JPH0148378B2 - - Google Patents

Info

Publication number
JPH0148378B2
JPH0148378B2 JP58199270A JP19927083A JPH0148378B2 JP H0148378 B2 JPH0148378 B2 JP H0148378B2 JP 58199270 A JP58199270 A JP 58199270A JP 19927083 A JP19927083 A JP 19927083A JP H0148378 B2 JPH0148378 B2 JP H0148378B2
Authority
JP
Japan
Prior art keywords
fuel
combustion chamber
wall surface
recess
swirl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58199270A
Other languages
Japanese (ja)
Other versions
JPS6093115A (en
Inventor
Ryoichi Oohashi
Hitoshi Inaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP58199270A priority Critical patent/JPS6093115A/en
Publication of JPS6093115A publication Critical patent/JPS6093115A/en
Publication of JPH0148378B2 publication Critical patent/JPH0148378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0678Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0654Thermal treatments, e.g. with heating elements or local cooling
    • F02B23/0657Thermal treatments, e.g. with heating elements or local cooling the spray interacting with one or more glow plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明はピストン頂部に凹部の主燃焼室を有す
る直噴式内燃機関の燃焼室に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion chamber for a direct injection internal combustion engine having a main combustion chamber having a concave portion at the top of a piston.

従来、一般の直噴式内燃機関の燃焼室は、第1
図の側断面図及び第2図の平面図に示すごとく、
ピストン1の頂部に凹部2の主燃焼室を有するト
ロダイル形のものが使用されており、同一のシリ
ンダ内径Dに対して、この凹部2の径dを大きく
すると、燃料噴射弁3の噴口からの燃料の噴霧到
達距離lが間接的にのび、噴霧到達距離l1<l2
対し、低速・低負荷時の排気刺激臭レベルは、第
3図に示すごとく同一有効圧縮比εの場合には良
好となり、更に有効圧縮比εを高めると改善され
る。
Conventionally, the combustion chamber of a general direct injection internal combustion engine has a first
As shown in the side sectional view in the figure and the plan view in Figure 2,
A trodile type piston 1 is used, which has a main combustion chamber with a recess 2 at the top.If the diameter d of the recess 2 is increased for the same cylinder inner diameter D, the amount of water from the nozzle of the fuel injection valve 3 increases. The fuel spray travel distance l increases indirectly, and the spray travel distance l 1 < l 2 , whereas the exhaust odor level at low speed and low load is as follows for the same effective compression ratio ε as shown in Figure 3. It becomes good, and is improved by further increasing the effective compression ratio ε.

なお、第2図においてθで示すのは、各噴口よ
りの燃料噴霧の広がり角度であり、矢印Sで示す
のはスワール方向である。
In FIG. 2, θ indicates the spread angle of the fuel spray from each nozzle, and arrow S indicates the swirl direction.

上記有効圧縮比εを上げることは、ピストン1
の凹部2の容積を小さくすることであり、かつ凹
部2の径dを大きくすることはd/Dに逆比例し
てスキツシユ速度を低下させる。
Increasing the above effective compression ratio ε means that the piston 1
In addition, increasing the diameter d of the recess 2 reduces the squishing speed in inverse proportion to d/D.

このため主燃焼室容積比、スキツシユ速度低下
のため、第4図に示すように最大出力Psは大幅に
低下し、低速・低負荷時の排気刺激臭の低減のた
めの径dの拡大及び有効圧縮比εの向上は高速・
高負荷時の最大出力を低下させる。
As a result, the main combustion chamber volume ratio and squishing speed decrease, resulting in a significant decrease in the maximum output P s as shown in Figure 4. Improving the effective compression ratio ε is achieved by
Reduces maximum output at high loads.

即ち、直噴式内燃機関の低速・低負荷時の微量
燃料噴射をピストン1の凹部2内で完全燃焼させ
て排気刺激臭を改善するには有効圧縮比εの上
昇、噴霧到達距離lの拡大が必要である。
In other words, in order to completely burn the small amount of fuel injected at low speed and low load in a direct injection internal combustion engine in the recess 2 of the piston 1 and improve the exhaust odor, it is necessary to increase the effective compression ratio ε and expand the spray reach l. is necessary.

これを従来のトロダイル形の燃焼室で実施する
と、排気刺激臭低減は可能であるが、高速・高出
力時には高圧縮比と噴霧到達距離lの拡大により
燃料が過早着火すると共に、スキツシユ力の低下
のため燃焼期間が長びき、最大出力、排気色、燃
料消費が悪化する。
If this is done in a conventional trodile-shaped combustion chamber, it is possible to reduce the irritating odor of the exhaust, but at high speeds and high outputs, the high compression ratio and the extended spray reach cause premature ignition of the fuel, and the squishing force is reduced. As a result, the combustion period becomes longer and maximum power, exhaust color, and fuel consumption worsen.

