JPH0824075B2 - High voltage high current ion beam accelerator - Google Patents

High voltage high current ion beam accelerator

Info

Publication number
JPH0824075B2
JPH0824075B2 JP13594687A JP13594687A JPH0824075B2 JP H0824075 B2 JPH0824075 B2 JP H0824075B2 JP 13594687 A JP13594687 A JP 13594687A JP 13594687 A JP13594687 A JP 13594687A JP H0824075 B2 JPH0824075 B2 JP H0824075B2
Authority
JP
Japan
Prior art keywords
ion beam
accelerating
electrode
potential
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13594687A
Other languages
Japanese (ja)
Other versions
JPS63301498A (en
Inventor
彰 磯矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP13594687A priority Critical patent/JPH0824075B2/en
Publication of JPS63301498A publication Critical patent/JPS63301498A/en
Publication of JPH0824075B2 publication Critical patent/JPH0824075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、イオン注入、核物理学、核工学、医学等に
使用される例えば100万Vを超える高電圧を与えて1mA以
上の大電流のイオンビームを得るに適した高電圧大電流
イオンビーム加速装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is used in ion implantation, nuclear physics, nuclear engineering, medicine, etc., and provides a high voltage of, for example, over 1 million V and a large current of 1 mA or more. To a high-voltage high-current ion beam accelerator suitable for obtaining the above ion beam.

(従来の技術) 従来、イオンビーム加速装置として、第1図示のよう
なイオン源aから放出されるイオンビームbの通路の周
囲に、間隔を存して絶縁体cで保持した環状の分割電極
板dを複数枚配列することにより加速管gを構成し、こ
れらの分割電極板dの導入口e側のものから導出口f側
のものへと電位勾配を与え、その電位差によりイオンビ
ームの加速を行なうようにしたものが知られている。
(Prior Art) Conventionally, as an ion beam accelerating device, a ring-shaped divided electrode which is held by an insulator c at intervals around a passage of an ion beam b emitted from an ion source a as shown in FIG. An accelerating tube g is constructed by arranging a plurality of plates d, and a potential gradient is applied from the inlet port e side of these divided electrode plates d to the outlet port f side, and the ion beam is accelerated by the potential difference. It is known to do the following.

(発明が解決しようとする問題点) 前記した従来形式の加速装置では、分割電極板dに1m
当り100〜150万V程度以上の高電圧を与え1mA以上の大
電流のイオンビームを得ようとすると、放電が発生して
絶縁破壊を生ずる不都合があった。この絶縁破壊の原因
は、基本的にはまず第1に加速管g内で絶縁体cの内面
に沿ってフラッシュオーバー放電が発生することであ
り、第2に分割電極板間でイオン衝撃のスパッタ作用に
より正負イオンが交換され加速管g内で局所的小放電が
発生することである。こうした1次的な小放電が発生す
ると、絶縁体cや分割電極板dの表面に吸蔵されている
ガスが放出され、ガスのイオン化によって放電の規模が
拡大し、加速管g内の全体に放電が拡がり、加速管の全
電圧が0に落ちるブレークダウン現象を生ずることにな
る。そのため従来は、上記の局所的小放電を小刻みに発
生させることによって絶縁体cや分割電極板dからのガ
ス放出を促進し、加速管gを漸次高電圧の使用状態に慣
れさせるコンディションニングを行ない高電圧における
連続使用に耐え得るように調整している。
(Problems to be Solved by the Invention) In the above-described conventional type accelerator, the divided electrode plate d has a length of 1 m.
When a high voltage of about 1 to 1,500,000 V or more is applied to obtain an ion beam with a large current of 1 mA or more, there is a disadvantage that discharge occurs and dielectric breakdown occurs. Basically, the cause of this dielectric breakdown is that flashover discharge occurs in the acceleration tube g along the inner surface of the insulator c, and secondly, ion bombardment sputtering between the divided electrode plates. Positive and negative ions are exchanged by the action, and a local small discharge is generated in the acceleration tube g. When such a primary small discharge occurs, the gas occluded on the surfaces of the insulator c and the divided electrode plate d is released, and the ionization of the gas increases the scale of the discharge, so that the entire discharge tube g is discharged. Spreads, causing a breakdown phenomenon in which the total voltage of the accelerating tube drops to zero. For this reason, conventionally, the local small discharge is generated in small steps to accelerate the gas release from the insulator c and the divided electrode plate d, and the accelerating tube g is gradually conditioned to become accustomed to a high voltage use state. It is adjusted to withstand continuous use at high voltage.

