JPH0824055B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH0824055B2
JPH0824055B2 JP61174137A JP17413786A JPH0824055B2 JP H0824055 B2 JPH0824055 B2 JP H0824055B2 JP 61174137 A JP61174137 A JP 61174137A JP 17413786 A JP17413786 A JP 17413786A JP H0824055 B2 JPH0824055 B2 JP H0824055B2
Authority
JP
Japan
Prior art keywords
stack
gas
fuel cell
laminated body
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61174137A
Other languages
Japanese (ja)
Other versions
JPS6329463A (en
Inventor
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61174137A priority Critical patent/JPH0824055B2/en
Publication of JPS6329463A publication Critical patent/JPS6329463A/en
Publication of JPH0824055B2 publication Critical patent/JPH0824055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池の発電システムに関するもので
ある。
TECHNICAL FIELD The present invention relates to a fuel cell power generation system.

〔従来の技術〕[Conventional technology]

周知の通り、燃料電池は対向して配置された燃料電極
と酸化剤電極の間に電解質を保持した電解質マトリック
スを介在させ、燃料電極および酸化剤電極にそれぞれ燃
料ガスおよび酸化剤ガスを供給して運転される一種の発
電装置である。
As is well known, in a fuel cell, an electrolyte matrix holding an electrolyte is interposed between a fuel electrode and an oxidant electrode, which are arranged opposite to each other, and a fuel gas and an oxidant gas are supplied to the fuel electrode and the oxidant electrode, respectively. It is a kind of generator that is operated.

動作原理については雑誌(J、Electrochen.Soc.第12
7巻第1433〜p1440頁(1980年)“Voltage Losses in Fu
el Cell Cathode"R.P.Iczkowski and M.B Cutlip)に詳
しく記載されている。
For the operating principle, see the magazine (J, Electrochen.Soc. No. 12
Volume 7, pages 1433-p1440 (1980) “Voltage Losses in Fu
el Cell Cathode "RPIczkowski and MB Cutlip).

酸型燃料電池を例にとると、燃料電極では式(1)の
反応が起こり、酸化剤電極では式(2)の反応が起こ
る。
Taking an acid fuel cell as an example, the reaction of the formula (1) occurs at the fuel electrode and the reaction of the formula (2) occurs at the oxidant electrode.

H2→2H++2e- ……(1) そして燃料電極には天然ガスなどの改質ガス、例えば
H280V/O、CO218V/O、CO2V/Oのような組成の燃料ガスが
反応ガスとして供給され、式(1)に従ってH2が消費さ
れて残りのH2及びCO2とCOが排出される。
H 2 → 2H + + 2e - ...... (1) Then, the fuel electrode has a reformed gas such as natural gas, for example,
A fuel gas having a composition such as H 2 80 V / O, CO 2 18 V / O, CO 2 V / O is supplied as a reaction gas, and H 2 is consumed according to the equation (1), and the remaining H 2 and CO 2 and CO Is discharged.

また酸化材電極には空気が反応ガスとして供給され、
式(2)に従ってO2が消費されて残りのO2、H2及びH2O
が排出される。しかし実際には電解質からの水蒸気の蒸
発の形で燃料電極側にもH2Oが排出される。
Air is supplied as a reaction gas to the oxidizer electrode,
According to the equation (2), O 2 is consumed and the remaining O 2 , H 2 and H 2 O
Is discharged. However, actually, H 2 O is also discharged to the fuel electrode side in the form of vaporization of water vapor from the electrolyte.

従来、上記の燃料電池を用いた発電システムとしては
第3図に示すものがあった。第3図において、(1)は
燃料電池積層体であり、例えば600個の単電池が積層さ
れ、300kW出力を発電能力を持つ。(2)は外部負荷と
の配線、(3)は燃料ガスの入口、(4)は燃料ガスの
出口である。第3図に示すように、600個の単電池か成
る燃料電池積層体に対して燃料ガスの供給はガスマニホ
ールド等を用いて並列に、各電池にほぼ同じ条件で供給
されるよう構成されている。また第3図では簡単の為に
酸化剤ガスの配管を省略したが酸化剤ガスの供給につい
ても燃料ガスの場合と全く同じである。
Conventionally, a power generation system using the above fuel cell has been shown in FIG. In FIG. 3, (1) is a fuel cell stack, in which, for example, 600 single cells are stacked and have a power generation capacity of 300 kW output. (2) is a wiring with an external load, (3) is a fuel gas inlet, and (4) is a fuel gas outlet. As shown in FIG. 3, fuel gas is supplied to a fuel cell stack consisting of 600 single cells in parallel using a gas manifold or the like, and is supplied to each cell under substantially the same conditions. There is. Further, in FIG. 3, the piping for the oxidant gas is omitted for simplicity, but the supply of the oxidant gas is exactly the same as that for the fuel gas.

