JPH0824201B2 - Magnetic semiconductor element temperature compensation circuit - Google Patents

Magnetic semiconductor element temperature compensation circuit

Info

Publication number
JPH0824201B2
JPH0824201B2 JP61045673A JP4567386A JPH0824201B2 JP H0824201 B2 JPH0824201 B2 JP H0824201B2 JP 61045673 A JP61045673 A JP 61045673A JP 4567386 A JP4567386 A JP 4567386A JP H0824201 B2 JPH0824201 B2 JP H0824201B2
Authority
JP
Japan
Prior art keywords
temperature
magnetic semiconductor
circuit
voltage
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61045673A
Other languages
Japanese (ja)
Other versions
JPS62203390A (en
Inventor
研二 坂本
進一 佐々木
峰夫 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Meidensha Corp
Original Assignee
Meidensha Corp
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Toyoda Jidoshokki Seisakusho KK filed Critical Meidensha Corp
Priority to JP61045673A priority Critical patent/JPH0824201B2/en
Publication of JPS62203390A publication Critical patent/JPS62203390A/en
Publication of JPH0824201B2 publication Critical patent/JPH0824201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は磁気半導体素子の温度補償回路に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a temperature compensation circuit for a magnetic semiconductor element.

(従来の技術) 従来、磁界を電気信号に変換して検出するセンサとし
て、例えばホール素子が多々使用されている。
(Prior Art) Conventionally, for example, a Hall element is often used as a sensor that converts a magnetic field into an electric signal and detects the electric signal.

ホール素子は、棒又は板状の導体や半導体中に電流を
入力し、該電流と垂直な方向に磁界をかけると電流と磁
界に垂直な方向に電位差が生じる、所謂ホール効果を用
いている。
The Hall element uses a so-called Hall effect, in which a current is input into a rod-shaped or plate-shaped conductor or a semiconductor and a magnetic field is applied in a direction perpendicular to the current to generate a potential difference in the direction perpendicular to the current and the magnetic field.

ここで、ホール効果によって生じる前記電位差による
電圧を出力電圧(ホール電圧E)、前記電流を駆動電
流、前記磁界を被測定磁界とすると、出力電圧Eは次式
で表される。
Here, when the voltage due to the potential difference caused by the Hall effect is the output voltage (Hall voltage E), the current is the drive current, and the magnetic field is the measured magnetic field, the output voltage E is expressed by the following equation.

E=感度係数×駆動電流×被測定磁界 但し、上式において、感度係数とは、ホール素子の材
料の種類によって決まる材料固有の比例定数である、所
謂ホール係数を意味する。
E = sensitivity coefficient × driving current × magnetic field to be measured However, in the above equation, the sensitivity coefficient means a so-called Hall coefficient, which is a proportional constant specific to the material of the Hall element, which is a proportional constant.

従って、ホオール素子を用いれば、一定の駆動電流を
入力した際の出力電圧を測定することにより、被測定磁
界を容易に検出することができる。
Therefore, if the Hohl element is used, the magnetic field to be measured can be easily detected by measuring the output voltage when a constant drive current is input.

(発明が解決しようとする問題点) ところが、前記感度係数には温度依存性があり、通
常、使用環境温度の上昇に伴って感度係数は低下する。
その結果、同じ磁界でも温度が異なると出力電圧Eが異
なり正確に磁気測定を行うことができなかった。これは
他の磁気半導体素子でも同様であった。
(Problems to be Solved by the Invention) However, the sensitivity coefficient has temperature dependency, and normally, the sensitivity coefficient decreases as the operating environment temperature rises.
As a result, even with the same magnetic field, the output voltage E was different when the temperature was different, and the magnetic measurement could not be performed accurately. This also applies to other magnetic semiconductor elements.

そこで、温度の変動に合わせて回路調整することが考
えられるが、温度が変わるごとにいちいち調整作業をし
なければならないこと、及び、回路が複雑になり部品点
数が多くなるといった問題があった。
Therefore, it is conceivable to adjust the circuit according to the temperature change, but there are problems that the adjustment work must be performed every time the temperature changes, and that the circuit becomes complicated and the number of parts increases.