しかし乍らこの方法では安定な運転状態に到達するま
でに異常に長い時間を要することに問題があり、また到
達し得る最高電圧にも限界があって100万Vを超える高
電圧になるとコンディショニングを行なったにも係わら
ずブレークダウンを生ずる欠点がある。更に従来の高電
圧用の加速管は長くかつ大形になり勝ちで設置上の不便
がある。
However, this method has a problem in that it takes an abnormally long time to reach a stable operating state, and the maximum voltage that can be reached is limited, and conditioning is required when the voltage exceeds 1 million V. There is the drawback of causing a breakdown despite doing so. Furthermore, the conventional high voltage accelerating tube tends to be long and large, which is inconvenient to install.

本発明は加速管内の放電発生を抑制し速やかに最高電
圧に到達出来、しかも小形化可能な高電圧大電流イオン
ビーム加速装置を提供することをその目的とするもので
ある。
An object of the present invention is to provide a high-voltage high-current ion beam accelerator which can suppress the occurrence of discharge in the accelerating tube, reach the maximum voltage quickly, and can be downsized.

(問題点を解決するための手段) 本発明では、前記目的を達成すべく、イオンビームの
通路の周囲に間隔を存して絶縁体で保持した環状の分割
電極板を複数枚配列し、これら電極の両端の一方をアー
ス電位、他方を高電圧として導入口から導出口へと電位
勾配を与えてイオンビームを加速する多段電極の加速コ
ラムを備えた加速管に於いて、該環状の分割電極板の単
位長さ当りの枚数を多くすると共に、各段の分割電極板
のうち一部のものの孔の口径を高電圧端で最小にしてア
ース電位端で加速コラムの内径いっぱいになるように次
第に拡げ、他のものの孔の口径を加速コラムの内径いっ
ぱいに拡げて加速コラム内に略円錐形の通路を形成し、
また該加速管のアース電位端に対向してアース電位の電
極板を設けると共に該アース電位端と該電極板の間の通
路の周囲に負電位の円筒状の多孔電極を設け、更に該多
孔電極の側方に真空排気口を設けるようにした。
(Means for Solving the Problems) In the present invention, in order to achieve the above-mentioned object, a plurality of annular divided electrode plates, which are held by an insulator at intervals around the ion beam passage, are arranged. In an accelerating tube equipped with an accelerating column of multi-stage electrodes for accelerating an ion beam by applying a potential gradient from an inlet to an outlet with one of both ends of the electrode being ground potential and the other being a high voltage, the annular split electrode Increase the number of plates per unit length, and gradually increase the hole diameter of some of the divided electrode plates at each stage at the high voltage end to fill the inner diameter of the acceleration column at the ground potential end. Expand the diameter of the holes of other things to the full inner diameter of the acceleration column to form a substantially conical passage in the acceleration column,
Further, an electrode plate of earth potential is provided facing the earth potential end of the accelerating tube, and a cylindrical porous electrode of negative potential is provided around the passage between the earth potential end and the electrode plate. A vacuum exhaust port was provided on one side.

(作 用) 加速管内を真空に排気し、イオン源からのイオンビー
ムが導入される導入口側の端部の電極に例えば150万V
の電圧を与えると共にイオンビームが導出される導出口
側の端部の電極に0V又はこれに近い電圧を与え、これら
両端の電極間に介在する中間の分割電極板の夫々に導入
口側のものから例えば数万V刻みで次第に低くなる電圧
を与えておく。
(Operation) The inside of the accelerating tube is evacuated to a vacuum, and 1.5 million V is applied to the electrode at the end on the inlet side where the ion beam from the ion source is introduced.
Voltage of 0 V or a voltage close to 0 V is applied to the electrode at the end on the outlet side from which the ion beam is emitted, and each of the intermediate split electrode plates interposed between the electrodes at both ends is at the inlet side. Therefore, for example, a voltage that gradually decreases in steps of tens of thousands of V is applied.