上記の対索として、直噴式デイーゼル機関の燃
焼室に関する特公昭51−29242号、特公昭51−
29243号及び特公昭51−29244号の発明において
は、凹部の主燃焼室の角部に燃料噴霧を当てずに
直線部に当てて反射させており、また、その角部
の曲率rに対する各噴口からの衝突部半径との比
r/Rが0から0.075のためRよりrが必ず小さ
い。
As a companion to the above, Japanese Patent Publication No. 51-29242 and Japanese Patent Publication No. 51-29242 concerning the combustion chamber of direct-injection diesel engines,
In the inventions of No. 29243 and Japanese Patent Publication No. 51-29244, the fuel spray is not applied to the corner of the main combustion chamber of the recessed part, but is applied to a straight part and reflected. Since the ratio r/R to the collision radius from 0 to 0.075, r is always smaller than R.

この曲率rが小さいと、燃料噴霧が衝突後に集
積され、蒸発速度が落ち、燃焼が長びき性能が悪
化すると共に、燃料中の残査分等が堆積し、上記
の性能が更に悪化する。
If the curvature r is small, the fuel spray will accumulate after collision, slowing down the evaporation rate, prolonging combustion, and deteriorating the performance. In addition, residues in the fuel will accumulate, further deteriorating the above-mentioned performance.

また、燃焼室構造に関する実開昭57−168729号
の考案及びデイーゼル機関の燃焼室に関する特公
昭49−16881号の発明のごとく燃料噴霧の衝突面
を小さく湾曲させたり、反射により飛散させよう
とするものは、低力時の微量噴射時は噴射速度が
高負荷時に比べて非常に小さく、ほとんど反射し
ない、このため反射させるべく設けた壁上に未燃
燃料が堆積し、未然または未然ガスを発生して、
排気刺激臭を発するという欠点がある。
In addition, as in the invention of Utility Model Application Publication No. 168729/1983 regarding the combustion chamber structure and the invention of Japanese Patent Publication No. 16881/1983 regarding the combustion chamber of a diesel engine, attempts have been made to curve the impact surface of the fuel spray to a small extent or to scatter it by reflection. When a small amount of fuel is injected at low force, the injection speed is very low compared to when it is under high load, and there is almost no reflection.As a result, unburnt fuel accumulates on the wall that was set up to reflect it, generating unburned or unnatural gas. do,
It has the disadvantage of emitting a pungent exhaust odor.

更に、デイーゼルエンジンの燃焼室に関する実
開昭57−107821号ならびに直噴式デイーゼル機関
の燃焼室に関する実公昭55−4515号及び実開昭57
−139631号の名考案においては、低力時に圧縮空
気中で微量噴霧を完全燃焼させるものであるが、
その凹部の形状からみて、その圧縮途中にスワー
ルにブレーキをかけ、現実にはスワールで噴霧が
流れないという欠点があり、更に上記実開昭57−
139631号の考案においては、燃料衝突部の内壁の
曲率が小さいため、微量噴霧時に未燃燃料が拡が
らず、未燃ガスを発すると共に、ピストン面積に
対する開口面積が大きく、スキツシユ力が低下
し、スワールによる凹部の気流が圧縮中に低下し
てしまうという欠点もある。
Furthermore, Utility Model Application Publication No. 57-107821 regarding the combustion chamber of a diesel engine, and Utility Model Application Publication No. 55-4515 and Utility Model Application Publication No. 1983 concerning the combustion chamber of a direct injection diesel engine.
In the famous invention of No. 139631, a small amount of spray is completely combusted in compressed air at low force.
Considering the shape of the concave part, there is a drawback that the brake is applied to the swirl during compression, and in reality, the spray does not flow due to the swirl.
In the invention of No. 139631, since the curvature of the inner wall of the fuel collision part is small, unburned fuel does not spread during a small amount of spraying, emitting unburned gas, and the opening area is large relative to the piston area, reducing the squishing force. Another disadvantage is that the airflow in the recess due to swirl decreases during compression.

そこで、本発明は前記従来の欠点を解消し、、
直噴式内燃機関の低速・低力時における排気刺激
臭を改善すると共に、その高速・高出力時に最大
出力、排気色、燃費等を向上させることを目的と
してなされたものである。
Therefore, the present invention solves the above-mentioned conventional drawbacks, and
This was done with the aim of improving the irritating odor of the exhaust from direct-injection internal combustion engines at low speeds and low power, as well as improving maximum output, exhaust color, fuel efficiency, etc. when running at high speeds and high outputs.

即ち、本発明はピストンの頂部に凹部の主燃焼
室を有する直噴式内燃機関において、その凹部
に、燃料噴射弁の各噴口から噴射される燃料の燃
料噴霧が衝突する壁面までの噴口中心からの距離
L1をそのシリンダ内径の0.25から0.35倍に、かつ
燃料噴霧の広がり角度θ=18゜〜25゜に対応した燃
料衝突壁面を噴口数に対応して形成すると共に、
これら各燃料衝突壁面間を、上記距離L1の0.7か
ら0.9倍の噴口中心からの距離L2に設定され、ス
ワール流入側内壁面の曲率がr1、スワール流出側
内壁面の曲率が曲率r1より大きな曲率r2を有する
中間壁面で連続して、該凹部を風車形に形成し、
かつ同主燃焼室内の底部には噴射燃料が底部にふ
れないように深くし、他の噴射燃料間の底部の高
さを大とした燃料弁噴口数と同一の多面体の角錐
形の凸部を設け、更に燃料噴霧の衝突する各壁面
の上部に部分的な棚部を形成したことを特徴とし
たものである。
That is, the present invention provides a direct injection internal combustion engine having a main combustion chamber with a concave portion at the top of the piston, in which the concave portion is provided with an air flow from the center of the nozzle to the wall surface on which the fuel spray of fuel injected from each nozzle of the fuel injection valve collides. distance
L 1 is 0.25 to 0.35 times the inner diameter of the cylinder, and a fuel collision wall surface corresponding to the fuel spray spread angle θ = 18° to 25° is formed in accordance with the number of nozzles,
The distance between these fuel collision walls is set at a distance L 2 from the nozzle center that is 0.7 to 0.9 times the distance L 1 above, and the curvature of the inner wall surface on the swirl inflow side is r 1 and the curvature of the inner wall surface on the swirl outflow side is curvature r. Continuously forming the recess in a pinwheel shape with an intermediate wall surface having a curvature r2 larger than 1 ,
In addition, the bottom of the main combustion chamber is made deep so that the injected fuel does not touch the bottom, and the height of the bottom between other injected fuels is increased.There is a polyhedral pyramid-shaped convex part that is the same as the number of fuel valve nozzles. In addition, a partial shelf is formed at the upper part of each wall surface on which the fuel spray collides.

以下、図面を参照して本発明の実施例を説明す
るが、第5図は本発明の実施例1における直噴式
内燃機関の燃焼室を示す側断面図、第6図は第5
図の平断面図であり、ピストン1の頂部に凹部2
からなる主燃焼室を有するこの直噴式内燃機関で
は、その凹部2を、燃料噴射弁3の各噴口から噴
射される燃料噴霧がその広がり角度θ=18゜〜25゜
で衝突する壁面2Aの形状を、第7図の要部平面
図に示すごとく、噴口中心Noからその衝突する
壁面までの距離L1をシリンダ内径Dに対しL1
(0.25〜0.35)×Dに設定し、燃料衝突の壁面2A
を燃料噴射弁3の噴口数に対応して形成してい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 is a side sectional view showing a combustion chamber of a direct injection internal combustion engine in Embodiment 1 of the present invention, and
FIG.
In this direct injection internal combustion engine, the recess 2 is shaped like a wall surface 2A on which the fuel spray injected from each nozzle of the fuel injection valve 3 collides with the spread angle θ=18° to 25°. As shown in the plan view of the main part in Fig. 7, the distance L 1 from the center No. of the nozzle to the wall it collides with is L 1 = L 1 =
(0.25~0.35)×D, fuel collision wall 2A
are formed corresponding to the number of injection ports of the fuel injection valve 3.

次に、上記4個の燃料衝突の壁面2A間を、上
記の噴口中心Noからの距離L1の0.7から0.9倍に
相当する噴口中心Noからの距離L2に設定され、
スワール流入側内壁面の曲率がr1、スワール流出
側内壁面の曲率が曲率r1よりも大きな曲率r2を有
する中間壁面2Bで形成し、燃料噴霧が衝突する
面2Aと号間壁面2Bとを連続して風車形に形成
している。
Next, the distance between the four fuel collision walls 2A is set to a distance L2 from the nozzle center No. corresponding to 0.7 to 0.9 times the distance L1 from the nozzle center No.
The inner wall surface on the swirl inflow side has a curvature r 1 and the inner wall surface on the swirl outflow side has a curvature r 2 larger than the curvature r 1.It is formed by an intermediate wall surface 2B, and the surface 2A on which the fuel spray collides with the intermediate wall surface 2B. are continuously formed into a pinwheel shape.

更に、本実施例では凹部2のの主燃焼室内の底
部には、噴射された各燃料噴霧がふれないように
底部の高さを低く形成し、かつ各燃料噴霧間のむ
だな部分は埋めるようにその底部の高さを高くし
た第8図に示すような噴口数と同一の多面体の角
錐形の凸部2Cを形成している。
Furthermore, in this embodiment, the bottom of the recess 2 in the main combustion chamber is formed to have a low height so that the injected fuel sprays do not touch each other, and the waste portions between the fuel sprays are filled. A polyhedral pyramid-shaped convex portion 2C having the same number of nozzles as shown in FIG. 8 is formed with a raised bottom height.

このように風車形に形成された凹部2において
は、第6図のS方向で示すスワールにより凹部2
の内壁に衝突後の燃料フイルムがスムーズに流さ
れて形成され、ピストン表面積に対する開口面積
を縮少し、スキツシユ力の低下を防止することが
できる。
In the recess 2 formed in the shape of a windmill in this way, the swirl shown in the S direction in FIG.
The fuel film after collision flows smoothly and is formed on the inner wall of the piston, which reduces the opening area relative to the piston surface area and prevents the squishing force from decreasing.

上記のごとく、凹部2の内壁面の噴口中心No
からの距離L1,L2をL2/L1=0.7〜0.9にすること
により、この凹部2内には第9図において矢印E
で示すような渦流が発生し、燃料噴霧と空気との
混合が促進されると共に、ピストン上面に流出さ
れて空気の利用度が向上する。
As mentioned above, the nozzle center No. on the inner wall surface of the recess 2
By setting the distances L 1 and L 2 from L 2 /L 1 =0.7 to 0.9, the arrow E in FIG.
A vortex as shown in is generated, which promotes the mixing of fuel spray and air, and also improves the utilization of air by flowing out onto the upper surface of the piston.

なお、前記曲率r1の中心点の位置は、第7図の
実施例1に限定されるものではなく、第10図の
実施例2に示すごとく、噴射される燃料噴霧中心
と一致しても良い。
Note that the position of the center point of the curvature r1 is not limited to the first embodiment shown in FIG. 7, and may coincide with the center of the injected fuel spray as shown in the second embodiment shown in FIG. good.

次に、本発明においては、上記のごとき風車形
に形成された凹部2において、燃料噴霧の衝突す
る各壁面の上部に、幅bがシリンダ内径Dの1か
ら3%に相当する小さな棚5をそれぞれ部分的に
形成し、衝突燃料のピストン1の上面の隙間への
初期流出を防止している。
Next, in the present invention, in the recess 2 formed in the shape of a windmill as described above, a small shelf 5 whose width b corresponds to 1 to 3% of the cylinder inner diameter D is provided at the upper part of each wall surface on which the fuel spray collides. They are formed partially to prevent collision fuel from initially flowing out into the gap on the upper surface of the piston 1.

即ち、第11図の棚付き凹部の拡大平面図に示
すごとく、スワールSで衝突燃料噴霧が少し流さ
れた後に、棚付き部Cを超えた部分を上記棚5の
ない棚なし部dとすることにより、一部燃焼した
未然のガスは棚なし部dより矢印のごとくピスト
ン1の上面の隙間に容易に流出されることにな
り、空気利用率を向上し、機関の高出力化が得ら
れる。
That is, as shown in the enlarged plan view of the shelf-equipped recess in FIG. 11, after the collision fuel spray is slightly blown away by the swirl S, the part beyond the shelf-equipped section C is defined as the shelf-less section d without the shelf 5. As a result, the partially combusted gas can easily flow out from the shelfless part d into the gap on the top surface of the piston 1 as shown by the arrow, improving the air utilization efficiency and increasing the engine output. .

この棚5の平面形状は、第11図に示すごとく
棚付き部C≒棚なし部dとし、棚5はスワールS
方向にそつて曲率Rで形成されると共に、その断
面形状は第12図に示す鋭角のコーナを有するも
の、または第13図の実施例3に示すごとく曲率
R1の丸み付コーナ部を有するものなど、どのよ
うに形成しても良い。
The planar shape of this shelf 5 is as shown in FIG.
It is formed with a curvature R along the direction, and its cross-sectional shape has an acute corner as shown in Fig. 12, or a curvature as shown in Example 3 of Fig. 13.
It may be formed in any way, such as having a rounded corner of R 1 .

上記のごとき、棚5を形成した棚付の場合と、
棚5を有しない棚無しの場合における噴射時期に
対応する管内最高圧Pmax及び排気色Sdの性能を
表したのが第14図の線図であり、棚付による効
果がそれぞれ示されている。
In the case of a shelf with a shelf 5 as described above,
The diagram in FIG. 14 shows the performance of the maximum pipe pressure Pmax and the exhaust color Sd corresponding to the injection timing in the case of no shelf without the shelf 5, and the effects of the shelf are shown.

上記のごとき構成の燃焼室を有する内燃機関に
おいて、その低力時の燃料の微量噴霧時には棚5
には燃料噴霧が接触することがなく、棚5の無い
状態と同様に青白煙及び刺激臭は良好になるが、
機関の高出力時に多量の燃料が壁面に衝突し、ス
ワールSにより少し流された場合、衝突による燃
料噴霧の上部への広がりをこの棚5の働きにより
凹部2内にとどめておくことになる。
In an internal combustion engine having a combustion chamber configured as described above, when a small amount of fuel is sprayed at low power, the shelf 5
The fuel spray does not come into contact with the shelf 5, and the blue white smoke and pungent odor are improved as in the case without the shelf 5, but
When a large amount of fuel collides with the wall surface during high output of the engine and is slightly blown away by the swirl S, the shelf 5 prevents the fuel spray from spreading upward due to the collision and stays within the recess 2.

そのため、第14線図に示すごとく、スキツシ
ユ力の効果が得られると共に、衝突燃料のピスト
ン1の上面への初期流出が防止され、噴霧時期を
リタードさせて筒内最高圧Pmaxを抑制した場合
でも排気色の悪化が非常に少ない。
Therefore, as shown in the 14th diagram, the effect of the squishing force is obtained, and the initial outflow of the colliding fuel to the upper surface of the piston 1 is prevented, even when the maximum cylinder pressure Pmax is suppressed by retarding the spray timing. There is very little deterioration in exhaust color.

次に、第15図の要部平面図及びその要部側断
面図の第16図に示す実施例4においては、上記
実施例1から3と同様に、凹部2内の燃料噴霧の
衝突による各壁面の上部に部分的な棚5を設ける
と共に、その棚5のスワールS流れ方向の少し下
流の壁面に未然ガスがピストン1の上面に流れや
すくなるような角度dθのテーパ部6を形成して
いる。
Next, in Embodiment 4 shown in FIG. 16, which is a plan view of the main part in FIG. A partial shelf 5 is provided at the upper part of the wall surface, and a tapered part 6 at an angle dθ is formed on the wall surface slightly downstream of the shelf 5 in the flow direction of the swirl S so that the gas can easily flow to the upper surface of the piston 1. There is.

このような棚5及びテーパ部6を形成すること
により、機関の高力時に燃料の衝突噴流の一部が
ピストン1の上面に流出することがなく、その後
のスワールSにより蒸発しつつ凹部2の内部より
燃焼し、凹部2の内壁に付着した燃料がガス化し
流され、テーパ部6よりピストン1の上面に流出
して完全燃焼することになる。
By forming such a shelf 5 and tapered part 6, a part of the impinging jet of fuel does not flow out onto the upper surface of the piston 1 when the engine is under high power, and is evaporated by the subsequent swirl S while being evaporated into the recessed part 2. The fuel burns from the inside, and the fuel adhering to the inner wall of the recess 2 is gasified and flowed away, flowing out from the tapered part 6 to the upper surface of the piston 1 and being completely combusted.

このため、噴霧時期をおくらした筒内最高圧が
低い場合でも、未然ガスが燃焼するため、排気色
が良好となり、クリーンな燃焼が得られると共
に、高出力化性能のすぐれた内燃機関が得られ
る。
Therefore, even if the maximum cylinder pressure at which the spray timing is delayed is low, the unused gas is combusted, resulting in a good exhaust color, clean combustion, and an internal combustion engine with excellent high output performance. .

次に、第17図のピストン要部の側断面図、第
17図のピストン1の平断面図である第18図及
び、第18図の要部拡大の平断面である第19図
に示す本発明の実施例5は前記実施例1から4と
ほぼ同様の構成からなる直噴式内燃機関の燃焼室
であり、同じ部品は同じ部品番号で示している
が、その相違点は、実施例1から4における凹部
2の燃焼室の燃料噴霧Fが衝突する壁面2Aの矢
印Sで示すスワールの方向の上流側にグロープラ
グ10を配設したことである。
Next, a side sectional view of the main part of the piston in Fig. 17, Fig. 18 which is a plan sectional view of the piston 1 in Fig. 17, and Fig. 19 which is an enlarged plan sectional view of the main part in Fig. Embodiment 5 of the invention is a combustion chamber of a direct injection internal combustion engine having almost the same configuration as Embodiments 1 to 4, and the same parts are indicated by the same part numbers, but the differences are the same as in Embodiment 1. The glow plug 10 is disposed on the upstream side of the wall surface 2A in the direction of the swirl shown by the arrow S on which the fuel spray F of the combustion chamber of the recess 2 collides.

このグロープラグ10は第17図に示すごとく
ピストン1の上面に対し角度αのごとく傾斜して
設けると共に、第18図のごとく燃料噴霧Fの中
心よりスワールSのやや上流側に設けている。
The glow plug 10 is provided so as to be inclined at an angle α to the upper surface of the piston 1, as shown in FIG. 17, and is also provided slightly upstream of the swirl S from the center of the fuel spray F, as shown in FIG. 18.

このような位置にグロープラグ10を配設する
ことにより、凹部2の壁面2Aに沿つて流れる第
19図の壁面流Aに対し、そのグロープラグ10
を配記したスワールSの下流側にXで示す乱れを
発生させることにより燃料噴射Fとの混合が促進
されるので、機関の始動性の改然をはかりうると
共に、高負荷性能、特に排気色と低力燃焼の改善
をはかることができる。
By arranging the glow plug 10 at such a position, the glow plug 10 is
By generating the turbulence shown by X on the downstream side of swirl S, which is marked with , mixing with fuel injection F is promoted, it is possible to improve engine startability, and improve high-load performance, especially exhaust color. This can improve low-power combustion.

特に、本発明のごとき風車形に形成された凹部
2からなる燃焼室の場合には、従来形状の凹部の
場合にくらべ、噴口中心Noから燃料噴霧Fが衝
突する壁面までの距離L1が大きくなるので、グ
ロープラグ10を噴口中心Noから遠ざけられる
ので、グロープラグ10の取付が容易であり、更
にそれに関連して噴口中心Noからグロープラグ
10までの噴霧到達距離が大きいので着火が良
く、始動性と低力燃焼が良くなる。
In particular, in the case of a combustion chamber consisting of a concave portion 2 formed in the shape of a windmill as in the present invention, the distance L 1 from the nozzle center No. to the wall surface with which the fuel spray F collides is larger than in the case of a conventionally shaped concave portion. As a result, the glow plug 10 can be moved away from the nozzle center No., making it easy to install the glow plug 10. Furthermore, related to this, since the spray reach distance from the nozzle center No. to the glow plug 10 is large, ignition is good and starting is easy. Improves sex and low power combustion.

従つて、本発明の燃焼室を適用した直噴式内燃
機関では、その低速・低力時の微量燃料を圧縮空
気中で完全燃焼させるため、適正な有効圧縮比の
ものとで噴霧到達距離を底部にも燃料噴霧が当ら
ない形状で確保し、更に、高速・高力時には多量
の燃料をその衝突部に当てるが、その際の衝突噴
流の一部がピストン上面の隙間に流出することが
なくなり、かつ吸入スワールによるスワール下流
にスムーズに内壁面上をフイルム状に流すための
ゆるやかな内壁形状とし、また噴射燃料に流入し
てくるスワールに無駄な渦流発生をさせないため
の流入側形状としている。
Therefore, in a direct-injection internal combustion engine to which the combustion chamber of the present invention is applied, in order to completely burn a small amount of fuel in compressed air at low speed and low power, it is necessary to reduce the spray reach by using an appropriate effective compression ratio. Furthermore, when a large amount of fuel is applied to the collision area at high speeds and high forces, part of the collision jet does not flow into the gap on the top surface of the piston. In addition, the inner wall has a gentle shape so that the swirl of the suction swirl flows smoothly in a film-like manner on the inner wall surface downstream, and the inlet side has a shape that prevents unnecessary swirl from occurring in the swirl flowing into the injected fuel.

また、燃料衝突後のスワール下流の内壁より一
部の未燃蒸発ガスはピストン上面へ流出され、ピ
ストン上面の空気の利用度が向上する。
In addition, some unburned evaporated gas flows out from the inner wall downstream of the swirl after the fuel collision to the upper surface of the piston, improving the utilization of air on the upper surface of the piston.

その結果、高速・高負荷時の最大出力が増大
し、排気色及び燃費が改良されるという効果があ
る。
As a result, the maximum output at high speeds and high loads increases, and the exhaust color and fuel efficiency are improved.

なお、本発明は主として直噴式デイーゼル機関
に対して有効に適用される。
Note that the present invention is mainly effectively applied to direct injection diesel engines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直噴式内燃機関の燃焼室の側断
面図、第2図は第1図の平面図、第3図は第1図
の燃焼室における排気刺激臭レベル、有効圧縮化
及び噴霧到達距離との関係を示す線図、第4図は
第1図の燃焼室における最大出力、有効圧縮比及
び噴霧到達距離との関係を示す線図、第5図は本
発明の実施例1における直噴式内燃機関の燃焼室
を示す側断面図、第6図は第5図の−方向の
平断面図、第7図は第5図の凹部の平面図、第8
図は第5図の凹部の底部を示す平断面図、第9図
は第5図の凹部に発生する渦流を示す平断面図、
第10図は本発明の実施例2における燃焼室の凹
部の平断面図、第11図は第6図の凹部の要部拡
大の平面図、第12図は第11図の要部側断面
図、第13図は本発明の実施例3における燃焼室
凹部の要部側断面図、第14図は本発明の棚付き
燃焼室を棚を有しない場合と比較した排気色及び
筒内最高圧の改善効果を示す線図、第15図は本
発明の実施例4における燃焼室凹部の要部平面
図、第16図は第15図の要部側断面図、第17
図は本発明の実施例5におけるピストンの燃焼室
凹部の要部側断面図、第18図は第17図の−
方向の要部平断面図、第19図は第18図のグ
ロープラグ付近の要部拡大の平断面図である。 1……ピストン、2……凹部、2A……壁面、
2B……中間壁面、5……棚、D……シリンダ内
径、L1,L2……距離、No……噴口中心、r1,r2
……曲率。
Figure 1 is a side sectional view of the combustion chamber of a conventional direct injection internal combustion engine, Figure 2 is a plan view of Figure 1, and Figure 3 is the level of exhaust odor, effective compression, and spray in the combustion chamber of Figure 1. Figure 4 is a diagram showing the relationship between the maximum output, effective compression ratio, and spray travel distance in the combustion chamber of Figure 1, and Figure 5 is a diagram showing the relationship between the maximum output and effective compression ratio in the combustion chamber of Figure 1, and the spray travel distance. 6 is a side sectional view showing the combustion chamber of a direct injection internal combustion engine, FIG. 6 is a plan sectional view in the - direction of FIG. 5, FIG.
The figure is a plan sectional view showing the bottom of the recess shown in Fig. 5, and Fig. 9 is a plan sectional view showing the vortex generated in the recess shown in Fig. 5.
FIG. 10 is a plan sectional view of the concave portion of the combustion chamber in Embodiment 2 of the present invention, FIG. 11 is an enlarged plan view of the main part of the recess shown in FIG. 6, and FIG. 12 is a side sectional view of the main part of FIG. 11. , FIG. 13 is a side cross-sectional view of the main part of the combustion chamber recess in Example 3 of the present invention, and FIG. 14 is a comparison of the combustion chamber with a shelf of the present invention with that without a shelf, and shows the exhaust color and maximum in-cylinder pressure. Diagrams showing the improvement effect, FIG. 15 is a plan view of the main part of the recessed part of the combustion chamber in Example 4 of the present invention, FIG. 16 is a side sectional view of the main part of FIG. 15, and FIG.
The figure is a sectional side view of the main part of the combustion chamber concave portion of the piston in Embodiment 5 of the present invention, and FIG. 18 is a -
FIG. 19 is an enlarged plan sectional view of the main part near the glow plug in FIG. 18. 1...Piston, 2...Recess, 2A...Wall surface,
2B...Intermediate wall surface, 5...Shelf, D...Cylinder inner diameter, L1 , L2 ...Distance, No...Nozzle center, r1 , r2
……curvature.

Claims (1)

【特許請求の範囲】[Claims] 1 ピストン頂部に凹部の主燃焼室を有する直噴
式内燃機関において、その凹部に、燃料噴射弁の
各噴口から噴射される燃料の燃料噴霧が衝突する
壁面までの噴口中心からの距離L1をそのシリン
ダ内径の0.25から0.35倍に、かつ燃料噴霧の広が
り角度θ=18゜〜25゜に対応した燃料衝突壁面を噴
口数に対応して形成すると共に、これら各燃料衝
突壁面間を、上記距離L1の0.7から0.9倍の噴口中
心からの距離L2に設定され、スワール流入側内
壁面の曲率がr1、スワール流出側壁面の曲率r1
り大きな曲率r2を有する中間壁面で連続して、該
凹部を風車形に形成し、かつ該主燃焼室内の底部
には噴射燃料が底部にふれないように深くし、他
の噴射燃料間の底部の高さを大とした燃料弁噴口
数と同一の多面体の角錐形の凸部を設け、更に、
燃料噴霧の衝突する各壁面の上部に部分的な棚部
を形成したことを特徴とする直噴式内燃機関の燃
焼室。
1 In a direct-injection internal combustion engine that has a main combustion chamber with a recess at the top of the piston, the distance L 1 from the center of the nozzle to the wall surface on which the fuel spray of fuel injected from each nozzle of the fuel injection valve collides with the recess is defined as Fuel collision walls that are 0.25 to 0.35 times the cylinder inner diameter and that correspond to a fuel spray spread angle θ = 18° to 25° are formed in accordance with the number of nozzles, and the distances between these fuel collision walls are The distance L 2 from the center of the nozzle is set to 0.7 to 0.9 times 1 , and the curvature of the inner wall surface on the swirl inflow side is r 1 and the curvature r 2 is larger than the curvature r 1 of the wall surface on the swirl outflow side. , the recess is formed in the shape of a windmill, and the bottom of the main combustion chamber is deep so that the injected fuel does not touch the bottom, and the number of fuel valve nozzles is increased so that the height of the bottom between other injected fuels is increased. A pyramid-shaped convex portion of the same polyhedron is provided, and further,
A combustion chamber for a direct injection internal combustion engine, characterized in that a partial shelf is formed at the top of each wall surface on which fuel spray collides.
JP58199270A 1983-10-26 1983-10-26 Combustion chamber in direct injection type internal-combustion engine Granted JPS6093115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199270A JPS6093115A (en) 1983-10-26 1983-10-26 Combustion chamber in direct injection type internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199270A JPS6093115A (en) 1983-10-26 1983-10-26 Combustion chamber in direct injection type internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6093115A JPS6093115A (en) 1985-05-24
JPH0148378B2 true JPH0148378B2 (en) 1989-10-19

Family

ID=16404991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199270A Granted JPS6093115A (en) 1983-10-26 1983-10-26 Combustion chamber in direct injection type internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6093115A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387227U (en) * 1986-11-28 1988-06-07
JPH01116219A (en) * 1987-10-28 1989-05-09 Mazda Motor Corp Direct injection engine
JPH03138415A (en) * 1989-10-25 1991-06-12 Hino Motors Ltd Combustion chamber structure of direct injection type diesel engine
JPH10288131A (en) 1997-04-11 1998-10-27 Yanmar Diesel Engine Co Ltd Injection nozzle of diesel engine
US8499735B2 (en) * 2007-10-30 2013-08-06 Volvo Lastvagnar Ab Device for reducing emissions in a vehicle combustion engine
CN105308285B (en) * 2013-06-20 2018-06-26 丰田自动车株式会社 Compression ignition engine

Also Published As

Publication number Publication date
JPS6093115A (en) 1985-05-24

Similar Documents

Publication Publication Date Title
JP3763491B2 (en) Combustion chamber structure of in-cylinder injection engine
US4635597A (en) Structure of a main combustion chamber of a diesel engine of a direct injection type
US6997158B1 (en) Diesel combustion chamber
US5979399A (en) Internal combustion engine with spark ignition
JP2011502226A (en) A device that reduces the exhaust of a vehicle combustion engine
US5351665A (en) Internal combustion engine
JPH10131756A (en) Inner-cylinder injection type engine
US6062192A (en) Internal combustion engine with spark ignition
EP0105933A1 (en) Combustion chamber of diesel engine
JPS636728B2 (en)
JPH0148378B2 (en)
JPH07150944A (en) Combustion chamber structure for direct injecting type diesel engine
US6267096B1 (en) Three-valve cylinder head system
US20040112323A1 (en) Simplified combustion chamber
JP3721879B2 (en) In-cylinder direct injection spark ignition engine
JP3781537B2 (en) Combustion chamber structure of in-cylinder injection engine
JPH11200867A (en) Cylinder fuel injection engine
JPH0151658B2 (en)
JPH08270449A (en) Combustion chamber structure for diesel engine
JP3220192B2 (en) Combustion chamber of internal combustion engine
JP3538916B2 (en) Combustion chamber structure of direct injection engine
JPH05231155A (en) Inside-cylinder injection type internal combustion engine
JPS6329016A (en) Subchamber type diesel combustion chamber
JP3275470B2 (en) Subchamber engine
JPH0115860Y2 (en)