第4図は他の従来例による発電システムを示す構成図
であるが、この従来例では燃料電池積層体は100個の単
電池から成り電気的に直列に接続された6個のブロック
から300kWの発電システムが構成されており、燃料ガス
は各ブロックに取り付けられたガスマニホールドに対し
て並列に入口支管(5)により供給され出口支管(6)
を通じて排出される。また酸化剤ガスについても同様で
ある。100個の単電池から成る6個のブロックに分けら
れているのは単電池に異常を生じた場合に単電池を取り
換えるの便利である為であるが第4図の発電システムで
は部品点数が大幅に増加する欠点がある。
FIG. 4 is a block diagram showing a power generation system according to another conventional example. In this conventional example, the fuel cell stack is composed of 100 unit cells and is electrically connected in series from 6 blocks to 300 kW. A power generation system is configured, and fuel gas is supplied in parallel to the gas manifold attached to each block by an inlet branch pipe (5) and an outlet branch pipe (6).
Exhausted through. The same applies to the oxidizing gas. The reason why it is divided into 6 blocks consisting of 100 cells is because it is convenient to replace the cells when an abnormality occurs in the cells, but the number of parts in the power generation system in Fig. 4 is large. Has the disadvantage of increasing.

第3図,第4図のいずれの発電システムにおいても、
発電に際して当然の事ながら高い効率が要求される。例
えば燃料ガスについては80%程度の利用率(供給した反
応ガスの80%を電池で消費するという意味)が要求さ
れ、酸化剤ガスについては60%程度の利用率が要求され
る。しかしながら、これらの要求される利用率はクロス
オーバー(例えば酸化剤ガスが電解質マトリックスを通
じて相手極に達し消費されてしまう現象)が起こってい
る場合にはクロスオーバーする反応ガス量が余分に消費
される為に実質的に利用率が100%を越えることもあり
うる。燃料ガスの利用率が100%を越えれば燃料極を構
成するカーボンなどの構成材料が燃料ガスの代わりに消
費され、炭酸ガスに変わる。また燃料ガスの利用率が10
0%を越えなくても100%に近くなれば、酸化剤電極への
プロトン(H+)の供給が不足する為にプロトン(H+)の
不足した部分の酸化剤電極触媒層の電位が貴な電位にシ
フトし近像のカーボンなどの酸化剤電極の構成材料が腐
食を起こし始める。これら燃料極及び酸化剤電極での変
化は不可逆であり構造の破境を伴なう。しかも発熱反応
であるので燃料電池本体の性能が低下するばかりでな
く、これらの変化が連鎖的に進行し、燃料電池本体が爆
成器となって大爆発を起こす可能性があった。反応ガス
の出口付近では特に電池反応によって生じた水蒸気によ
って電解液を希釈し粘性を低下せしめる為にクロスオー
バーが起こりやすくまたガス欠も起しやすいが、この他
積層方向で反応ガスの流れにアンバランスがあると一部
のセルでガス欠が起こる可能性もあり、最終的に大爆発
につながる原因となるクロスオーバーやガス欠は、反応
ガスの利用率を高くすれば高くするほど起こる確立が高
くなる。また1セルあたりの有効面積を4000cm2程度と
すれば、600セル分で240m2にわたり1mm足らずの隔壁を
介して燃料ガスと酸化剤ガスが対時しているわけで、こ
れらの面積すべてにわたって全くクロスオーバーが起こ
らないようにし、しかもこれを4〜5年間持続しつづけ
るというのは極めて厳しい要求である。また高圧下で運
転する場合には燃料ガスと酸化剤ガスの間に、大きな差
圧が生じる恐れもある。また燃料ガスは600セル分でお
よそ毎分7m3,酸化剤ガスはおよそ毎15m3と大量に流れる
為に流量の変動が生じやすく、部分的にガス欠の起こる
可能性がある。しかるに、600セルは直列に接続されて
いるので、中の1セルでも異常が起こり性能が低下した
場合には600セルすべてにわたって運転を停止せざるを
得ない。また燃料極や酸化剤電極における腐食はクロス
オーバーやガス欠によりすみやかに起こる反応であり、
すべてのセルに対して反応ガスを並列化している第3図
や第4図の発電システムではすべてのセルに対して腐食
の起こる可能性があり、瞬時のうちに600セルすべてに
腐食が起こり破損することも充分にありえた。
In both the power generation system of FIG. 3 and FIG.
Needless to say, high efficiency is required for power generation. For example, a usage rate of about 80% is required for the fuel gas (meaning that 80% of the supplied reaction gas is consumed by the battery), and a usage rate of about 60% is required for the oxidant gas. However, these required utilization rates are such that when crossover occurs (for example, a phenomenon in which the oxidant gas reaches the counter electrode through the electrolyte matrix and is consumed), the crossover reaction gas amount is excessively consumed. Therefore, the utilization rate may actually exceed 100%. If the usage rate of fuel gas exceeds 100%, the constituent materials such as carbon that compose the fuel electrode are consumed instead of fuel gas and converted to carbon dioxide. The fuel gas utilization rate is 10
If it does not exceed 0% but approaches 100%, the supply of protons (H + ) to the oxidant electrode will be insufficient, and the potential of the oxidant electrode catalyst layer in the part lacking protons (H + ) will become high. The potential of the oxidizer electrode such as carbon in the near image starts to corrode. These changes at the fuel electrode and the oxidant electrode are irreversible and are accompanied by structural breaks. Moreover, since it is an exothermic reaction, not only the performance of the fuel cell main body is deteriorated, but also these changes may proceed in a chain, and the fuel cell main body may become an explosive device and cause a large explosion. In the vicinity of the outlet of the reaction gas, the electrolyte is diluted by the water vapor generated by the cell reaction and the viscosity is lowered, so that crossover easily occurs and gas shortage easily occurs. If there is a balance, gas shortage may occur in some cells, and the crossover and gas shortage that eventually lead to a large explosion will occur as the reaction gas utilization rate increases. Get higher Further, if the effective area per cell and 4000 cm 2 or so, not oxidizing gas and fuel gas through a 1mm short of the partition wall over 240 m 2 is Taiji 600 cell fraction, completely across all of these areas It is extremely demanding that crossover does not occur and that it continues for 4 to 5 years. Further, when operating under high pressure, a large pressure difference may occur between the fuel gas and the oxidant gas. The fuel gas 600 cell content approximately every minute 7m 3, the oxidant gas is easy variation rate of the for flowing a large amount and per 15 m 3 occurs approximately partially can occur of gas shortage. However, since 600 cells are connected in series, if an abnormality occurs even in one of the cells and the performance deteriorates, the operation must be stopped for all 600 cells. Corrosion at the fuel electrode and oxidizer electrode is a reaction that occurs promptly due to crossover or lack of gas.
In the power generation system of Fig. 3 and Fig. 4 in which the reaction gas is paralleled to all cells, all cells may be corroded, and all 600 cells are corroded and damaged in an instant. It was quite possible to do it.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の燃料電池発電プラントは以上のように構成され
ているので、反応ガスの利用率を高めた場合にクロスオ
ーバーやガス欠を起こし、腐食を起こして電池を損傷
し、大爆発を起こす危険性さえもあった。この為反応ガ
スの利用率を高めることができず、従って、充分な安全
性を保ちながら発電効率を高めることができないという
問題点があった。
Since the conventional fuel cell power plant is configured as described above, there is a risk of causing a crossover or out of gas when the usage rate of the reaction gas is increased, causing corrosion, damaging the cell, and causing a large explosion. There was even. For this reason, there has been a problem that the utilization rate of the reaction gas cannot be increased, and thus the power generation efficiency cannot be increased while maintaining sufficient safety.