そして多孔分割電極に例えば−300Vの電圧を与え、イ
オン源から加速管内にイオンビームを導入すると、加速
コラム内の高電場によりイオンが加速され導出口から高
エネルギーのイオンビームが導出される。この場合、加
速コラムの単位長さ当りの分割電極板の枚数が多いため
に隣接する分割電極板間の電位差が小さくなるのでフラ
ッシュオーバー放電が防止される。また加速コラムの各
段の電極のうち一部のものの孔の口径を高電圧端で最小
にしてアース電位端で加速コラムの内径いっぱいになる
ように次第に拡げて形成されているため、イオン交換放
電は隣り合う分割電極板間か或は個々の電極板と加速管
の外部のアース電位にある電極板との間で起ることにな
るが、隣り合う電極板間では前記のように電位差が小さ
くなっているのでイオン交換放電が起りにくい状態にあ
り、前記アース電位の電極板との間には負電位の多孔電
極によって該電極面から加速コラムへ向う電子又は負の
イオンの流れを阻止するポテンシャルバリアが形成され
ているので各分割電極とアース電位の電極板との間のイ
オン交換放電が防止される。
Then, when a voltage of, for example, -300 V is applied to the porous divided electrodes and an ion beam is introduced from the ion source into the accelerating tube, the ions are accelerated by the high electric field in the accelerating column and a high energy ion beam is extracted from the outlet. In this case, since the number of divided electrode plates per unit length of the acceleration column is large, the potential difference between adjacent divided electrode plates becomes small, so that flashover discharge is prevented. In addition, the diameter of the holes of some of the electrodes on each stage of the acceleration column is minimized at the high voltage end and gradually expanded to fill the inside diameter of the acceleration column at the ground potential end. Occurs between the adjacent divided electrode plates or between the individual electrode plates and the electrode plate at the ground potential outside the acceleration tube, but the potential difference between adjacent electrode plates is small as described above. Since it is in a state in which ion exchange discharge is unlikely to occur, a potential for blocking the flow of electrons or negative ions from the electrode surface to the acceleration column is provided by the negative potential porous electrode between the electrode plate at the ground potential and the electrode plate at the ground potential. Since the barrier is formed, ion exchange discharge between each divided electrode and the electrode plate at the ground potential is prevented.

それと同時に該電子が高電圧部の分割電極板と衝突す
ることによるX線の発生を防げて安全性が向上する。更
に該多孔電極の側方に排気口が設けられ、また加速コラ
ム内の分割電極板の孔の口径がアース電位端で最大に拡
げられているので、加速管内に放出されるガスは高速で
排気され、管内での放電が生じ難くなる。
At the same time, it is possible to prevent the generation of X-rays due to the electrons colliding with the divided electrode plate of the high voltage portion, and the safety is improved. Further, since the exhaust port is provided on the side of the porous electrode and the diameter of the hole of the divided electrode plate in the acceleration column is expanded to the maximum at the ground potential end, the gas discharged into the acceleration tube is exhausted at high speed. As a result, electric discharge is less likely to occur in the tube.

(実施例) 本発明の実施例を別紙図面につき説明するに、第2図
に於て符号(1)は大電流のイオンビームを発生するイ
オン源、(2)は該イオン源(1)から引き出されるイ
オンビーム(3)を導入口(4)から導入し、アース電
位の電極板(5a)の導出口(5)から加速して導出する
イオンビーム加速装置、(6)は該イオンビーム(3)
の通路の周囲に間隔(7)を存して絶縁体(8)で保持
した複数枚の環状の分割電極板(9)を配列し且つイオ
ンビーム(3)を加速すべく導入口(4)側の高電圧端
電極(9a)から導出口(5)側のアース電位端電極(9
b)へ次第に低くなる電圧を夫々与えるようにした加速
コラムである。
(Embodiment) An embodiment of the present invention will be described with reference to the attached drawing. In FIG. 2, reference numeral (1) is an ion source for generating a high-current ion beam, and (2) is the ion source (1). An ion beam accelerator that introduces the extracted ion beam (3) from the introduction port (4) and accelerates it from the extraction port (5) of the electrode plate (5a) at the ground potential, and (6) is the ion beam ( 3)
A plurality of annular split electrode plates (9) held by an insulator (8) around the passage of (1) are arranged and an inlet (4) for accelerating the ion beam (3). Side high voltage end electrode (9a) to outlet (5) side ground potential end electrode (9
This is an accelerating column that is applied with gradually lower voltage to b).

各電極(9)の間隔(7)は4mm程度とし、従来の加
速コラムの10mm以上の間隔よりも大幅に狭く、単位長さ
当りの分割電極板(9)の枚数を多く配置するように
し、更に各分割電極板(9)のうちの数枚おきの電極板
(9c)の口径dを、導入口(4)側のものでは最も狭
く、導出口(5)側に行くに従い次第に口径dを拡げ、
加速コラム(6)内に略円錐形の通路を形成した。
The interval (7) between the electrodes (9) is set to about 4 mm, which is much smaller than the interval of 10 mm or more in the conventional acceleration column, and the number of divided electrode plates (9) per unit length is arranged to be large. Further, the diameter d of every few electrode plates (9c) among the divided electrode plates (9) is the smallest on the inlet (4) side, and gradually decreases toward the outlet (5) side. Spread,
A substantially conical passage was formed in the acceleration column (6).

(10)は加速コラム(6)のアース電位端電極(9b)
とアース電位の電極板(5a)の間の通路の周囲にイオン
ビームから遠く離して設けた負電位の円筒状の多孔電極
を示し、該多孔電極(10)は例えばメッシュで構成さ
れ、−300Vの負電位が与えられる。(11)は多孔電極
(10)の側方に設けた真空排気口で、該排気口(11)は
大容量の排気能力を有する真空ポンプに接続される。
(10) is the ground potential end electrode (9b) of the acceleration column (6)
Shows a negative potential cylindrical porous electrode provided far away from the ion beam around the passage between the electrode plate (5a) and the ground potential electrode plate (5a), the porous electrode (10) is composed of, for example, a mesh, -300V Is given a negative potential of. (11) is a vacuum exhaust port provided on the side of the porous electrode (10), and the exhaust port (11) is connected to a vacuum pump having a large capacity of exhaust capability.

その作動を説明するに、真空排気口(11)から加速コ
ラム(6)内が例えば10-6〜10-7Torr程度になるように
真空排気し、50枚の電極(9)のうち高電圧端電極(9
a)に150万Vの電位を与えると共にその前方即ちアース
電位端電極(9b)に近づくに従い147万V、144万Vと順
次3万Vずつ低くなる電位を与え、最も導出口(5)寄
りのアース電位端電極(9b)を0Vとする。そして多孔分
割電極(10)に−300Vを与え、イオン源(1)から導入
口(4)を通してイオンビーム(3)を導入すると加速
コラム(6)内でイオンビーム(3)が加速され、導出
口(5)から導出される。
To explain its operation, the vacuum column (6) is evacuated from the vacuum exhaust port (11) to a pressure of, for example, about 10 -6 to 10 -7 Torr, and the high voltage of the 50 electrodes (9) is Edge electrode (9
A potential of 1.5 million V is applied to a), and a potential of 1.47 million V and 1.44 million V, which decreases by 30,000 V in sequence, is applied toward the front of the electrode (9b), that is, closest to the outlet (5). The ground potential end electrode (9b) of is set to 0V. Then, -300 V is applied to the porous split electrode (10) and the ion beam (3) is introduced from the ion source (1) through the inlet (4), the ion beam (3) is accelerated in the acceleration column (6), and the ion beam (3) is guided. Derived from the exit (5).

この場合、加速コラム(6)内の最大電位差は150万
V状態にあり、通常では放電の発生し易い状態にある
が、単位長さ当りの分割電極板(9)の枚数が多く隣接
する分割電極板間の電位差が3万Vと小さいので分割電
極板(9)(9)間の放電の発生が防止される。
In this case, the maximum potential difference in the accelerating column (6) is in the state of 1.5 million V, and discharge is normally likely to occur, but the number of divided electrode plates (9) per unit length is large and the number of adjacent divided electrodes is large. Since the potential difference between the electrode plates is as small as 30,000 V, the occurrence of discharge between the divided electrode plates (9) and (9) is prevented.

また、イオンがアース電位の電極板(5a)に当ったと
きに負のイオンや電子が発生し、これが加速コラム
(6)から漏れてくる高電場に引かれて分割電極板
(9)に衝突するとイオン交換放電が発生してブレーク
ダウンの原因となるが、加速コラム(6)の端部とアー
ス電位の電極板(5a)の間には負電位の円筒状の多孔電
極(10)によりポテンシャルバリヤが設けられているの
で、アース電位の電極板(5a)へのイオン衝突で生じた
負のイオンや電子は加速コラム(6)内への流入が阻ま
れ、イオン交換放電が防止される。更に加速コラム
(6)内の分割電極板(9)や絶縁体(8)の表面から
放出されるガスは、分割電極(9)の口径dが導出口
(5)側のもの程拡げられているので、迅速に排気口
(11)へと放出することが出来、加速コラム(6)内に
放出ガスが溜って放電することを防止出来る。
Further, when the ions hit the electrode plate (5a) at the ground potential, negative ions and electrons are generated, which are attracted by the high electric field leaking from the acceleration column (6) and collide with the split electrode plate (9). Then, ion exchange discharge occurs and causes breakdown, but the potential is increased by the negative potential cylindrical porous electrode (10) between the end of the acceleration column (6) and the electrode plate (5a) at the ground potential. Since the barrier is provided, the negative ions and electrons generated by the ion collision with the electrode plate (5a) at the ground potential are prevented from flowing into the acceleration column (6), and the ion exchange discharge is prevented. Further, the gas released from the surface of the split electrode plate (9) and the insulator (8) in the acceleration column (6) is expanded as the diameter d of the split electrode (9) is closer to the outlet (5) side. Since it is present, the gas can be quickly discharged to the exhaust port (11), and the discharged gas can be prevented from accumulating and discharging in the acceleration column (6).

尚、図示の例では10枚の分割電極板(9a)の口径dを
次第に拡げるようにしたが、全電極(9)の口径dを次
第に拡げるように形成することも可能である。また必要
ならば、タンデム加速器の低エネルギー側加速管として
アース電位側より負のイオンを導入して加速するように
してもよい。
In the illustrated example, the diameter d of the ten divided electrode plates (9a) is gradually expanded, but the diameters d of all the electrodes (9) may be gradually expanded. If necessary, negative ions may be introduced from the ground potential side to accelerate the low energy side acceleration tube of the tandem accelerator.

(発明の効果) 以上のように、本発明によるときはイオンビームの加
速コラムの分割電極板の単位長さ当りの枚数を多くする
と共に環状の分割電極板の口径を高電圧端のものからア
ース電位端へと次第に拡げ、加速管の端部と導出口を備
えたアース電位の電極板との間の通路の周囲に円筒状の
負電位の多孔分割電極を設け、その側方に真空排気口を
設けるようにしたので、電極間に高電圧を与えてもフラ
ッシュオーバー放電が発生せず、また負電位の多孔電極
が2次イオンの加速コラム内への流入を阻止するのでイ
オン交換放電の発生も防止出来、長時間のコンディショ
ニングを不要となし得、さらに装置の長さを短くし小形
化が可能になる等の効果がある。
(Effect of the invention) As described above, according to the present invention, the number of divided electrode plates of the ion beam acceleration column per unit length is increased and the diameter of the annular divided electrode plate is changed from the high voltage end to the ground. A cylindrical negative potential porous split electrode is provided around the passage between the end of the accelerating tube and the earth potential electrode plate equipped with the outlet, and the vacuum exhaust port is provided on the side Since a flashover discharge does not occur even when a high voltage is applied between the electrodes, the porous electrode of negative potential prevents secondary ions from flowing into the accelerating column, so that ion exchange discharge occurs. Can be prevented, long-term conditioning can be eliminated, and the length of the device can be shortened to reduce the size.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来例の断面線図、第2図は本発明の実施例の
截断側面図を示す。 (3)……イオンビーム (4)……導入口 (5)……導出口 (5a)……アース電位の電極板 (6)……加速コラム (7)……間隔 (8)……絶縁体 (9)(9c)……分割電極板 (9a)……高電圧端電極 (9b)……アース電位端電極 (10)……多孔電極 (11)……真空排気口
FIG. 1 is a sectional view of a conventional example, and FIG. 2 is a cutaway side view of an embodiment of the present invention. (3) …… Ion beam (4) …… Inlet port (5) …… Outlet port (5a) …… Electrode plate at earth potential (6) …… Acceleration column (7) …… Interval (8) …… Insulation Body (9) (9c) ...... Split electrode plate (9a) ...... High voltage end electrode (9b) ...... Ground potential end electrode (10) ...... Porous electrode (11) ...... Vacuum exhaust port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イオンビームの通路の周囲に間隔を存して
絶縁体で保持した環状の分割電極板を複数枚配列し、こ
れら電極の両端の一方をアース電位、他方を高電圧とし
て導入口から導出口へと電位勾配を与えてイオンビーム
を加速する多段電極の加速コラムを備えた加速管に於い
て、該環状の分割電極板の単位長さ当りの枚数を多くす
ると共に、各段の分割電極板のうち一部のものの孔の口
径を高電圧端で最小にしてアース電位端で加速コラムの
内径いっぱいになるように次第に拡げ、他のものの孔の
口径を加速コラムの内径いっぱいに拡げて加速コラム内
に略円錐形の通路を形成し、また該加速管のアース電位
端に対向してアース電位の電極板を設けると共に該アー
ス電位端と該電極板の間の通路の周囲に負電位の円筒状
の多孔電極を設け、更に該多孔電極の側方に真空排気口
を設けたことを特徴とする高電圧大電流イオンビーム加
速装置。
1. A plurality of annular split electrode plates, which are held by an insulator at intervals around the ion beam passage, are arranged, one end of each of these electrodes being a ground potential and the other being a high voltage inlet port. In an accelerating tube provided with an accelerating column of multi-stage electrodes for accelerating the ion beam by applying a potential gradient from the outlet to the outlet, increasing the number of the annular divided electrode plates per unit length, Expand the hole diameter of some of the split electrode plates to the maximum inner diameter of the acceleration column while gradually increasing the hole diameter of the other part to the minimum at the high voltage end and at the earth potential end to fill the inner diameter of the acceleration column. To form a substantially conical passage in the accelerating column, and to provide an earth potential electrode plate facing the earth potential end of the accelerating tube, and to provide a negative potential around the passage between the earth potential end and the electrode plate. Provide a cylindrical porous electrode Further high-voltage large-current ion beam accelerating device characterized by providing the evacuation port on the side of the porous electrode.
JP13594687A 1987-05-30 1987-05-30 High voltage high current ion beam accelerator Expired - Fee Related JPH0824075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13594687A JPH0824075B2 (en) 1987-05-30 1987-05-30 High voltage high current ion beam accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13594687A JPH0824075B2 (en) 1987-05-30 1987-05-30 High voltage high current ion beam accelerator

Publications (2)

Publication Number Publication Date
JPS63301498A JPS63301498A (en) 1988-12-08
JPH0824075B2 true JPH0824075B2 (en) 1996-03-06

Family

ID=15163539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13594687A Expired - Fee Related JPH0824075B2 (en) 1987-05-30 1987-05-30 High voltage high current ion beam accelerator

Country Status (1)

Country Link
JP (1) JPH0824075B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443899U (en) * 1990-08-19 1992-04-14

Also Published As

Publication number Publication date
JPS63301498A (en) 1988-12-08

Similar Documents

Publication Publication Date Title
US4335465A (en) Method of producing an accellerating electrons and ions under application of voltage and arrangements connected therewith
Schoenbach et al. Microhollow cathode discharges
US5215703A (en) High-flux neutron generator tube
US4714860A (en) Ion beam generating apparatus
US4894546A (en) Hollow cathode ion sources
IL101342A (en) Hollow cathode plasma switch with magnetic field
US4737688A (en) Wide area source of multiply ionized atomic or molecular species
US5841235A (en) Source for the generation of large area pulsed ion and electron beams
US3999072A (en) Beam-plasma type ion source
US5899666A (en) Ion drag vacuum pump
US4760262A (en) Ion source
JPH0449216B2 (en)
US2883580A (en) Pulsed ion source
Pigache et al. Secondary‐emission electron gun for high pressure molecular lasers
JPH0824075B2 (en) High voltage high current ion beam accelerator
Goebel et al. Long pulse, plasma cathode e-gun
US3022933A (en) Multiple electron beam ion pump and source
US4489251A (en) Microchannel image intensifier tube and image pick-up system comprising a tube of this type
US4939425A (en) Four-electrode ion source
US4578805A (en) Transmission line transmitting energy to load in vacuum chamber
US2956195A (en) Hollow carbon arc discharge
US4839554A (en) Apparatus for forming an electron beam sheet
US3388275A (en) Cathode provided with ion-producing material for decreasing space charge
Hirsch et al. Highly efficient, inexpensive, medium current ion source
JPH03266346A (en) Apparatus for generating ion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees