engine
US4392465A (en) Self-igniting internal combustion engine with a rotationally symmetrical piston trough
JP2524136Y2 (en) Combustion chamber of a direct injection diesel engine
JP2770376B2 (en) Engine piston
JP2532390Y2 (en) Combustion chamber of a direct injection diesel engine
JP3538916B2 (en) Combustion chamber structure of direct injection engine
JPH0148378B2 (en)
JPS60173310A (en) Combustion chamber structure of diesel engine
JPS6229611B2 (en)
JPS6329016A (en) Subchamber type diesel combustion chamber
JP2524133Y2 (en) Combustion chamber of direct injection diesel engine
JPH0723537Y2 (en) Combustion chamber of direct injection diesel engine
JPS6313386Y2 (en)
JPS6339378Y2 (en)
JPH0518244A (en) Injection-in-cylinder type internal combustion engine
US4532898A (en) Fuel injection type internal combustion engine
JPS603311Y2 (en) Combustion chamber of direct injection diesel engine
JP2697100B2 (en) Engine piston
JP3692747B2 (en) Piston for in-cylinder internal combustion engine
JPS603312Y2 (en) Combustion chamber of direct injection diesel engine
JP2594054B2 (en) Direct injection diesel engine
JP2727808B2 (en) Combustion chamber of a direct injection internal combustion engine