この発明は上記のような問題点を解消するためになさ
れたもので、充分な安全性を保ちながら全体の発電効率
を高めることのできる燃料電池発電システムを得ること
を目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a fuel cell power generation system capable of increasing overall power generation efficiency while maintaining sufficient safety.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る燃料電池発電システムは、電気的に直
列に結ばれた複数個の単電池を有する燃料電池積層体に
反応ガスを供給して発電する燃料電池発電システムにお
いて、上記燃料電池積層体を過半数の単電池を有する第
1積層体と残りの単電池を有する第2積層体とに区分
し、第1積層体に反応ガスを供給し、その排出ガスを第
2積載体に供給すると共に、第2積層体の出力電圧をモ
ニタして上記出力電圧の低下時に第2積層体を新鮮な反
応ガスを供給するように構成した、また、その排出ガス
から水蒸気を除去して第2積層体に供給するように構成
したものである。
A fuel cell power generation system according to the present invention is a fuel cell power generation system in which a reaction gas is supplied to a fuel cell stack having a plurality of single cells electrically connected in series to generate electric power. It is divided into a first stack having a majority of cells and a second stack having the remaining cells, a reaction gas is supplied to the first stack, and the exhaust gas is supplied to the second stack, The output voltage of the second laminated body is monitored, and when the output voltage drops, the second laminated body is configured to supply a fresh reaction gas, and steam is removed from the exhaust gas to form a second laminated body. It is configured to be supplied.