この発明の目的は上記問題点を解決すべく簡単な回路
構成で環境温度が変化しても自動的に温度補償をして常
に正確な磁気測定を行うことができる磁気半導体素子の
温度補償回路を提供することにある。
An object of the present invention is to provide a temperature compensating circuit for a magnetic semiconductor element capable of always performing accurate magnetic measurement by automatically compensating the temperature even if the environmental temperature changes with a simple circuit configuration in order to solve the above problems. To provide.

発明の構成 (問題点を解決するための手段) この発明は上記目的を達成するために、感度係数、駆
動電流及び被測定磁界の3つの要素によって出力電圧が
決まる磁気半導体素子に、温度変化に伴う感度係数の変
化に応じて駆動電流を可変させ、温度変化に伴う出力電
圧の変化を補償する温度補償回路を設けた磁気半導体素
子の温度補償回路において、前記磁気半導体素子には駆
動回路を接続し、駆動回路はそれ自体では温度変化にか
かわらず一定の駆動電流を前記磁気半導体素子に流すよ
うに構成し、前記駆動回路には、ダイイオードと抵抗と
そのダイオードの順方向に電流が流れるように所定の電
圧を供給する電源とのみから構成され、温度上昇に伴う
前記ダイオードの順電圧の低下に基づいて前記駆動電流
が大きくなるように前記駆動回路に作用し、温度低下に
伴う前記ダイオードの順電圧の上昇に基づいて前記駆動
電流が小さくなるように前記駆動回路に作用する温度補
償回路を接続したものである。
Structure of the Invention (Means for Solving the Problems) In order to achieve the above object, the present invention provides a magnetic semiconductor element whose output voltage is determined by three factors of a sensitivity coefficient, a drive current, and a magnetic field to be measured, to prevent a change in temperature. A temperature compensating circuit for a magnetic semiconductor element, comprising a temperature compensating circuit for compensating a change in output voltage due to a temperature change by varying a drive current according to a change in a sensitivity coefficient accompanying the change, and a drive circuit is connected to the magnetic semiconductor element. However, the drive circuit itself is configured to flow a constant drive current to the magnetic semiconductor element regardless of temperature changes, and the drive circuit is configured so that a current flows in the forward direction of the diode, the resistor, and the diode thereof. The drive unit is configured only with a power supply that supplies a predetermined voltage, and the drive current is increased based on a decrease in the forward voltage of the diode due to a temperature rise. Acts on the road, which are connected to the temperature compensation circuit which acts on the drive circuit so that the drive current is reduced based on the increase in the forward voltage of the diode due to temperature drop.

(作用) 上記手段により、温度が上昇して磁気半導体素子の感
度係数が低下すると、温度補償回路に備えられたダイオ
ードの順電圧も同時に低下して駆動電流が大きくなるよ
うに可変される。一方、温度が低下して磁気半導体素子
の感度係数が上昇すると、温度補償回路に備えられたダ
イオードの順電圧も同時に上昇して駆動電流が小さくな
るように可変される。その結果、感度係数と駆動電流の
積が一定に保持され、磁気半導体素子からは温度にかか
わらず被測定磁界に応じた出力電圧が得られる。
(Operation) By the above means, when the temperature rises and the sensitivity coefficient of the magnetic semiconductor element decreases, the forward voltage of the diode provided in the temperature compensating circuit also decreases and the drive current increases. On the other hand, when the temperature decreases and the sensitivity coefficient of the magnetic semiconductor element increases, the forward voltage of the diode provided in the temperature compensating circuit also increases and the driving current is varied so as to decrease. As a result, the product of the sensitivity coefficient and the drive current is kept constant, and an output voltage corresponding to the magnetic field to be measured can be obtained from the magnetic semiconductor element regardless of the temperature.

ここで、本発明では磁気半導体素子に駆動回路が接続
されていることから、ダイオードを含む温度補償回路の
温度変化による駆動電流の変化量の設定は、温度変化に
よる駆動電流の変化の影響を排除できるので、磁気半導
体素子が有する感度係数と温度との関係のみに基づいて
行なうことができ、温度変化にかかわらず感度係数と駆
動電流の積を一定に保持するための温度補償回路の設定
作業を極めて容易に行なうことができる。しかも、温度
補償回路はダイオード及び抵抗のみからなる極めて簡単
な回路構成であるため、コスト面でも有利である。
Here, in the present invention, since the drive circuit is connected to the magnetic semiconductor element, the setting of the change amount of the drive current due to the temperature change of the temperature compensation circuit including the diode eliminates the influence of the change of the drive current due to the temperature change. Therefore, it is possible to perform it based only on the relationship between the sensitivity coefficient of the magnetic semiconductor element and the temperature, and the setting work of the temperature compensation circuit for keeping the product of the sensitivity coefficient and the drive current constant regardless of the temperature change. It can be done very easily. Moreover, the temperature compensating circuit has an extremely simple circuit configuration including only the diode and the resistor, and is therefore advantageous in terms of cost.

(実施例) 以下、この発明の磁気半導体素子の温度補償回路をホ
ール素子を用いた磁気検出装置に具体化した一実施例を
図面に従って説明する。
(Embodiment) An embodiment in which the temperature compensating circuit for a magnetic semiconductor element of the present invention is embodied in a magnetic detecting device using a Hall element will be described below with reference to the drawings.

第1図はホール素子を用いた磁気検出装置の電気回路
を示し、駆動回路としてのホール素子駆動回路C1と補償
回路C2とから構成されている。そして、駆動回路C1にお
いて可変抵抗1は動作電圧Vccを分圧しその分圧電圧V1
はオペアンプ2の+入力端子に出力している。オペアン
プ2の出力端子及び−入力端子は磁気半導体素子として
のホール素子3の入力電極間に接続され閉ループ、即
ち、帰還をかけ常に前記+端子に入力される電圧V1と−
入力端子に入力される電圧V2が常に等しくなるようにし
ている。
FIG. 1 shows an electric circuit of a magnetic detector using a hall element, which is composed of a hall element drive circuit C1 as a drive circuit and a compensation circuit C2. Then, in the drive circuit C1, the variable resistor 1 divides the operating voltage Vcc and divides the divided voltage V1.
Is output to the + input terminal of the operational amplifier 2. The output terminal and the-input terminal of the operational amplifier 2 are connected between the input electrodes of the Hall element 3 as a magnetic semiconductor element, and are closed loop, that is, feedback is performed and the voltage V1 and-that are always input to the + terminal are
The voltage V2 input to the input terminal is always the same.

ホール素子3は前記オペアンプ2の出力端子から同素
子3の入力電極間に流れる駆動電流Id、同素子3の温度
によって変動する感度係数及び被測定磁界の強さの積に
よって決まるその出力電極間にホール電圧Eを出力す
る。尚、感度係数はホール素子の半導体材料によって依
存し温度が上昇するとその値が小さくなる。
The Hall element 3 has a driving current Id flowing between the output terminal of the operational amplifier 2 and the input electrode of the element 3, a sensitivity coefficient that varies depending on the temperature of the element 3 and an output electrode that is determined by the strength of the magnetic field to be measured. The hall voltage E is output. The sensitivity coefficient depends on the semiconductor material of the Hall element, and its value decreases as the temperature rises.

一方、ホール素子3のアース側入力電極は抵抗4を介
して補償回路C2の抵抗5に接続されている。補償回路C2
はこの抵抗5の他に抵抗6,7及びダイオード8とから構
成されていて、抵抗6が抵抗4,5の接続点aと、抵抗7
とダイオード8の接続点bとの間に接続されている。そ
して、本実施例では抵抗4の抵抗値Rは抵抗5より大き
な値となるように設定している。従って、接続点aの電
圧をVaとすると、オペアンプ2の−入力端子の入力イン
ピーダンスが高いことから駆動電流IdはId=(V2−Va)
/Rとなる。
On the other hand, the ground side input electrode of the hall element 3 is connected to the resistor 5 of the compensation circuit C2 via the resistor 4. Compensation circuit C2
Is composed of resistors 6 and 7 and a diode 8 in addition to the resistor 5, and the resistor 6 connects the connection point a of the resistors 4 and 5 and the resistor 7
And the connection point b of the diode 8 are connected. In this embodiment, the resistance value R of the resistor 4 is set to be larger than that of the resistor 5. Therefore, assuming that the voltage at the connection point a is Va, the driving current Id is Id = (V2-Va) because the input impedance of the-input terminal of the operational amplifier 2 is high.
/ R.

又、抵抗6,7の抵抗値はダイオード8に流れる電流が
数ミリアンペアとなるように設定している。尚、ダイオ
ード8のVf−If温度特性は第2図に示すダイオードであ
って、一般のダイオードは全てこの特性を有する。従っ
て、温度が上がったときには順電圧Vf、即ち、前記接続
点bの電圧Vbは下がることになる。その結果、これに比
例して前記接続点aの電圧Vaは下がることになる。
The resistance values of the resistors 6 and 7 are set so that the current flowing through the diode 8 is several milliamperes. The Vf-If temperature characteristic of the diode 8 is the diode shown in FIG. 2, and all ordinary diodes have this characteristic. Therefore, when the temperature rises, the forward voltage Vf, that is, the voltage Vb at the connection point b decreases. As a result, the voltage Va at the connection point a decreases in proportion to this.

次に、上記のように構成した磁気検出装置の作用につ
いて説明する。
Next, the operation of the magnetic detection device configured as described above will be described.

今、一定の強さの磁界をホール素子3が検知している
時は、ホール素子3の電圧Eは感度係数、駆動電流Id及
び磁界の強さの積によって決まる値となる。
Now, when the Hall element 3 is detecting a magnetic field having a constant strength, the voltage E of the Hall element 3 has a value determined by the product of the sensitivity coefficient, the drive current Id, and the strength of the magnetic field.

そして、環境温度が上昇して前記感度係数がそれに応
じて小さくなると、これと同時にダイオード8の順電
圧、即ち、電圧Vbが下がり電圧Vaも下がる。一方、ホー
ル素子3のアース側入力端子の電圧V2はオペアンプ2に
て常に一定(=V1)に保持されているため、(V2−Va)
/Rで決まる駆動電流Idはこの電圧Vaが小さくなることに
基づいて大きくなる。
When the environmental temperature rises and the sensitivity coefficient decreases accordingly, the forward voltage of the diode 8, that is, the voltage Vb decreases and the voltage Va also decreases at the same time. On the other hand, since the voltage V2 at the ground-side input terminal of the hall element 3 is always held constant (= V1) by the operational amplifier 2, (V2-Va)
The drive current Id determined by / R increases as the voltage Va decreases.

従って、環境温度が上昇し感度係数が小さくなると、
その分駆動電流Idが大きくなる。その結果、感度係数、
駆動電流Id及び磁界の強さの積によって決まるホール電
圧Eは温度が上昇しても磁界の強さが変わらないかぎり
常に一定の値を示すことになる。
Therefore, if the ambient temperature rises and the sensitivity coefficient decreases,
The drive current Id increases accordingly. As a result, the sensitivity coefficient,
The Hall voltage E determined by the product of the drive current Id and the strength of the magnetic field always shows a constant value as long as the strength of the magnetic field does not change even if the temperature rises.

尚、反対に環境温度が下がった場合には感度係数が大
きくなり、駆動電流Idがその変化分小さくなる。
On the contrary, when the environmental temperature decreases, the sensitivity coefficient increases and the driving current Id decreases by the change.

このように、本実施例においてはホール素子3が環境
温度の変化によってその感度係数が変化しても補償回路
がその分駆動電流Idの大きさを自動的に制御するので、
環境温度の変化に左右されず常に正確な磁気測定で簡単
に行うことができる。又、補償回路C2は抵抗5〜7及び
ダイオード8とからなる非常に簡単な回路構成なのでコ
スト的にも非常に有利である。更に、ホール素子3には
駆動回路C1が接続されていることから、温度変化による
駆動電流Idの変化の影響は排除できるので、ダイオード
8を含む温度補償回路C2の温度変化による駆動電流Idの
変化量の設定は、ホール素子3が有する感度係数と温度
との関係のみに基づいて行なうことができ、温度変化に
かかわらず感度係数と駆動電流の積を一定に保持するた
めの温度補償回路C2の設定作業を極めて容易に行なうこ
とができる。
As described above, in the present embodiment, even if the sensitivity coefficient of the Hall element 3 changes due to the change of the ambient temperature, the compensation circuit automatically controls the magnitude of the drive current Id accordingly.
It is easy to perform accurate magnetic measurements without being affected by changes in environmental temperature. Further, the compensating circuit C2 has a very simple circuit configuration including the resistors 5 to 7 and the diode 8, which is very advantageous in terms of cost. Further, since the drive circuit C1 is connected to the Hall element 3, the influence of the change of the drive current Id due to the temperature change can be eliminated, so that the change of the drive current Id due to the temperature change of the temperature compensation circuit C2 including the diode 8 can be eliminated. The amount can be set based only on the relationship between the sensitivity coefficient of the Hall element 3 and the temperature, and the temperature compensating circuit C2 for keeping the product of the sensitivity coefficient and the drive current constant regardless of the temperature change. The setting work can be performed extremely easily.

尚、この発明は前記実施例に限定されるものではな
く、ホール素子以外、例えば磁気抵抗素子等その他磁気
半導体素子に応用してもよい。
The present invention is not limited to the above embodiment, but may be applied to other magnetic semiconductor elements such as a magnetoresistive element other than the Hall element.

発明の効果 以上詳述したように、この発明によれば、ダイオード
が本来有する順電圧の温度依存性を利用し、そのダイオ
ードと抵抗とからなる極めて簡単な回路構成で環境温度
が変化しても自動的に温度補償をして常に正確な磁気測
定を行うことができ、しかも、温度補償回路の設定作業
を極めて容易に行なうことができる。
Effects of the Invention As described in detail above, according to the present invention, the temperature dependence of the forward voltage originally possessed by a diode is utilized, and even if the ambient temperature changes with an extremely simple circuit configuration including the diode and the resistor. The temperature can be automatically compensated for accurate magnetic measurement, and the temperature compensating circuit can be set very easily.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明を具体化した磁気検出装置の電気回路
図、第2図はダイオードのVf−If温度特性図である。 図中、1は可変抵抗、2はオペアンプ、3はホール素
子、4〜7は抵抗、8はダイオード、C1は駆動回路とし
てのホール素子駆動回路、C2は補償回路である。
FIG. 1 is an electric circuit diagram of a magnetic detection device embodying the present invention, and FIG. 2 is a Vf-If temperature characteristic diagram of a diode. In the figure, 1 is a variable resistor, 2 is an operational amplifier, 3 is a hall element, 4 to 7 are resistors, 8 is a diode, C1 is a hall element drive circuit as a drive circuit, and C2 is a compensation circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 進一 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 尾関 峰夫 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (56)参考文献 特開 昭52−58386(JP,A) 特開 昭50−11189(JP,A) 実公 昭53−54220(JP,Y2) 実公 昭52−45179(JP,Y2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Sasaki 2-11-17 Osaki, Shinagawa-ku, Tokyo Stock company Inside the company Meidensha (72) Mineo Ozeki 2-1-117 Osaki, Shinagawa-ku Tokyo Stockholder Shameidensha (56) Reference JP-A-52-58386 (JP, A) JP-A-50-11189 (JP, A) Actual public 53-54220 (JP, Y2) Actual public 52-45179 (JP, A) Y2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】感度係数、駆動電流及び被測定磁界の3つ
の要素によって出力電圧が決まる磁気半導体素子に、温
度変化に伴う感度係数の変化に応じて駆動電流を可変さ
せ、温度変化に伴う出力電圧の変化を補償する温度補償
回路を設けた磁気半導体素子の温度補償回路において、
前記磁気半導体素子には駆動回路を接続し、駆動回路は
それ自体では温度変化にかかわらず一定の駆動電流を前
記磁気半導体素子に流すように構成し、前記駆動回路に
は、ダイオードと抵抗とそのダイオードの順方向に電流
が流れるように所定の電圧を供給する電源とのみから構
成され、温度上昇に伴う前記ダイオードの順電圧の低下
に基づいて前記駆動電流が大きくなるように前記駆動回
路に作用し、温度低下に伴う前記ダイオードの順電圧の
上昇に基づいて前記駆動電流が小さくなるように前記駆
動回路に作用する温度補償回路を接続した磁気半導体素
子の温度補償回路。
1. A magnetic semiconductor device, the output voltage of which is determined by three factors: sensitivity coefficient, drive current, and magnetic field to be measured, the drive current is varied according to the change of the sensitivity coefficient with temperature change, and the output with temperature change is output. In the temperature compensation circuit of the magnetic semiconductor element provided with the temperature compensation circuit for compensating for the change in voltage,
A drive circuit is connected to the magnetic semiconductor element, and the drive circuit itself is configured to flow a constant drive current to the magnetic semiconductor element regardless of temperature changes. It is composed only of a power supply that supplies a predetermined voltage so that a current flows in the forward direction of the diode, and acts on the drive circuit so that the drive current increases based on a decrease in the forward voltage of the diode due to a temperature rise. A temperature compensating circuit for a magnetic semiconductor element, which is connected to a temperature compensating circuit that acts on the drive circuit so that the drive current becomes smaller based on an increase in the forward voltage of the diode accompanying a temperature decrease.
【請求項2】磁気半導体素子はホール素子であって、出
力電圧はホール電圧である特許請求の範囲第1項記載の
磁気半導体素子の温度補償回路。
2. The temperature compensating circuit for a magnetic semiconductor device according to claim 1, wherein the magnetic semiconductor device is a Hall device, and the output voltage is a Hall voltage.
【請求項3】磁気半導体素子は磁気抵抗素子である特許
請求の範囲第1項記載の磁気半導体素子の温度補償回
路。
3. A temperature compensating circuit for a magnetic semiconductor element according to claim 1, wherein the magnetic semiconductor element is a magnetoresistive element.
JP61045673A 1986-03-03 1986-03-03 Magnetic semiconductor element temperature compensation circuit Expired - Lifetime JPH0824201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045673A JPH0824201B2 (en) 1986-03-03 1986-03-03 Magnetic semiconductor element temperature compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045673A JPH0824201B2 (en) 1986-03-03 1986-03-03 Magnetic semiconductor element temperature compensation circuit

Publications (2)

Publication Number Publication Date
JPS62203390A JPS62203390A (en) 1987-09-08
JPH0824201B2 true JPH0824201B2 (en) 1996-03-06

Family

ID=12725906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045673A Expired - Lifetime JPH0824201B2 (en) 1986-03-03 1986-03-03 Magnetic semiconductor element temperature compensation circuit

Country Status (1)

Country Link
JP (1) JPH0824201B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814616B2 (en) * 1989-05-22 1996-02-14 三菱電機株式会社 Hall element device
JP4628987B2 (en) * 2006-04-10 2011-02-09 矢崎総業株式会社 Current sensor with temperature detection function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245179U (en) * 1975-09-26 1977-03-30
JPS5354220U (en) * 1976-10-08 1978-05-10
JPS59138257U (en) * 1983-03-07 1984-09-14 自動車機器技術研究組合 Hall element temperature compensation circuit

Also Published As

Publication number Publication date
JPS62203390A (en) 1987-09-08

Similar Documents

Publication Publication Date Title
US5550469A (en) Hall-effect device driver with temperature-dependent sensitivity compensation
US4639665A (en) Sensing system for measuring a parameter
US7775711B2 (en) Temperature measurement device and measurement method
JP4258430B2 (en) Current sensor
JP2000136966A (en) Temperature measuring circuit using thermopile sensor
US4408128A (en) Electric resistance type wide range moisture meter
JP2005277246A (en) Semiconductor integrated circuit with current sensing function, and power supply using it
US5554927A (en) Electrical quantity measurement device
US5717327A (en) Current sensor
JPH0824201B2 (en) Magnetic semiconductor element temperature compensation circuit
JP3153729B2 (en) Non-contact sensor device
JP2002243815A (en) Magnetic detector
US11105835B2 (en) Method for operating a current sensor and current sensor
US7249516B2 (en) Method of operating a resistive heat-loss pressure sensor
JPS6255629B2 (en)
JP4216286B2 (en) Current measuring circuit and integrated circuit element thereof
US20060021444A1 (en) Method of operating a resistive heat-loss pressure sensor
JP2569595B2 (en) Contact resistance detection device for sensor signal input device
JP3561173B2 (en) Non-contact sensor
US11513137B2 (en) Device for measuring two physical quantities
JPH0776785B2 (en) Magnetoelectric converter
JP2938657B2 (en) Current detection circuit
JPH0519796Y2 (en)
WO2006109896A1 (en) Converter for resistive sensors of high sensitivity
JPH0851328A (en) Small signal amplifier circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term