〔作用〕[Action]

この発明における第2積層体は、クロスオーバーやガ
ス欠などを起こしやすい運転条件になった場合に犠牲と
なり単電池の過半数を占める第1積層体を保護すると共
に、また第2積層体の出力電圧をモニターすることでガ
ス欠などの異常を検知し、上記出力電圧の低下時に第2
積層体に新鮮な反応ガスを供給することによってガス欠
をすみやかに解除し、第2積層体を保護する。また水蒸
気を除去することによりクロスオーバーを防止し、第2
積層体の出力電圧を上げると共に第2積層体を保護する
ことができる。
The second laminated body according to the present invention protects the first laminated body, which is a sacrifice when operating conditions are apt to cause crossover, gas shortage, and the like, which occupies the majority of the cells, and also the output voltage of the second laminated body. By monitoring the abnormalities such as lack of gas, the second
The supply of fresh reaction gas to the stack quickly releases the gas deficiency and protects the second stack. Also, by removing water vapor, crossover is prevented, and the second
The output voltage of the stack can be increased and the second stack can be protected.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する。第
1図はこの発明の一実施例による燃料電池発電システム
を示す構成図であり、第3図に示す従来例にこの発明を
適用した場合を示す。図において、(3)は第1積層体
(1a)に反応ガスを供給する第1配管、(8)は第1積
層体(1a)から排出された燃料ガスを第2積層体(1b)
に供給する第2配管、(9)は水蒸気除去装置(10)に
より除去された水蒸気を外部に導出する配管、(11)は
第2積層体(1b)に新鮮なすなわち燃料含有量の多い燃
料ガスを供給する第3配管、(12)は第2積層体(1b)
の出力電圧をモニタする装置である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing a fuel cell power generation system according to an embodiment of the present invention, and shows a case where the present invention is applied to the conventional example shown in FIG. In the figure, (3) is the first pipe for supplying the reaction gas to the first laminate (1a), (8) is the fuel gas discharged from the first laminate (1a) for the second laminate (1b)
To the outside of the second stack (1b), a second pipe (9) for supplying the steam removed by the steam remover (10) to the outside, and a pipe (11) for the second stack (1b). Third pipe for supplying gas, (12) second laminated body (1b)
Is a device for monitoring the output voltage of the.

次の動作について説明する。この実施例では、600個
の単電池を有する燃料電池積層体は、過半数例えば500
個の単電池を有する第1積層体(1a)と残り100個の単
電池を有する第2積層体(1b)とに区分されており、燃
料ガスはまず第1配管(3)により第1積層体(1a)に
供給され、電池反応に供される。第1積層体(1a)から
排出された燃料ガスは水蒸気除去装置(10)により水蒸
気を除去され(すなわち水蒸気分圧を下げられ)て、第
2配管(8)を通って第2積層体(1b)に供給され、電
池反応に供される。また、第2積層体(1b)ではその出
力電圧がモニタされており、出力電圧低下時には第3配
管(11)を通じて新鮮な(この場合燃料含有量が多い)
反応ガスが供給され、電池反応に供される。
The following operation will be described. In this example, a fuel cell stack having 600 cells has a majority, for example 500
It is divided into a first stacked body (1a) having one unit cell and a second stacked body (1b) having the remaining 100 unit cells, and the fuel gas is first stacked by the first pipe (3). It is supplied to the body (1a) and used for battery reaction. The fuel gas discharged from the first laminated body (1a) has its water vapor removed by the water vapor removal device (10) (that is, the partial pressure of water vapor is reduced), and the second laminated body ( It is supplied to 1b) and used for battery reaction. Further, the output voltage of the second laminated body (1b) is monitored, and when the output voltage drops, it is fresh (in this case, the fuel content is large) through the third pipe (11).
A reaction gas is supplied to the cell reaction.

ここで、第1図の実施例における全体の燃料ガスの利
用率を第3図の従来例と同じ80%とすると、第1積層体
(1a)での燃料ガスの実質利用率は で67%となる。また、流速も速くなるから、第1積層体
(1a)での水蒸気の持ち去り量も多くなり、出口側で電
解液が希釈されることに起因するクロスオーバーが起こ
りにくくなる。また、燃料利用率が低いので、ガス欠が
起こりにくくなる。従って第1積層体(1a)ではクロス
オーバーやガス欠に起因する腐食などの起こる危険性が
大幅に減少する。また燃料ガスのセル内の平均分圧が上
昇することから第1積層体(1a)の出力電圧が上昇す
る。これに比べて第2積層体(1b)ではすべての悪条件
が重なる。まず第1積層体(1a)で発生した大量の水蒸
気を含む為に第2積層体(1b)の電解液が希釈され、ク
ロスオーバーが起こりやすくなる。しかし第2積層体
(1b)の運転温度を第1積層体(1a)の動作温度よりも
高くして第2積層体(1b)での水蒸気の持ち去り量を多
くしてやれば電解液の希釈を防止しクロスオーバーを起
こしにくくすることができるし、第2積層体(1b)の電
解質マトリックスの厚さを厚くすることによってクロス
オーバーの防止策となりうる。次にガス欠になりやすい
という問題点がある。また燃料ガスの分圧が低くなる為
に出力電圧が低下するという問題点がある。ただし、出
力については積層数の大半を占める第1積層体(1a)で
の出力上昇により全体的に見れば出力は従来と同じ300k
W程度でバランスする。ガス欠については、システム上
ガス欠を生じた場合にはまず下流にある第2積層体(1
b)に腐食等の問題を生じることが予想されるが、逆に
第2積層体(1b)が腐食等のトラブルを起こすことによ
って過半数を占める第1積層体(1a)には何ら問題を起
こすことなく保護される。すなわち、第2積層体(1b)
の犠牲のもとに第1積層体(1a)は保護される。この場
合第2積層体(1b)を取り換えることになるが、従来の
場合のように600セルすべてを取り換えることと比べれ
ばダメージが少なくてすむ。なお、第2積層体(1b)は
取り換えやすい位置、例えば最上段に位置していること
が望ましい。また出力電圧について言えば、第2積層体
(1b)では反応ガスの分圧が低くても充分にに高い電圧
を得られるように第1積層体(1a)よりも多くの触媒量
が用いられていてよく、この場合全体的に従来よりも高
い出力が得られる効果がある。
Here, assuming that the overall fuel gas utilization rate in the embodiment of FIG. 1 is 80%, which is the same as in the conventional example of FIG. 3, the actual utilization rate of the fuel gas in the first laminate (1a) is Is 67%. Further, since the flow velocity is also high, the amount of water vapor carried away in the first stacked body (1a) is large, and crossover due to dilution of the electrolytic solution on the outlet side is less likely to occur. Further, since the fuel utilization rate is low, gas shortage is less likely to occur. Therefore, in the first laminated body (1a), the risk of occurrence of corrosion due to crossover or lack of gas is greatly reduced. Further, since the average partial pressure of the fuel gas in the cell increases, the output voltage of the first stacked body (1a) also increases. On the other hand, in the second laminated body (1b), all adverse conditions overlap. First, since the large amount of water vapor generated in the first laminated body (1a) is included, the electrolytic solution of the second laminated body (1b) is diluted, and crossover easily occurs. However, if the operating temperature of the second laminated body (1b) is made higher than the operating temperature of the first laminated body (1a) to increase the amount of water vapor carried away in the second laminated body (1b), the electrolyte solution will be diluted. It is possible to prevent the occurrence of crossover, and it is possible to prevent crossover by increasing the thickness of the electrolyte matrix of the second laminate (1b). Next, there is a problem that gas is likely to run out. Further, there is a problem that the output voltage is lowered because the partial pressure of the fuel gas is lowered. However, regarding the output, the overall output is the same as the conventional 300k due to the increase in the output of the first laminated body (1a), which accounts for the majority of the number of laminated layers.
Balance around W. Regarding gas shortage, when the gas shortage occurs in the system, the second laminated body (1
It is expected that problems such as corrosion will occur in b), but on the contrary, problems will occur in the first laminate (1a), which accounts for the majority due to the corrosion of the second laminate (1b). Be protected without. That is, the second laminated body (1b)
The first laminate (1a) is protected at the expense of In this case, the second laminated body (1b) is replaced, but the damage is less than that in the conventional case where all 600 cells are replaced. The second stacked body (1b) is preferably located at a position where it can be easily replaced, for example, at the uppermost stage. Regarding the output voltage, the second stack (1b) uses a larger amount of catalyst than the first stack (1a) so that a sufficiently high voltage can be obtained even if the partial pressure of the reaction gas is low. In this case, there is an effect that a higher output than the conventional one can be obtained as a whole.

さらに、第2積層体(1b)の出力を高めクロスオーバ
ーやガス欠による腐食を防止する為に、実施例では水蒸
気の除去装置(10)と新鮮な反応ガス供給用の第3配管
(11)及びモニター用の電圧端子(12)が設けられてい
る。ガス欠が起これば第2積層体(1b)の出力電圧が急
激に低下するが、あわてて元の反応ガス第1配管(3)
により供給される)の流量を増しても第2積層体(1b)
へ達するまでに第1積層体(1a)を通らなければならな
い為、かなりの時間を要し、この間に第2積層体(1b)
はガス欠による腐食が始まってしまう。そこで本発明の
一実施例による発電システムでは、出力電圧のモニター
装置(12)によりガス欠を検知した場合には、第2積層
体(1b)に直結した反応ガスの供給用第3配管(11)か
ら新鮮な反応ガスを供給して、第2積層体(1b)の腐食
を防止する。また反応ガス供給用配管(11)からの反応
ガスの供給量は、必要とされる出力に合わせてモニター
装置(12)と連動させ、常時変化させて最適条件に調整
することもできる。また第1配管(3)により供給され
る元の反応ガスの流量を変化させる必要がないから流量
の変動も少なくてすみ、差圧の大きな変化を与えること
もない。一方、水蒸気の除去装置(10)を動かすことに
よって燃料ガスの分圧を上げることができ、第2積層体
(1b)の出力を上げることができる。さらに水蒸気を除
去することによって第2積層体(1b)での電解液の希釈
を少なくし、クロスオーバーや腐食を防止する効果もあ
る。しかし、水蒸気除去装置(10)を動かすにはそれな
りの電力を必要とするので、水蒸気の除去量については
トータルのシステム効率を考えて選ばなければならな
い。ただし、第2積層体(1b)でガス欠を検知した場合
には、この装置(10)を最大限に働かせることによてク
ロスオーバー等の2次的な問題を防止し、腐食を防ぐ効
果がある。
Further, in order to increase the output of the second laminated body (1b) and prevent corrosion due to crossover and gas shortage, in the embodiment, a steam removing device (10) and a third pipe (11) for supplying fresh reaction gas are provided. And a voltage terminal (12) for monitoring is provided. If gas shortage occurs, the output voltage of the second stack (1b) will drop sharply, but the original reaction gas first pipe (3)
Second stack (1b) even if the flow rate of
It takes a considerable amount of time because it has to pass through the first laminated body (1a) before reaching to the second laminated body (1b).
Corrosion starts due to lack of gas. Therefore, in the power generation system according to the embodiment of the present invention, when the output voltage monitoring device (12) detects a gas shortage, the reaction gas supply third pipe (11) directly connected to the second laminate (1b) is used. ) To supply a fresh reaction gas to prevent corrosion of the second laminate (1b). Further, the supply amount of the reaction gas from the reaction gas supply pipe (11) can be adjusted in accordance with the required output by constantly changing it by interlocking with the monitor device (12). Further, since it is not necessary to change the flow rate of the original reaction gas supplied by the first pipe (3), the change in flow rate can be small, and a large change in differential pressure can be prevented. On the other hand, the partial pressure of the fuel gas can be increased by moving the water vapor removal device (10), and the output of the second stacked body (1b) can be increased. Further, the removal of water vapor also has the effect of reducing the dilution of the electrolytic solution in the second laminate (1b) and preventing crossover and corrosion. However, since a certain amount of electric power is required to operate the water vapor removal device (10), the amount of water vapor removed must be selected in consideration of the total system efficiency. However, when gas shortage is detected in the second laminated body (1b), by maximizing the operation of this device (10), secondary problems such as crossover can be prevented and corrosion can be prevented. There is.

第2図は、この発明の他の実施例による燃料電池発電
システムを示す構成図であり、第4図に示す従来例にこ
の発明を適用した場合を示す。この実施例においても上
記実施例と同様の効果が得られるのは言うまでもない。
FIG. 2 is a configuration diagram showing a fuel cell power generation system according to another embodiment of the present invention, and shows a case where the present invention is applied to the conventional example shown in FIG. It goes without saying that the same effect as that of the above-mentioned embodiment can be obtained also in this embodiment.

なお上記実施例では燃料ガスを対象として説明した
が、酸化剤ガスを対象としてもよく、同様の効果が得ら
れる。また酸化剤ガスを対象とした場合、酸化剤電極で
の腐食について言えば、第2積層体(1b)において酸素
分圧が低下する為に貴な電位になりにくく、従って腐食
が起こりにくくなるという効果も加わる。
In the above embodiment, the fuel gas is used as a target, but the oxidant gas may be used as a target, and the same effect can be obtained. In the case of the oxidant gas, when it comes to corrosion at the oxidant electrode, the oxygen partial pressure in the second laminate (1b) is reduced, which makes it difficult to reach a noble potential, and thus corrosion is less likely to occur. The effect is added.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、燃料電池積層体を
過半数の単電池を有する第1積層体と残りの単電池を有
する第2積層体とに区分し、第1積層体に反応ガスを供
給し、その排出ガスを第2積層体に供給すると共に、第
2積層体の出力電圧をモニタして上記出力電圧の低下時
に第2積層体を新鮮な反応ガスを供給するように構成し
た、また、その排出ガスから水蒸気を除去して第2積層
体に供給するように構成したので、クロスオーバーやガ
ス欠などの起こしやすい運転条件になった場合に第2積
層体が犠牲となり単電池の過半数を占める第1積層体を
保護すると共に第2積層体は新鮮な反応ガスの供給や水
蒸気の除去により保護されるため、充分な安全性を保ち
ながら燃料電池全体の発電効率を高めることができる効
果がある。
As described above, according to the present invention, the fuel cell stack is divided into the first stack having a majority of cells and the second stack having the remaining cells, and the reaction gas is supplied to the first stack. The discharge gas is supplied to the second laminated body, and the output voltage of the second laminated body is monitored to supply the fresh reaction gas to the second laminated body when the output voltage is reduced. Also, since the water vapor is removed from the exhaust gas and supplied to the second stacked body, the second stacked body is sacrificed when the operating conditions are such that crossover, gas shortage, etc. are likely to occur. Since the first laminated body, which occupies the majority, is protected and the second laminated body is protected by the supply of fresh reaction gas and the removal of water vapor, it is possible to enhance the power generation efficiency of the entire fuel cell while maintaining sufficient safety. effective.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による燃料電池発電システ
ムを示す構成図、第2図はこの発明の他の実施例による
燃料電池発電システムを示す構成図、第3図、第4図は
それぞれ従来の燃料電池発電システムを示す構成図であ
る。 図において、(1)は燃料電池積層体、(1a)は第1積
層体、(1b)は第2積層体、(3)、(4)、(5)、
(6)、(8)、(9)、(11)は配管、(10)は水蒸
気除去装置、(12)は出力電圧モニター装置である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a configuration diagram showing a fuel cell power generation system according to an embodiment of the present invention, FIG. 2 is a configuration diagram showing a fuel cell power generation system according to another embodiment of the present invention, and FIGS. 3 and 4 are respectively. It is a block diagram which shows the conventional fuel cell power generation system. In the figure, (1) is a fuel cell stack, (1a) is a first stack, (1b) is a second stack, (3), (4), (5),
(6), (8), (9) and (11) are pipes, (10) is a steam removing device, and (12) is an output voltage monitoring device. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電気的に直列に結ばれた複数個の単電池を
有する燃料電池積層体に反応ガスを供給して発電する燃
料電池発電システムにおいて、上記燃料電池積層体を過
半数の単電池を有する第1積層体と残りの単電池を有す
る第2積層体とに区分し、第1積層体に反応ガスを供給
する第1配管、第1積層体から排出された反応ガスを第
2積層体に供給する第2配管、第2積層体に新鮮な反応
ガスを供給する第3配管、および第2積層体の出力電圧
をモニタする装置を備え、第1配管より第1積層体に反
応ガスを供給し、その排出ガスを第2配管により第2積
層体に供給すると共に、上記出力電圧モニタ装置により
第2積層体の出力電圧をモニタして上記出力電圧の低下
時に第3配管より第2積層体に新鮮な反応ガスを供給す
るように構成した燃料電池反応システム。
1. A fuel cell power generation system for supplying a reaction gas to a fuel cell stack having a plurality of unit cells electrically connected in series to generate electric power, wherein the fuel cell stack comprises a majority of the unit cells. The first stack having the first stack and the second stack having the remaining unit cells are divided into the first pipe for supplying the reaction gas to the first stack, and the reaction gas discharged from the first stack for the second stack. And a device for monitoring the output voltage of the second laminated body, and a second pipe for supplying the reaction gas to the first laminated body through the first pipe. The exhaust gas is supplied to the second laminated body through the second pipe, and the output voltage of the second laminated body is monitored by the output voltage monitoring device. When the output voltage decreases, the second laminated body flows through the third pipe. Configured to supply fresh reaction gas to the body Charge the battery reaction system.
【請求項2】電気的に直列に結ばれた複数個の単電池を
有する燃料電池積層体に反応ガスを供給して発電する燃
料電池発電システムにおいて、上記燃料電池積層体を過
半数の単電池を有する第1積層体と残りの単電池を有す
る第2積層体とに区分し、第1積層体に反応ガスを供給
する第1配管、第1積層体から排出された反応ガスを第
2積層体に供給する第2配管、および第2配管に設けら
れた水蒸気除去装置を備え、第1配管より第1積層体に
反応ガスを供給し、その排出ガスから上記水蒸気除去装
置により水蒸気を除去して第2配管より第2積層体に供
給するように構成した燃料電池反応システム。
2. A fuel cell power generation system for supplying a reaction gas to a fuel cell stack having a plurality of cells electrically connected in series to generate electric power, wherein the fuel cell stack comprises a majority of the unit cells. The first stack having the first stack and the second stack having the remaining unit cells are divided into the first pipe for supplying the reaction gas to the first stack, and the reaction gas discharged from the first stack for the second stack. To the first laminated body by supplying a reaction gas from the first pipe, and removing steam from the exhaust gas by the steam removing device. A fuel cell reaction system configured to be supplied to a second stacked body from a second pipe.
JP61174137A 1986-07-22 1986-07-22 Fuel cell power generation system Expired - Fee Related JPH0824055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174137A JPH0824055B2 (en) 1986-07-22 1986-07-22 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174137A JPH0824055B2 (en) 1986-07-22 1986-07-22 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS6329463A JPS6329463A (en) 1988-02-08
JPH0824055B2 true JPH0824055B2 (en) 1996-03-06

Family

ID=15973309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174137A Expired - Fee Related JPH0824055B2 (en) 1986-07-22 1986-07-22 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0824055B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467575A (en) * 1990-07-06 1992-03-03 Nippon Telegr & Teleph Corp <Ntt> Fuel cell
US8627965B2 (en) 2001-05-17 2014-01-14 Rtc Industries, Inc. Multi-component display and merchandise systems
RU2191449C1 (en) * 2001-07-09 2002-10-20 ЗАО Индепендент Пауэр Технолоджис Process and device to remove inert impurities
JP4529373B2 (en) 2003-04-28 2010-08-25 ソニー株式会社 FUEL CELL AND METHOD OF OPERATING FUEL CELL
US9375100B2 (en) 2004-02-03 2016-06-28 Rtc Industries, Inc. Product securement and management system
US9898712B2 (en) 2004-02-03 2018-02-20 Rtc Industries, Inc. Continuous display shelf edge label device
US9818148B2 (en) 2013-03-05 2017-11-14 Rtc Industries, Inc. In-store item alert architecture
US8938396B2 (en) 2004-02-03 2015-01-20 Rtc Industries, Inc. System for inventory management
US8047385B2 (en) 2004-02-03 2011-11-01 Rtc Industries, Inc. Product securement and management system
US10339495B2 (en) 2004-02-03 2019-07-02 Rtc Industries, Inc. System for inventory management
JP4737951B2 (en) * 2004-07-09 2011-08-03 三菱重工業株式会社 Fuel cell and operation method thereof
US9173504B2 (en) 2005-09-12 2015-11-03 Rtc Industries, Inc. Product management display system
US8967394B2 (en) 2005-09-12 2015-03-03 Rtc Industries, Inc. Product management display system with trackless pusher mechanism
US9259102B2 (en) 2005-09-12 2016-02-16 RTC Industries, Incorporated Product management display system with trackless pusher mechanism
US8739984B2 (en) 2005-09-12 2014-06-03 Rtc Industries, Inc. Product management display system with trackless pusher mechanism
US9138075B2 (en) 2005-09-12 2015-09-22 Rtc Industries, Inc. Product management display system
US8978904B2 (en) 2005-09-12 2015-03-17 Rtc Industries, Inc. Product management display system with trackless pusher mechanism
US10285510B2 (en) 2005-09-12 2019-05-14 Rtc Industries, Inc. Product management display system
US9265358B2 (en) 2005-09-12 2016-02-23 RTC Industries, Incorporated Product management display system
WO2008153073A1 (en) * 2007-06-11 2008-12-18 Ngk Spark Plug Co., Ltd. Solid state electrolyte fuel cell module
US10357118B2 (en) 2013-03-05 2019-07-23 Rtc Industries, Inc. Systems and methods for merchandizing electronic displays
USD801734S1 (en) 2014-12-01 2017-11-07 Retail Space Solutions Llc Shelf management parts
US10154739B2 (en) 2013-12-02 2018-12-18 Retail Space Solutions Llc Universal merchandiser and methods relating to same
US9955802B2 (en) 2015-04-08 2018-05-01 Fasteners For Retail, Inc. Divider with selectively securable track assembly
US10959540B2 (en) 2016-12-05 2021-03-30 Retail Space Solutions Llc Shelf management system, components thereof, and related methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039773A (en) * 1983-08-12 1985-03-01 Mitsubishi Electric Corp Layer-built fuel cell

Also Published As

Publication number Publication date
JPS6329463A (en) 1988-02-08

Similar Documents

Publication Publication Date Title
JPH0824055B2 (en) Fuel cell power generation system
JP3607718B2 (en) Water and inert gas discharge method and apparatus for fuel cell equipment
JP3360318B2 (en) Fuel cell generator
JPH08171928A (en) Laminated body of fuel cell
JP2003234108A (en) Fuel cell system
CN110140248A (en) For adjusting the method and control unit of fuel cell pile
US5178969A (en) Fuel cell powerplant system
US20030175572A1 (en) Fuel cell arrangement and method for operating a fuel cell arrangement
JPH11329457A (en) Fuel cell system
JP2001023670A (en) Fuel cell power generating system
JP3673252B2 (en) Fuel cell stack
US20080292928A1 (en) Method for purging pem-type fuel cells
JPH10199548A (en) Fuel cell system and operating method thereof
JP2909307B2 (en) Fuel cell
JPH01146265A (en) Rebalancing device of electrolyte flow type cell
JPH03194863A (en) Method for stopping fuel cell
JPH06140067A (en) Fuel cell power generating system
JPS58133789A (en) Fuel cell power generation system
CN108352555A (en) The fuel cell system and vehicle that fuel cell with variable segmentation is stacked and stacked with such fuel cell
JP2014041804A (en) High temperature type fuel cell system
JPH06163066A (en) Heat recovering device for high temperature type fuel cell
JP2832640B2 (en) Molten carbonate fuel cell power generator
US7387850B2 (en) Oxidant and fuel distribution for a fuel cell assembly
JPS6229865B2 (en)
JPS59149662A (en) Fuel-cell power generating system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees