JPH08239420A - Method for purifying polymerization product - Google Patents

Method for purifying polymerization product

Info

Publication number
JPH08239420A
JPH08239420A JP7045494A JP4549495A JPH08239420A JP H08239420 A JPH08239420 A JP H08239420A JP 7045494 A JP7045494 A JP 7045494A JP 4549495 A JP4549495 A JP 4549495A JP H08239420 A JPH08239420 A JP H08239420A
Authority
JP
Japan
Prior art keywords
reaction product
polymerization reaction
vent
extruder
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7045494A
Other languages
Japanese (ja)
Other versions
JP4180125B2 (en
Inventor
Yasushi Higuchi
靖 樋口
Masahiro Kurokawa
正弘 黒川
Shojiro Kuwabara
章二郎 桑原
Shinichi Hieda
真一 日永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP04549495A priority Critical patent/JP4180125B2/en
Priority to TW85110727A priority patent/TW399061B/en
Publication of JPH08239420A publication Critical patent/JPH08239420A/en
Application granted granted Critical
Publication of JP4180125B2 publication Critical patent/JP4180125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/728Measuring data of the driving system, e.g. torque, speed, power, vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE: To purify a soln.-polymn. product mainly comprising a methacrylate polymer, etc., efficiently without causing the degradation in qualities by removing volatile components such as an unreacted monomer and a solvent with an extruder having vent holes under specified conditions. CONSTITUTION: A polymn. product contg. volatile components such as an unreacted monomer, a by-product, and a solvent (e.g. methanol or acetone) is heated to 120-270 deg.C and fed into an extruder having vent holes and having the barrel temp. kept at 170-280 deg.C to separate and recover most of the volatile components through the first vent hole kept under a pressure of 0.3-3atm. The remaining volatile components are removed through the downstream-side vent holes kept under a pressure of 1-400Torr to reduce the volatile content to 1wt.% or lower. An esp. suitable solvent for the polymn. is methanol. The vented extruder used kneads a thermally molten polymer with a screw rorating in a high-temp. cylinder and extrudes the polymer through a die.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は揮発成分を含む重合反応
生成物の精製方法に関するものであり、さらに詳しくは
溶液重合プロセスにおいて、重合工程後の重合反応生成
物から効率よく経済的に未反応単量体、溶媒などの揮発
成分を除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying a polymerization reaction product containing a volatile component. More specifically, in a solution polymerization process, the reaction product after the polymerization step is efficiently and economically unreacted. The present invention relates to a method for removing volatile components such as monomers and solvents.

【0002】[0002]

【従来の技術】透明性・耐候性・表面光沢において特に
優れた性質を有するメタクリレート系重合体は、近年、
自動車・弱電部品や光学材料をはじめ照明、看板、ディ
スプレイなど多くの用途に幅広く使用されている。従来
よりメタクリレート樹脂成形材料の製造方法として一般
的な懸濁重合法は懸濁剤によるポリマーの汚染、水洗及
び廃水処理工程の煩雑さなどの問題点を伴うことから、
近年、溶液重合法が経済性や製品品質の点で優れたプロ
セスとして注目されている。この溶液重合法において
は、重合終了後に重合液中に残存する未反応単量体ある
いは溶媒等の揮発成分を除去する脱揮工程が不可欠であ
る。このような重合反応生成物から揮発成分を除去する
方法としては、重合反応生成物を高温に加熱して減圧雰
囲気下に導き揮発成分を蒸発分離することが一般的に行
われており、一度に大量の重合反応生成物を処理できる
ので商業的規模での大量生産に適している。
2. Description of the Related Art In recent years, methacrylate-based polymers having particularly excellent properties in transparency, weather resistance and surface gloss have been used in recent years.
It is widely used in many applications such as lighting for automobiles, light electric parts and optical materials, signs, displays. Conventionally, a suspension polymerization method which is generally used as a method for producing a methacrylate resin molding material is accompanied by problems such as contamination of the polymer with a suspending agent, complexity of the washing and wastewater treatment steps,
In recent years, the solution polymerization method has attracted attention as an excellent process in terms of economy and product quality. In this solution polymerization method, a devolatilization step of removing volatile components such as unreacted monomers or solvents remaining in the polymerization liquid after the completion of polymerization is indispensable. As a method of removing the volatile components from such a polymerization reaction product, it is generally performed to heat the polymerization reaction product to a high temperature and guide it under a reduced pressure atmosphere to evaporate and separate the volatile components. It is suitable for mass production on a commercial scale because it can process a large amount of polymerization reaction products.

【0003】この方法の一例として特公昭48−297
97号公報に重合体溶液を多管熱交換器を用いて加熱
し、発泡等を伴いながら減圧にした脱揮槽にフラッシュ
して揮発成分を除去する方法が報告されている。この脱
揮方法では得られる重合体中の残存揮発分濃度を減少さ
せるために予め重合反応生成物を十分高温に加熱する必
要がある。また脱揮槽内にフラッシュされた重合反応生
成物は揮発成分の蒸発により発泡し、このときの吸熱に
より冷却され粘度が増大して揮発成分の分離が不十分と
なり易いので脱揮槽内で再加熱して流動性を維持しなが
ら底部のギヤポンプ等により連続的に重合体を排出す
る。この重合体は通常ベント押出機等にそのまま供給さ
れ、最終的な脱揮と添加物等の混合処理を経て製品とな
る。
As an example of this method, Japanese Examined Patent Publication (Kokoku) No. 48-297.
In Japanese Patent Publication No. 97, there is reported a method in which a polymer solution is heated using a multi-tube heat exchanger and flashed in a devolatilization tank which is decompressed while foaming and the like to remove volatile components. In this devolatilization method, it is necessary to previously heat the polymerization reaction product to a sufficiently high temperature in order to reduce the concentration of residual volatile components in the obtained polymer. Also, the polymerization reaction product flushed in the devolatilization tank foams due to evaporation of volatile components, is cooled by the heat absorption at this time and increases in viscosity, and separation of the volatile components is likely to be insufficient, so that the volatile components are not recycled again in the devolatilization tank. The polymer is continuously discharged by a gear pump or the like at the bottom while heating to maintain fluidity. This polymer is usually supplied as it is to a vent extruder or the like, and finally produced as a product through devolatilization and mixing of additives and the like.

【0004】メタクリレート系重合体の溶液重合では特
開平1−172401号公報等に示されているように溶
媒として一般にトルエン等のアルキルベンゼンが用いら
れることが多いが、このような溶媒系では脱揮槽を約1
50mmHg以下の絶対圧に保持しないと重合後の重合
反応生成物からの揮発分の除去は困難である。これは重
合反応生成物が揮発性があまり高くなく且つ重合体に対
して親和性がある揮発成分のみを含むことによる。この
減圧度を維持するため蒸発分離した揮発成分の蒸気を急
速に脱揮槽から排出しなければならないことやこの排気
ガスから低圧の揮発分蒸気を熱交換器により凝縮して効
率よく回収する必要があり、真空装置と冷凍設備にかか
る負荷量が増大して経済的に不利な面も多い。
In solution polymerization of a methacrylate polymer, alkylbenzene such as toluene is generally used as a solvent in many cases, as shown in JP-A-1-172401, but in such a solvent system, a devolatilization tank is used. About 1
Unless kept at an absolute pressure of 50 mmHg or less, it is difficult to remove volatile components from the polymerization reaction product after polymerization. This is because the polymerization reaction product is not very volatile and contains only volatile components having an affinity for the polymer. In order to maintain this degree of pressure reduction, it is necessary to rapidly evaporate the vaporized and separated volatile components from the devolatilization tank, and to condense low-pressure volatile components vapor from this exhaust gas with a heat exchanger for efficient recovery. However, the load on the vacuum device and the refrigerating equipment increases, which is economically disadvantageous.

【0005】このようなフラッシュタンク式脱揮装置の
欠点を解決するため特開平3−281504号公報では
特定の形状の排出用ギヤポンプを備えた脱揮槽を用い、
その回転数を制御しながら重合反応生成物をその歯車の
噛み合い部に供給することで効率的な脱揮操作を目指し
ているが、大量の重合反応生成物を処理するためには大
型の特殊なギヤポンプが必要となり、設備費用が嵩む
上、接液面積や滞留部も増大するので汚染や熱劣化の影
響も無視できない。
In order to solve the drawbacks of such a flash tank type devolatilization apparatus, Japanese Patent Laid-Open No. 3-281504 uses a devolatilization tank equipped with a discharge gear pump of a specific shape.
By controlling the rotation speed and supplying the polymerization reaction product to the meshing part of the gear, we are aiming for an efficient volatilization operation, but in order to process a large amount of polymerization reaction product, a large special A gear pump is required, equipment costs increase, and the liquid contact area and retention area increase, so the effects of contamination and heat deterioration cannot be ignored.

【0006】以上のようなフラッシュ操作や排出操作に
おいて重合体の一部が飛散して脱揮槽壁面へ付着したり
脱揮槽底部に滞留することが免れず重合体は高温下に長
時間曝されることになり熱劣化を招き易いことに加え
て、ギヤポンプ等の接液部からのダストやメカニカルシ
ール用オイル等による汚染も問題となる。特にメタクリ
レート系重合体のような透明性を特長として高品位が要
求される樹脂の場合、わずかな変質劣化や汚染も着色等
による品質低下を引き起こすおそれがある。
In the above flash operation and discharge operation, a part of the polymer is inevitably scattered and adhered to the wall surface of the devolatilization tank or stays at the bottom of the devolatilization tank, and the polymer is exposed to high temperature for a long time. In addition to being easily deteriorated due to heat, contamination from dust from liquid contact parts such as a gear pump and oil for mechanical seal is also a problem. In particular, in the case of a resin such as a methacrylate polymer, which is required to have high quality due to its transparency, even a slight deterioration or deterioration may cause deterioration in quality due to coloring or the like.

【0007】この問題を解決するためフラッシュタンク
に代表される中間的な脱揮装置を省略し、重合反応生成
物を加熱した後直接ベント押出機等に供給して脱揮、添
加物混合、賦形等の一連の後処理工程を一括処理するプ
ロセスが提案されている。このような脱揮方法の例とし
て以下の方法が報告されており、この方法によれば重合
反応生成物の処理時間が短縮され重合体の受ける熱履歴
や機器との接液による汚染が低減されることから簡略な
工程により品質を損なわずに脱揮することが可能とされ
ている。
In order to solve this problem, an intermediate devolatilization device typified by a flash tank is omitted, and the polymerization reaction product is heated and then directly supplied to a vent extruder or the like for devolatilization, additive mixing, and activation. A process for collectively processing a series of post-processing steps such as shapes has been proposed. The following method has been reported as an example of such a devolatilization method, and according to this method, the processing time of the polymerization reaction product is shortened and the thermal history received by the polymer and the contamination caused by the contact with the equipment are reduced. Therefore, it is possible to devolatilize without compromising quality by a simple process.

【0008】特公昭52−17555号公報及び特公昭
51−29914号公報では塊状重合法あるいは溶液重
合法により製造したメチルメタクリレ−ト系重合体組成
物を高温に加熱して揮発成分の蒸気圧以上の圧力に昇圧
させ、細孔を通して大気圧以下の雰囲気に維持された脱
揮押出機の供給部スクリューに直接吹き付けて揮発分の
大部分を分離回収し、残りの揮発分を250〜290
℃,真空度50mmHg以下のベントで分離する方法が
報告されている。また特開平05−17516号公報に
は、出口が押出機に直結した加熱装置に重合体溶液を導
入し、加熱温度において重合体溶液が有する蒸気圧未満
の圧力下で加熱して揮発分の一部を気化させた後加熱装
置出口で直ちにスクリューで重合物を掻き取ると同時に
揮発分を押出機の減圧ベント口より除去し、更に押出機
内を前進させながら下流に設けた減圧ベント口から残り
の揮発分を除去する方法が報告されている。更に特開昭
62−89710号公報には、メタクリレート系重合反
応生成物を高温に加熱し,上部に空間をもつ脱揮タンク
に流延落下して揮発成分を除去後ベント押出機に供給し
て残存揮発分を1重量%以下に下げる方法が示されてい
る。
In Japanese Patent Publication No. 52-17555 and Japanese Patent Publication No. 51-29914, a methyl methacrylate polymer composition produced by a bulk polymerization method or a solution polymerization method is heated to a high temperature to vapor pressure of volatile components. The pressure is increased to the above pressure, and is sprayed directly onto the feed section screw of the devolatilizing extruder maintained at an atmospheric pressure or less through the pores to separate and recover most of the volatile matter, and the remaining volatile matter is 250 to 290.
A method of separating with a vent at a temperature of 50 ° C and a vacuum degree of 50 mmHg or less has been reported. Further, in Japanese Patent Application Laid-Open No. 05-17516, a polymer solution is introduced into a heating device having an outlet directly connected to an extruder, and heated at a heating temperature under a pressure lower than a vapor pressure of the polymer solution to remove volatile components. Immediately after vaporizing the part, the polymer is scraped off immediately with a screw at the outlet of the heating device, and at the same time volatile components are removed from the pressure reducing vent port of the extruder. Methods for removing volatiles have been reported. Further, in JP-A-62-89710, a methacrylate-based polymerization reaction product is heated to a high temperature and cast into a devolatilization tank having a space above to remove volatile components and then supplied to a vent extruder. A method for reducing the residual volatile content to 1% by weight or less is shown.

【0009】しかしながら以上のいずれの方法において
も単量体乃至アルキルベンゼン等のような揮発性があま
り高くなく且つ重合体に対して親和性がある揮発成分の
みを高濃度に含む重合反応生成物を直接処理するには通
常の押出成型に用いられるものに比べて多段ベントを有
する脱揮能力の大きな押出機が要求される。さらに製品
中の残存揮発分濃度を低下させるために予め重合反応生
成物を200℃以上の高温度に加熱するとともに押出機
のベント部も高温且つ高真空に維持する必要がある。こ
のような操作環境から重合体の熱劣化の原因が除かれた
訳ではなく、商業的な大量生産に際しては設備費用増加
の問題も懸念される。
However, in any of the above methods, a polymerization reaction product containing only a volatile component having a low volatility such as a monomer or an alkylbenzene and having an affinity for a polymer in a high concentration is directly added. For processing, an extruder having a multi-stage vent and a large devolatilization capacity is required as compared with the one used in usual extrusion molding. Further, in order to reduce the concentration of residual volatile components in the product, it is necessary to preheat the polymerization reaction product to a high temperature of 200 ° C. or higher and to maintain the vent part of the extruder at a high temperature and a high vacuum. The cause of the thermal deterioration of the polymer is not removed from such an operating environment, and there is a concern that the facility cost may increase in the case of commercial mass production.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、重合
体組成物から着色等の変質劣化を伴うことなく経済的且
つ効率的に揮発成分を除去する方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for economically and efficiently removing volatile components from a polymer composition without causing deterioration by deterioration such as coloring.

【0011】[0011]

【課題を解決するための手段】本発明者らは、特定の低
沸点溶媒を含む重合反応生成物を加熱した後、一定圧下
に保持された供給口から押出機のスクリュー上に放出す
ることにより、該押出機の第一ベント口付近において高
表面積の液膜が形成され、大きな蒸発面積が確保される
結果、効率よく該重合体組成物中の揮発成分の大部分が
除去でき、さらに後方のベントで残りの揮発成分を除去
して押し出すことで着色等の変質を伴うことなく成形材
料として使用可能な高品質の重合体を製造し得ることを
見いだし本発明をなすに至った。
By heating a polymerization reaction product containing a specific low boiling point solvent and then discharging it onto a screw of an extruder from a feed port kept under a constant pressure, As a result, a high surface area liquid film is formed in the vicinity of the first vent port of the extruder and a large evaporation area is secured, so that most of the volatile components in the polymer composition can be efficiently removed and It was found that a high-quality polymer usable as a molding material can be produced without causing deterioration such as coloring by removing the remaining volatile components by a vent and extruding the present invention, and thus the present invention has been accomplished.

【0012】すなわち本発明は、未反応単量体、反応副
生成物、および、メタノールとアセトンから選ばれた少
なくとも一種以上の溶媒からなる揮発成分を含む重合反
応生成物から揮発成分を分離除去し、重合反応生成物を
精製する方法において、(A)該重合反応生成物を温度
120〜270℃に加熱し、(B)該重合反応生成物を
バレル温度170〜280℃とした複数のベント口を有
する押出機に供給し、先ず0.3〜3気圧に保持された
第一ベントから前記揮発成分の大部分を分離回収し、
(C)次いで、ベント部圧力1〜400Torrに設定
した少なくとも1つ以上の後方ベントで残りの揮発成分
を除去することにより該重合体組成物の残存揮発分含量
を1重量%以下にすることを特徴とする重合反応生成物
の精製方法に関する発明である。なお、第一ベントとは
該押出機のダイから最も遠く、その供給口に最も近いベ
ント口であり、後方ベントとは第一ベントよりダイに近
い別のベント口を示す。
That is, the present invention separates and removes volatile components from a polymerization reaction product containing an unreacted monomer, a reaction by-product, and a volatile component composed of at least one solvent selected from methanol and acetone. In the method for purifying a polymerization reaction product, (A) a plurality of vent ports in which the polymerization reaction product is heated to a temperature of 120 to 270 ° C and (B) the polymerization reaction product is barrel temperature 170 to 280 ° C. Is supplied to an extruder having, and first, most of the volatile components are separated and recovered from the first vent held at 0.3 to 3 atm,
(C) Then, the residual volatile content of the polymer composition is reduced to 1% by weight or less by removing the remaining volatile components with at least one rear vent set to a vent pressure of 1 to 400 Torr. The present invention relates to a method for purifying a characteristic polymerization reaction product. The first vent is the vent farthest from the die of the extruder and closest to the feed port thereof, and the rear vent is another vent closer to the die than the first vent.

【0013】本発明において重合反応生成物に含まれる
溶媒は、メタノールあるいはアセトンであればよいが、
特に好適なものはメタノールである。これらは単独で、
もしくは2種組み合わせて用いることもできる。これら
の溶媒は以下の特徴を有することから揮発成分の効率的
な分離操作が可能となった。 (1)低沸点で蒸発し易く、加熱することにより重合反
応生成物を高圧に維持し放出時の発泡を促進する。 (2)メタクリレート系及びアクリレート系の単量体に
対して共沸混合物等の低沸点混合物を形成するため特に
これらの単量体成分の蒸発を促進する。 (3)重合体に対しては加熱時には広範な濃度範囲で重
合反応生成物の均一性を維持できる程の十分な溶解性を
示す。またメタノールの場合は加えて以下の特長がある
ことが特公昭50−34071号公報等により知られて
いる。 (4)溶媒を含んだ重合反応生成物を冷却すると重合体
に対する揮発成分の溶解性が急激に低下するため重合体
と分離しやすい上、重合反応生成物の粘度が低下し重合
体が装置や配管の内壁に付着し難くなる。
In the present invention, the solvent contained in the polymerization reaction product may be methanol or acetone,
Particularly preferred is methanol. These alone
Alternatively, two types can be used in combination. Since these solvents have the following characteristics, it is possible to efficiently separate volatile components. (1) It has a low boiling point and is apt to evaporate. By heating, the polymerization reaction product is maintained at a high pressure to promote foaming at the time of discharge. (2) Since a low boiling point mixture such as an azeotropic mixture is formed with respect to the methacrylate-based and acrylate-based monomers, the evaporation of these monomer components is particularly promoted. (3) The polymer exhibits sufficient solubility when heated to maintain the uniformity of the polymerization reaction product in a wide concentration range. In addition, it is known from Japanese Examined Patent Publication No. S50-34071 that methanol has the following additional features. (4) When the polymerization reaction product containing the solvent is cooled, the solubility of the volatile component in the polymer is drastically lowered, so that it is easy to separate from the polymer, and the viscosity of the polymerization reaction product is lowered, so that the polymer can Difficult to adhere to the inner wall of the pipe.

【0014】用いられる押出機としては揮発分を排気す
るためのベント口を備え、高温シリンダー内で回転する
スクリューによって加熱溶融したポリマーを混練しなが
ら可塑化した後ダイより押し出す装置であればよい。通
常は一般的な成型用のベント押出機が選択され、例えば
単軸及び二軸のベント押出機が好適であるが目的に応じ
てニ−ダ−や多段のフロントベント乃至リヤベントを備
えた押出成形機等も用いられる。重合体中の残存揮発分
濃度をできるだけ低下させるためには第一ベントの他に
少なくとも1箇所の後方ベントを備えたL/D20〜4
0程度の押出機が好ましい。また通常の押出機の原料供
給口(ホッパー)を第一ベントとして利用して内部にノ
ズルを設置し重合反応生成物をスクリューに向けてフラ
ッシュしながら揮発分を排気することも可能である。
The extruder to be used may be any apparatus which is equipped with a vent port for exhausting volatile components, plasticizes while heating and melting a polymer melted and kneaded by a screw rotating in a high temperature cylinder, and then extrudes from a die. Generally, a general molding vent extruder is selected. For example, a single-screw or twin-screw vent extruder is suitable, but an extrusion molding with a kneader or multistage front vents or rear vents is selected according to the purpose. Machines and the like are also used. In order to reduce the concentration of residual volatiles in the polymer as much as possible, L / D 20 to 4 provided with at least one rear vent in addition to the first vent
An extruder of about 0 is preferable. It is also possible to use a raw material supply port (hopper) of an ordinary extruder as a first vent and install a nozzle inside to discharge the volatile matter while flushing the polymerization reaction product toward the screw.

【0015】押出機各部の温度は製造される重合体の品
種・銘柄に応じて賦形に適した温度に設定されるが、通
常第一ベント以外の後方ベントやバレルの温度は170
〜280℃、好ましくは150〜250℃に保たれる。
また、第一ベント以外の後方ベントの圧力は1〜400
Torr、特に50〜200Torrが好ましい。第一
ベント中で大半の揮発成分が分離除去されているので後
方のベント部は特に高真空に保つ必要はない。ベント押
出機内の重合体組成物の滞留時間が1〜30分、好まし
くは5〜15分になるようにスクリュー回転数が決定さ
れる。さらに同時にこの押出機により重合体中への紫外
線吸収剤、滑剤、安定剤、着色剤乃至ブルーイング剤等
の添加物の調合も可能である。このようにして押し出さ
れた重合体はペレタイザー、ホットカットペレタイザー
等により細断され、残存揮発分1重量%以下、通常0.
5重量%以下の成形材料として使用可能な重合体が得ら
れる。
The temperature of each part of the extruder is set to a temperature suitable for shaping depending on the type and brand of the polymer to be produced, but the temperature of the rear vent other than the first vent and the barrel is usually 170.
The temperature is maintained at 280 ° C, preferably 150 ° C to 250 ° C.
The pressure of the rear vents other than the first vent is 1 to 400.
Torr, particularly 50 to 200 Torr is preferable. Most of the volatile components are separated and removed in the first vent, so there is no need to maintain a high vacuum in the rear vent. The screw rotation speed is determined so that the residence time of the polymer composition in the vent extruder is 1 to 30 minutes, preferably 5 to 15 minutes. At the same time, it is possible to prepare additives such as an ultraviolet absorber, a lubricant, a stabilizer, a coloring agent or a bluing agent in the polymer by using this extruder. The polymer extruded in this manner is chopped by a pelletizer, a hot-cut pelletizer, or the like, and the residual volatile content is 1% by weight or less, usually 0.
5% by weight or less of a polymer usable as a molding material is obtained.

【0016】重合反応生成物は押出機の第一ベント内が
0.3〜3気圧、好ましくは0.5〜1.5気圧の範囲
の大気圧付近に維持されるようにの該押出機に供給され
る。3気圧を越える加圧雰囲気では重合反応生成物に含
まれるメタクリレート系単量体や溶媒等の揮発成分の蒸
発速度が低く分離が不十分となり、0.3気圧未満の減
圧雰囲気では低沸点の揮発成分を回収し、第一ベントの
減圧度を維持するするために大がかりな真空装置や冷凍
機が必要になり経済的でない。重合体の変質や劣化を避
けるためには窒素ガス等の不活性ガス及び/又は該重合
反応生成物を構成する揮発成分の蒸気から成る雰囲気が
望ましく、揮発成分蒸気の排出を促進する目的で不活性
ガスを第一ベント内に導入し流通させることもできる。
この場合、窒素や二酸化炭素の不活性ガスが用いられる
が特に窒素が好適である。重合反応生成物より蒸発分離
した揮発成分は通常エジェクター、ブロワー、真空ポン
プ等の排気装置で第一ベント内から排気し、コンデンサ
ーに導き、冷却・凝縮されて回収することが可能であ
る。
The polymerization reaction product is introduced into the extruder so that the inside of the first vent of the extruder is maintained at an atmospheric pressure in the range of 0.3 to 3 atm, preferably 0.5 to 1.5 atm. Supplied. In a pressurized atmosphere of more than 3 atm, the evaporation rate of volatile components such as methacrylate monomers and solvents contained in the polymerization reaction product is low and separation is insufficient, and in a reduced pressure atmosphere of less than 0.3 atm, low boiling point volatilization occurs. It is not economical because a large-scale vacuum device or refrigerator is required to recover the components and maintain the degree of reduced pressure of the first vent. In order to avoid deterioration or deterioration of the polymer, an atmosphere composed of an inert gas such as nitrogen gas and / or a vapor of a volatile component constituting the polymerization reaction product is desirable, and it is not preferable for the purpose of promoting the emission of the volatile component vapor. An active gas may be introduced into the first vent and distributed.
In this case, an inert gas such as nitrogen or carbon dioxide is used, but nitrogen is particularly preferable. The volatile component evaporated and separated from the polymerization reaction product can be usually exhausted from the first vent by an exhaust device such as an ejector, a blower or a vacuum pump, introduced into a condenser, cooled, condensed and recovered.

【0017】重合反応生成物は加熱器の出口から押出機
のスクリュー上に直接放出することも可能であるが通常
は供給口にノズル等が設置される。このノズルとしては
各種のバルブや成型機に用いられるダイが用いられる。
例えば、バルブでは、ニードルバルブ、ストップバル
ブ、コントロールバルブ、ベントプラグ、パージ弁及び
重合体の排出に用いられるダイヘッドバルブ等の各種バ
ルブがあげられ、ダイとしては、造粒用のストランドダ
イ等が挙げられる。これらは単独で、もしくは2種組み
合わせて用いてもよい。これらのノズルは加熱器側から
押出機側にかけての圧力差を生み出すことで加熱器内を
加圧下に保持し、急激な発泡脱揮が加熱器内まで及ぶの
を防止して加熱器の熱交換能力を高めるとともに放出さ
れた重合反応生成物の表面積を拡大して揮発成分の蒸発
分離を促進する。
The polymerization reaction product can be discharged directly from the outlet of the heater onto the screw of the extruder, but normally a nozzle or the like is installed at the supply port. As this nozzle, various valves and dies used in molding machines are used.
For example, the valve includes various valves such as a needle valve, a stop valve, a control valve, a vent plug, a purge valve and a die head valve used for discharging a polymer, and the die includes a strand die for granulation. To be These may be used alone or in combination of two kinds. These nozzles maintain a pressure inside the heater by creating a pressure difference from the heater side to the extruder side, and prevent rapid foaming devolatilization to reach the inside of the heater to prevent heat exchange in the heater. It enhances the capacity and expands the surface area of the released polymerization reaction product to promote the evaporative separation of volatile components.

【0018】またこれらのノズルにより放出された重合
反応生成物は一定の流速に保たれるとともに一定の断面
形状に賦形されて押出機への安定した供給が可能とな
る。ストランドダイやバルブ類を用いる場合、細孔ある
いはオリフィスの開口径は0.5〜15mmの範囲で選
ばれ、1〜10mmが好ましい。開口径が小さすぎると
加熱器等の耐圧限度を越えるほどの圧力差が生じて危険
であるし、開口径が大きすぎるとを発泡脱揮が加熱器内
まで及んで安定したフラッシュ操作が困難になる。さら
にノズルとしてコントロールバルブを用いることにより
加熱器の内圧及び重合反応生成物の放出量を調節し最適
の脱揮効果を維持しながら経済的に処理することが可能
である。
Further, the polymerization reaction product discharged from these nozzles is kept at a constant flow rate and shaped into a constant cross-sectional shape, which enables stable supply to the extruder. When using a strand die or valves, the opening diameter of the pores or orifices is selected in the range of 0.5 to 15 mm, preferably 1 to 10 mm. If the opening diameter is too small, a pressure difference that exceeds the pressure limit of the heater will occur, which is dangerous, and if the opening diameter is too large, foaming devolatilization will reach the inside of the heater, making stable flash operation difficult. Become. Furthermore, by using a control valve as the nozzle, it is possible to control the internal pressure of the heater and the amount of the polymerization reaction product released, and to carry out the treatment economically while maintaining the optimum devolatilization effect.

【0019】また該ノズル乃至供給口は該押出機の第一
ベントの内部もしくは近傍のバレル内のいずれの位置に
設置しても良いが、加熱器の出口に出来るだけ近接して
取付け十分に保温される必要がある。第一ベントの内部
に取り付ける場合は押出機のスクリューに接近させてフ
ラッシュされた重合反応生成物を直接吹き付けながら供
給することが可能である。また第一ベント近傍のバレル
内に設置する場合は、該第一ベントに対して前方、同位
置あるいは後方のいずれの位置でもよい。該第一ベント
の前方に設置する場合は該第一ベントはリヤーベント、
該第一ベントの後方に設置する場合は該第一ベントはフ
ロントベントとして分離した揮発分の排気口となる。そ
の際重合反応生成物は上部から下部に至るいずれの方向
から該押出機バレルへ供給することも可能である。
The nozzle or the supply port may be installed at any position inside the first vent of the extruder or in the barrel in the vicinity thereof, but the nozzle or the supply port is installed as close as possible to the outlet of the heater to keep a sufficient temperature. Needs to be done. When it is installed inside the first vent, it is possible to feed the flashed polymerization reaction product while directly approaching the screw of the extruder and spraying it. When it is installed in the barrel near the first vent, it may be located at the front, the same position, or the rear of the first vent. When installed in front of the first vent, the first vent is a rear vent,
When installed behind the first vent, the first vent serves as an exhaust port for volatile components separated as a front vent. In that case, the polymerization reaction product can be supplied to the extruder barrel from any direction from the upper part to the lower part.

【0020】特定の溶媒を含み十分な圧力と流動性を有
する温度に加熱された重合反応生成物を、ノズル等を通
して大気圧付近の雰囲気中に放出すると、重合反応生成
物中の溶媒が先ず吐出口付近で急激に蒸発し、重合体は
発泡しながら噴出する。このとき大きな蒸発面積が確保
されることにより該重合反応生成物中の他の揮発成分、
主に単量体も同時に蒸発し、効果的に分離除去できる。
特に加熱器内の加圧状態がフラッシュ時の揮発分分離に
大きな影響を及ぼし、加熱器のフィード口圧力を3〜6
0Kg/cm2 、好ましくは7〜40Kg/cm2 に維
持することで該重合反応生成物が効率的に脱揮される。
When a polymerization reaction product containing a specific solvent and heated to a temperature having sufficient pressure and fluidity is discharged into an atmosphere near atmospheric pressure through a nozzle or the like, the solvent in the polymerization reaction product is first discharged. The polymer rapidly evaporates near the outlet, and the polymer blows while foaming. At this time, by ensuring a large evaporation area, other volatile components in the polymerization reaction product,
Mainly the monomers are also evaporated at the same time and can be effectively separated and removed.
In particular, the pressurization inside the heater has a great influence on the separation of volatile components during flash, and the pressure at the feed port of the heater is 3 to 6
By maintaining at 0 Kg / cm 2 , preferably 7 to 40 Kg / cm 2 , the polymerization reaction product is efficiently devolatilized.

【0021】押出機内に放出された重合体組成物は揮発
成分の蒸発による吸熱により冷却されて発泡したまま高
粘度状態になる。このとき該押出機の供給口近傍及び第
一ベント内の温度は50〜270℃、好ましくは80〜
250℃の範囲に維持される。温度50℃以下では発泡
した重合体が急激に固化して揮発成分が分離しにくくな
る上、分離した揮発成分が第一ベント内で凝縮して除去
が困難になり、270℃以上では重合体が熱劣化を起こ
し易くなる。重合体はその性状と加熱温度に応じて押出
機内で固体から溶融状態までを種々の形態をとり得るが
重合反応生成物の押出機への供給及び第一ベントからの
揮発分の排気が安定して可能であればいずれの形態でも
差し支えない。このとき第一ベント口付近の重合体組成
物の残存揮発分濃度は1〜10重量%、好ましくは1〜
6重量%に維持される。
The polymer composition discharged into the extruder is cooled by the heat absorption due to the evaporation of the volatile components and becomes a highly viscous state while foaming. At this time, the temperature in the vicinity of the supply port of the extruder and in the first vent is 50 to 270 ° C., preferably 80 to 270 ° C.
Maintained in the range of 250 ° C. At a temperature of 50 ° C or lower, the foamed polymer rapidly solidifies and the volatile components are difficult to separate, and the separated volatile components condense in the first vent and are difficult to remove. At 270 ° C or higher, the polymer is Thermal deterioration is likely to occur. The polymer can take various forms from the solid state to the molten state in the extruder depending on its properties and heating temperature, but the supply of the polymerization reaction product to the extruder and the exhaust of volatile matter from the first vent are stable. If possible, any form will do. At this time, the residual volatile content concentration of the polymer composition near the first vent port is 1 to 10% by weight, preferably 1 to
It is maintained at 6% by weight.

【0022】加熱器内で重合反応生成物は揮発成分の組
成や蒸発熱に応じて最適の脱揮効果が得られる温度まで
昇温される。この加熱温度は一般的には温度120〜2
70℃の範囲で選択され、該重合反応生成物の粘度や熱
安定性も考慮して150〜250℃が好ましく、さらに
好ましくは170〜250℃である。また加熱器内の圧
力は重合反応生成物中の揮発成分組成、重合反応生成物
の加熱温度並びに供給速度、また加熱器とノズルによる
圧力損失等に依存するが加熱器、ダイ及び配管等の耐圧
限度を越えなければ差し支えない。
In the heater, the polymerization reaction product is heated to a temperature at which an optimum devolatilizing effect is obtained depending on the composition of volatile components and the heat of vaporization. This heating temperature is generally 120 to 2
The temperature is selected in the range of 70 ° C, and is preferably 150 to 250 ° C, more preferably 170 to 250 ° C in consideration of the viscosity and thermal stability of the polymerization reaction product. The pressure in the heater depends on the composition of volatile components in the polymerization reaction product, the heating temperature and supply rate of the polymerization reaction product, the pressure loss due to the heater and the nozzle, and the pressure resistance of the heater, die and piping. It does not matter if the limit is not exceeded.

【0023】該重合反応生成物の加熱器としては熱交換
器が一般的に使用され、多管式熱交換器、プレートフィ
ン型熱交換器及びスタティックミキサー型熱交換器等が
好適であるが、攪拌槽あるいはスクリューや攪拌機を備
えた横型反応機等を使用してもよい。重合反応生成物の
熱変性を避けるため出来る限り短時間で所定温度まで均
一に昇温する必要があり、効率的に熱交換される構造が
望ましい。加熱した重合反応生成物が速やかに押出機内
に放出されるようにこの加熱器は出来るだけ該押出機の
供給口に接近して設置することが望ましい。
A heat exchanger is generally used as a heater for the polymerization reaction product, and a multi-tube heat exchanger, a plate fin type heat exchanger, a static mixer type heat exchanger and the like are preferable. A stirring tank or a horizontal reactor equipped with a screw and a stirrer may be used. In order to avoid thermal denaturation of the polymerization reaction product, it is necessary to uniformly raise the temperature to a predetermined temperature in the shortest possible time, and a structure capable of efficient heat exchange is desirable. It is desirable that the heater is installed as close to the feed port of the extruder as possible so that the heated polymerization reaction product is promptly discharged into the extruder.

【0024】本発明の方法は以上のように重合反応生成
物を高温のフラッシュタンク内に放出して脱揮した後、
溶融状態でベント押出機に供給し最終的な処理するプロ
セスに比べて設備が簡略化され重合体の被る熱履歴も緩
和になり、汚染原因となる機器との接触面積も減少す
る。さらに従来の単量体乃至アルキルベンゼン等の溶媒
を含む重合反応生成物を加熱した後直接ベント押出機に
供給して脱揮処理するプロセスと比較すると、脱揮性能
や処理能力の低いベント押出機、例えば通常の単軸の押
出成型機等が使用でき、ベント部の温度、減圧度等の操
作条件も緩和になる。
According to the method of the present invention, after the polymerization reaction product is discharged into a high temperature flash tank and devolatilized as described above,
Compared with the process of supplying to a vent extruder in a molten state and finally treating, the equipment is simplified, the heat history of the polymer is mitigated, and the contact area with the equipment that causes pollution is reduced. Furthermore, compared with a conventional process of heating a polymerization reaction product containing a solvent such as a monomer or an alkylbenzene and then directly supplying it to a vent extruder to perform a devolatilization treatment, a vent extruder having a low devolatilization performance or a treatment capacity, For example, an ordinary single-screw extruder can be used, and the operating conditions such as the temperature of the vent portion and the degree of pressure reduction are alleviated.

【0025】従って揮発成分の減圧回収、フラッシュタ
ンク内の真空保持及び重合反応生成物の流動性維持にか
かわるエネルギー消費量が節減され、真空装置、凝縮器
及び押出機等の設備能力も低くて済むほか、特に熱劣化
や汚染を嫌う重合体であっても着色を抑えて外観を損な
わずに処理できるという利点がある。この結果ユーテイ
リティー原単位や設備コストが低減され、経済的に有利
に高品質の重合体を製造することが可能となる。
Therefore, the energy consumption for collecting the volatile components under reduced pressure, maintaining the vacuum in the flash tank, and maintaining the fluidity of the polymerization reaction product is reduced, and the equipment capacity of the vacuum device, the condenser, the extruder, etc. is low. In addition, there is an advantage that even a polymer which is particularly susceptible to heat deterioration and contamination can be treated without suppressing the coloring and impairing the appearance. As a result, the utility unit and equipment costs are reduced, and it becomes possible to economically advantageously produce a high-quality polymer.

【0026】本発明の重合体とは、メチルメタクリレー
ト単独またはメチルメタクリレートおよびメチルメタク
リレートと共重合可能な下記単量体からなる単量体混合
物の重合により生成した共重合体をいう。該重合反応生
成物は重合体90〜30%に対して未反応の単量体成分
5〜55重量%を含む。メチルメタクリレートと共重合
される単量体としては、例えばメチルアクリレート、エ
チルアクリレート、プロピルアクリレート、ブチルアク
リレート、エチルメタクリレート、n−プロピルメタク
リレート、n−ブチルメタクリレート、イソブチルメタ
クリレート、シクロヘキシルメタクリレート、スチレ
ン、N−フェニルマレイミド等が挙げられるが、上記の
中でもメチルメタクリレートとメチルアクリレート、メ
チルメタクリレートとn−ブチルアクリレート、メチル
メタクリレートとスチレンの組み合わせが特に好適であ
る。
The polymer of the present invention means a copolymer formed by polymerization of methyl methacrylate alone or a monomer mixture of the following monomers copolymerizable with methyl methacrylate and methyl methacrylate. The polymerization reaction product contains 5 to 55% by weight of an unreacted monomer component with respect to 90 to 30% of the polymer. Examples of the monomer copolymerized with methyl methacrylate include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, styrene, N-phenyl. Maleimide and the like can be mentioned, but among them, combinations of methyl methacrylate and methyl acrylate, methyl methacrylate and n-butyl acrylate, and methyl methacrylate and styrene are particularly preferable.

【0027】メタクリレート系重合体の特長である透明
性や耐候性等の樹脂特性を損なわないためにもメチルメ
タクリレートを50%以上、特には75〜100重量%
含む重合体が望ましいがメチルメタクリレートとスチレ
ンの共重合体については5〜74重量%のメチルメタク
リレートと26〜95重量%のスチレンから構成される
重合体であってもよい。
In order not to impair the resin characteristics such as transparency and weather resistance which are the characteristics of the methacrylate polymer, methyl methacrylate is 50% or more, particularly 75 to 100% by weight.
Although a polymer containing it is preferable, the copolymer of methyl methacrylate and styrene may be a polymer composed of 5 to 74% by weight of methyl methacrylate and 26 to 95% by weight of styrene.

【0028】本発明の揮発成分の除去方法は連続的な溶
液重合法あるいは塊状重合法によるポリマー製造プロセ
スに重合体の分離工程として適用することが可能である
が、その場合、重合反応生成物の連続的な調製方法とし
ては、例えば(1)重合開始剤及び連鎖移動剤の存在下
でのメチルメタクリレートを含む単量体成分とメタノー
ル等の前記溶媒との混合物の連続的な溶液重合による方
法及び(2)重合開始剤及び連鎖移動剤の存在下でのメ
チルメタクリレート単独あるいはメチルメタクリレート
と共重合用の単量体成分の混合物の連続的な塊状重合を
行い、反応物に対してメタノール等の前記溶媒を追添加
・混合する方法が考えられる。
The method for removing volatile components of the present invention can be applied as a polymer separation step to a polymer production process by a continuous solution polymerization method or a bulk polymerization method. Examples of the continuous preparation method include (1) continuous solution polymerization of a mixture of a monomer component containing methyl methacrylate and the solvent such as methanol in the presence of a polymerization initiator and a chain transfer agent, and (2) Continuous bulk polymerization of methyl methacrylate alone or a mixture of methyl methacrylate and a monomer component for copolymerization in the presence of a polymerization initiator and a chain transfer agent is carried out, and the reaction product is subjected to the above-mentioned methanol or the like. A method of adding and mixing the solvent may be considered.

【0029】いずれの方法でも重合体が製造可能である
が単量体成分及び生成する重合体の物理化学的特性やプ
ロセス上の利点を考慮して最適な組成及び方法が選択さ
れれば良い。また、その他の各種の方法で得られる重合
反応生成物の処理にも本法は適用できる。
A polymer can be produced by any of the methods, but the optimum composition and method may be selected in consideration of the physicochemical properties of the monomer component and the polymer to be produced and the process advantages. Further, the present method can be applied to the treatment of polymerization reaction products obtained by various other methods.

【0030】本発明における重合反応生成物は重合体、
単量体成分及び溶媒を主成分とし重合時に添加した重合
開始剤、連鎖移動剤及び添加剤に由来する成分を含む。
また、上記のメタノール等を溶媒として用いた溶液重合
法の重合液をそのまま処理してもよいし、また塊状重合
法あるいは溶液重合法の重合液にメタノール等の溶媒を
添加して調製してもよい。重合体組成は、30〜90重
量%であり、重合体が90重量%を越えると重合反応生
成物が高粘度になり配管中や加熱器内の移動・流通が困
難になる。また重合体濃度が30重量%未満では得られ
る重合体中の残存揮発分も多くなり、更に生産効率も低
下するので実用的でない。該重合反応生成物は単量体成
分を5〜55重量%、望ましくは10〜40重量%の範
囲で含む。
The polymerization reaction product in the present invention is a polymer,
It includes a monomer component and a solvent as main components, and a component derived from a polymerization initiator, a chain transfer agent and an additive added at the time of polymerization.
Further, the polymerization solution of the solution polymerization method using the above-mentioned methanol as a solvent may be treated as it is, or may be prepared by adding a solvent such as methanol to the polymerization solution of the bulk polymerization method or the solution polymerization method. Good. The polymer composition is 30 to 90% by weight, and when the amount of the polymer exceeds 90% by weight, the polymerization reaction product has a high viscosity, which makes it difficult to move and distribute it in a pipe or a heater. Further, if the polymer concentration is less than 30% by weight, the residual volatile content in the obtained polymer will increase and the production efficiency will decrease, which is not practical. The polymerization reaction product contains the monomer component in an amount of 5 to 55% by weight, preferably 10 to 40% by weight.

【0031】単量体成分が5重量%未満の重合体組成物
を得るのは現実的に困難であり、単量体成分が55重量
%を越えると得られる重合体中の残存量が増加し実用的
でない。さらに該溶媒は該重合反応生成物中に5〜65
重量%、望ましくは6〜35重量%の範囲で含まれるこ
とが必要である。該溶媒が5重量%未満の場合は重合体
中の残存揮発分も多くなり、該溶媒濃度が65重量%を
越えると生産性が低下し非効率である。またこの重合反
応生成物は均一で流動性のある粘度を有する温度に保持
される必要があり、特にメタノール等を用いた溶液重合
を行う場合は重合温度付近に維持するのが好ましい。
It is practically difficult to obtain a polymer composition containing less than 5% by weight of the monomer component, and when the amount of the monomer component exceeds 55% by weight, the residual amount in the obtained polymer increases. Not practical. Further, the solvent is 5 to 65 in the polymerization reaction product.
It should be contained in the range of, preferably 6 to 35% by weight. When the amount of the solvent is less than 5% by weight, the residual volatile content in the polymer also increases, and when the concentration of the solvent exceeds 65% by weight, the productivity is lowered and it is inefficient. Further, this polymerization reaction product needs to be maintained at a temperature at which it has a uniform and fluid viscosity, and it is preferable to maintain it near the polymerization temperature particularly when carrying out solution polymerization using methanol or the like.

【0032】本発明において重合反応生成物は単量体成
分の溶媒に対する重量比が0.3〜8である必要があ
り、特には0.5〜4が好ましい。単量体成分の溶媒に
対する重量比が4を越える場合には、揮発成分の除去が
不十分で重合体中の残存量が多くなる等の問題が生じ
る。
In the present invention, the polymerization reaction product must have a weight ratio of the monomer component to the solvent of 0.3 to 8, and preferably 0.5 to 4. When the weight ratio of the monomer component to the solvent exceeds 4, problems such as insufficient removal of volatile components and a large amount of residual volatile components in the polymer occur.

【0033】本発明をさらに具体的に例示するが、これ
らに限定されるものではない。図1は、本発明の方法の
実施に用いた装置の概略のフローシートである。重合反
応生成物を攪拌槽1内で調製し、定量ポンプ2により所
定の流量で加熱器3に供給し、所定温度まで加熱する。
加熱器の出口はコントロールバルブ4を介してベント押
出機9の第一ベント6の下部バレルに設置されている供
給口5に直結されている。コントロールバルブ4により
加熱器内圧及び吐出流量を調整しながら、供給口5を通
して重合反応生成物をベント押出機9内に注入する。こ
のとき窒素ガスを第一ベント側面の導入口7より導入し
て流通させ第一ベント6内は所定の圧力に維持される。
The present invention will be more specifically illustrated, but the present invention is not limited thereto. FIG. 1 is a schematic flow sheet of the apparatus used to carry out the method of the present invention. The polymerization reaction product is prepared in the stirring tank 1, supplied to the heater 3 at a predetermined flow rate by the metering pump 2, and heated to a predetermined temperature.
The outlet of the heater is directly connected to the supply port 5 installed in the lower barrel of the first vent 6 of the vent extruder 9 via the control valve 4. The polymerization reaction product is injected into the vent extruder 9 through the supply port 5 while adjusting the heater internal pressure and the discharge flow rate by the control valve 4. At this time, nitrogen gas is introduced through the inlet 7 on the side surface of the first vent and circulated so that the inside of the first vent 6 is maintained at a predetermined pressure.

【0034】注入された重合体組成物はスクリューによ
って移送されながら加熱溶融される。最終的にダイ13
を通して連続的に押し出され、ペレタイザー14にて各
種成型機への使用に適したペレットに加工される。注入
時に蒸発した揮発成分は第一ベント6より窒素ガスとと
もに排出されコンデンサー10で凝縮し受器11に捕集
される。第一ベント6以降に分離した揮発成分は排気装
置によって第二ベント8から排気され蒸留搭12により
高沸点成分を除去した後、コンデンサーにより単量体成
分を回収し排気装置へ送られる。
The injected polymer composition is heated and melted while being transferred by a screw. Finally die 13
Are continuously extruded through the pelletizer 14 and processed into pellets suitable for use in various molding machines by the pelletizer 14. Volatile components evaporated at the time of injection are discharged together with nitrogen gas from the first vent 6, condensed in the condenser 10 and collected in the receiver 11. The volatile components separated after the first vent 6 are exhausted from the second vent 8 by the exhaust device, the high boiling point components are removed by the distillation tower 12, and the monomer components are recovered by the condenser and sent to the exhaust device.

【0035】図2は重合反応生成物をベント押出機9の
第一ベントの内部に設置したノズル15を通してフラッ
シュする脱揮装置の概略のフローシートである。この場
合は攪拌槽1内で調製された重合反応生成物を、加熱器
3に供給して所定温度まで加熱した後、コントロールバ
ルブ4を介してベント押出機9の第一ベント6の側面に
設置されている供給口5からノズル15を通してベント
押出機9のスクリューに向けてフラッシュする。第一ベ
ント6内は所定の圧力に維持され、フラッシュされた重
合体は図1と同様にスクリューによって移送されながら
加熱溶融され連続的に押し出される。フラッシュ時に蒸
発した揮発成分は第一ベント6より排出されコンデンサ
ー10で凝縮し受器11に捕集される。第一ベント6以
降に分離した揮発成分は第二ベント8から排気され蒸留
搭12により高沸点成分を除去した後、コンデンサーに
より単量体成分を回収する。
FIG. 2 is a schematic flow sheet of a devolatilizer for flushing the polymerization reaction product through the nozzle 15 installed inside the first vent of the vent extruder 9. In this case, the polymerization reaction product prepared in the stirring tank 1 is supplied to the heater 3 and heated to a predetermined temperature, and then installed on the side surface of the first vent 6 of the vent extruder 9 via the control valve 4. Flush from the supply port 5 through the nozzle 15 toward the screw of the vent extruder 9. The inside of the first vent 6 is maintained at a predetermined pressure, and the flashed polymer is heated and melted while being transferred by a screw as in FIG. 1, and is continuously extruded. Volatile components evaporated during the flash are discharged from the first vent 6, condensed in the condenser 10 and collected in the receiver 11. The volatile components separated after the first vent 6 are exhausted from the second vent 8, the high boiling point components are removed by the distillation tower 12, and the monomer components are recovered by the condenser.

【0036】図3は本発明の方法を適用した連続溶液重
合法によるポリマー製造プロセスの概略のフローシート
である。この場合、調合槽17において単量体成分、メ
タノール等の前記溶媒、重合開始剤及び連鎖移動剤等を
調合し原料液を調製した後、定量ポンプ18により一定
の流量で完全混合重合反応器16に供給し連続的に重合
させる。この重合液を定量ポンプ2により抜出し加熱器
3に導入して以下第1図と同様に処理し重合体を連続的
に製造する。
FIG. 3 is a schematic flow sheet of a polymer production process by a continuous solution polymerization method to which the method of the present invention is applied. In this case, after the monomer components, the solvent such as methanol, the polymerization initiator, the chain transfer agent, and the like are mixed in the mixing tank 17 to prepare the raw material liquid, the constant mixing pump 18 is used to prepare a constant mixing flow rate for the complete mixing polymerization reactor 16 And continuously polymerize. This polymerization liquid is taken out by a metering pump 2 and introduced into a heater 3 to be treated in the same manner as in FIG. 1 to continuously produce a polymer.

【0037】図4は、連続塊状重合法によるポリマー製
造プロセスにおいて抜き出された重合液にメタノール等
の前記溶媒を追添加・混合した例である。この場合は図
2と同様に調合槽17において単量体成分、重合開始剤
及び連鎖移動剤等を調合し原料液を調製した後、定量ポ
ンプ18により一定の流量で完全混合重合反応器16に
供給し重合させる。この重合液を定量ポンプ2により抜
出し、メタノール等の前記溶媒を注入口20より連続的
に追添加し、混合器19により均一に混合した後、加熱
器3に導入して以下第1図と同様に処理し重合体を連続
的に製造する。各部の温度及び圧力は外部加熱装置や圧
力調整弁により変更可能であり、各部における重合反応
生成物及び揮発成分の温度及び圧力が測定される。供給
する重合反応生成物の流量及び組成は任意に変更可能で
ある。
FIG. 4 shows an example in which the above-mentioned solvent such as methanol is additionally added to and mixed with the polymerization liquid extracted in the polymer production process by the continuous bulk polymerization method. In this case, as in FIG. 2, the raw material liquid is prepared by mixing the monomer components, the polymerization initiator, the chain transfer agent, etc. in the preparation tank 17, and then the constant mixing pump 18 supplies the mixture to the complete mixing polymerization reactor 16 at a constant flow rate. Supply and polymerize. This polymerization liquid was extracted by the metering pump 2, the solvent such as methanol was continuously added additionally through the injection port 20, uniformly mixed by the mixer 19, and then introduced into the heater 3 and the same as in FIG. 1 below. To continuously produce a polymer. The temperature and pressure of each part can be changed by an external heating device or a pressure control valve, and the temperature and pressure of the polymerization reaction product and the volatile component in each part are measured. The flow rate and composition of the supplied polymerization reaction product can be arbitrarily changed.

【0038】[0038]

【実施例】次に実施例によりさらに詳細に説明するが、
本発明は実施例に限定されるものではない。ここで記さ
れた「部」及び「%」は全て重量部及び重量%を示す。
以下の実施例において重合体の物性測定は次の方法によ
った。
EXAMPLES Next, more detailed description will be given with reference to Examples.
The invention is not limited to the examples. All "parts" and "%" described herein indicate parts by weight and% by weight.
In the following examples, the physical properties of polymers were measured by the following methods.

【0039】(1)重合体に含まれる揮発成分はガスク
ロマトグラフィーにより分析し、含有量を定量した。 (2)成形品の全光線透過率(%)はASTD1003
法によって測定した。用いた主要装置の仕様は以下の通
りである。 攪拌槽及び重合槽 :容量6リットル、熱媒循環ジャケ
ット、攪拌機装備 加熱器 :ジャケット付スタティックミキサ
ー コントロールバルブ:ベンチュリスロート形アングル調
節弁、3/4B、Cv=0.01 フラッシュノズル :単孔ストランドダイ、開口径2.
5mm×L10mm 押出機 :単軸,スクリュー径φ40mm,L
/D=32.2ベント付
(1) Volatile components contained in the polymer were analyzed by gas chromatography to quantify the content. (2) The total light transmittance (%) of the molded product is ASTD1003
It was measured by the method. The specifications of the main equipment used are as follows. Stirring tank and polymerization tank: Capacity 6 liters, heat medium circulation jacket, equipped with stirrer Heater: Static mixer with jacket Control valve: Venturi throat type angle control valve, 3 / 4B, Cv = 0.01 flash nozzle: Single hole strand die, open Caliber 2.
5mm × L10mm Extruder: Single screw, screw diameter φ40mm, L
/D=32.2 With vent

【0040】また、以下の方法により押出機へ重合反応
生成物を供給した。 重合反応生成物を直接バレル内部の供給口からベント
押出機内に注入する方法 重合反応生成物を第一ベント内部に設置したノズルを
通してスクリューに向けてフラッシュする方法
The polymerization reaction product was supplied to the extruder by the following method. Method of directly injecting the polymerization reaction product into the vent extruder from the supply port inside the barrel Method of flushing the polymerization reaction product toward the screw through the nozzle installed inside the first vent

【0041】尚、表1〜4中に使用した略号は次の通り
である。 MMA:メチルメタクリレート MA :メチルアクリレート EA :エチルアクリレート BA :n-ブチルアクリレート Me :メタノール AC :アセトン ST :スチレン TOL:トルエン ND :ガスクロマトグラフィーの検出限界(0.01
%)以下を示す
The abbreviations used in Tables 1 to 4 are as follows. MMA: Methyl methacrylate MA: Methyl acrylate EA: Ethyl acrylate BA: n-Butyl acrylate Me: Methanol AC: Acetone ST: Styrene TOL: Toluene ND: Detection limit of gas chromatography (0.01
%) Indicates the following

【0042】実施例1 図1の装置を用いポリメチルメタクリレート60.0
部、メチルメタクリレート25.6部、メチルアクリレ
ート1.1部、メタノール13.3部を含むメタクリレ
ート系重合反応生成物5kgを攪拌槽1内で150℃に
加熱して均一に攪拌混合した。この重合反応生成物を定
量ポンプ2により1kg/hの流量で加熱器3に供給し
190℃まで昇温した後、第一ベント6のバレル下部の
供給口5からベント押出機9内に注入した。このときの
加熱器導入部の圧力はコントロールバルブ4によって2
5kg/cm2 に維持された。発生する揮発成分蒸気は
第一ベント6より排出され、コンデンサー10を通して
凝縮した揮発分を貯槽11に捕集した。揮発分は理論量
の93%の0.37kg/hで回収され、メチルメタク
リレート61.0%、メチルアクリレート2.6%及び
メタノール36.4%が含まれた。また第一ベント口6
内圧力は0.9〜1.1気圧に維持された。
Example 1 Using the apparatus of FIG. 1, polymethylmethacrylate 60.0
Part, 25.6 parts of methyl methacrylate, 1.1 parts of methyl acrylate, and 5 kg of a methacrylate-based polymerization reaction product containing 13.3 parts of methanol were heated to 150 ° C. in the stirring tank 1 and uniformly stirred and mixed. This polymerization reaction product was supplied to the heater 3 at a flow rate of 1 kg / h by the metering pump 2, heated to 190 ° C., and then injected into the vent extruder 9 from the supply port 5 at the lower part of the barrel of the first vent 6. . At this time, the pressure in the heater introduction part is controlled by the control valve 4.
It was maintained at 5 kg / cm 2 . The generated volatile component vapor was discharged from the first vent 6, and the volatile component condensed through the condenser 10 was collected in the storage tank 11. Volatiles were recovered at 0.37 kg / h, 93% of theory, containing 61.0% methyl methacrylate, 2.6% methyl acrylate and 36.4% methanol. Also, the first vent port 6
The internal pressure was maintained at 0.9 to 1.1 atm.

【0043】第一ベント6により脱揮された直後の重合
体中には残存揮発分としてメチルメタクリレート4.2
%、メチルアクリレート0.12%及びメタノール0.
05%が含まれた。バレル温度230℃に維持してこの
重合体を加熱溶融し、真空度150Torrに設定した
第二ベント8により更に揮発分を除去した。重合体はダ
イ13を通して連続的に押し出されペレタイザー14に
よりペレットを得た。ベント押出機9の第二ベント8か
ら排気された揮発成分蒸気は蒸留搭15に導かれ高沸点
成分を分離除去し、コンデンサーにより単量体成分を回
収した。得られた重合体中の残存揮発成分はメチルメタ
クリレート0.33%、メチルアクリレート0.01%
及びメタノールは検出限界以下であり、総揮発分濃度
0.34%であった。また全光線透過率は93%であ
り、無色透明で良好な外観を呈した。
Immediately after being devolatilized by the first vent 6, methyl methacrylate 4.2 as residual volatile components in the polymer.
%, Methyl acrylate 0.12% and methanol 0.
05% was included. This polymer was heated and melted while maintaining the barrel temperature at 230 ° C., and the volatile matter was further removed by the second vent 8 set at a vacuum degree of 150 Torr. The polymer was continuously extruded through a die 13 and pelletized by a pelletizer 14. The volatile component vapor exhausted from the second vent 8 of the vent extruder 9 was introduced into the distillation column 15 to separate and remove the high boiling point component, and the monomer component was recovered by the condenser. The remaining volatile components in the obtained polymer are 0.33% methyl methacrylate and 0.01% methyl acrylate.
And methanol were below the detection limit, and the total volatile matter concentration was 0.34%. The total light transmittance was 93%, which was colorless and transparent and had a good appearance.

【0044】実施例2〜6 実施例1と同一組成の重合反応生成物を調製し、同様の
方法により各種条件で脱揮処理し、ペレット状の重合体
を取得した。表1に重合反応生成物の組成、加熱温度及
び供給速度、脱揮・押出処理条件、得られた重合体の残
存揮発成分及び全光線透過率を示す。
Examples 2 to 6 Polymerization reaction products having the same composition as in Example 1 were prepared and devolatilized under various conditions by the same method to obtain pelletized polymers. Table 1 shows the composition of the polymerization reaction product, the heating temperature and supply rate, the devolatilization / extrusion processing conditions, the remaining volatile components of the obtained polymer, and the total light transmittance.

【0045】実施例7 図2の装置を用い150℃に保って実施例1と同一組成
の重合反応生成物を調製し、1kg/hの流量で加熱器
3に供給し190℃まで昇温した後、ベント押出機の第
一ベントの内部に設置したノズル15を通してスクリュ
ーに向けてフラッシュしたところ、外径約4mmの発泡
ストランド状に分離された重合体はそのまま押出機内に
フィードされた。フラッシュされた直後の重合体中には
残存揮発分としてメチルメタクリレート4.1%、メチ
ルアクリレート0.12%及びメタノール0.04%が
含まれた。
Example 7 A polymerization reaction product having the same composition as in Example 1 was prepared by using the apparatus shown in FIG. 2 and keeping it at 150 ° C., and was supplied to the heater 3 at a flow rate of 1 kg / h and heated to 190 ° C. After that, when flushed toward the screw through the nozzle 15 installed inside the first vent of the vent extruder, the polymer separated into foamed strands having an outer diameter of about 4 mm was fed as it was into the extruder. Immediately after flushing, the polymer contained 4.1% methyl methacrylate, 0.12% methyl acrylate and 0.04% methanol as residual volatiles.

【0046】その後重合体は実施例1と同様にバレル温
度230℃で加熱溶融され、真空度150Torrに設
定した第二ベント8によりさらに揮発分を除去した後押
し出された。得られた重合体中の残存揮発成分はメチル
メタクリレート0.33%、メチルアクリレート0.0
1%及びメタノールは検出限界以下であり、総揮発分濃
度0.34%であった。また全光線透過率は93%であ
り、無色透明で良好な外観を呈した。
After that, the polymer was heated and melted at a barrel temperature of 230 ° C. as in Example 1, and further volatile components were removed by the second vent 8 set to a vacuum degree of 150 Torr and then extruded. The remaining volatile components in the obtained polymer were methyl methacrylate 0.33% and methyl acrylate 0.0.
1% and methanol were below the detection limit, and the total volatile matter concentration was 0.34%. The total light transmittance was 93%, which was colorless and transparent and had a good appearance.

【0047】実施例8〜10 実施例1と同一組成の重合反応生成物を調製し、実施例
7と同様の方法により各種条件で脱揮処理し、ペレット
状の重合体を取得した。結果は同様に表2に示されてい
る。
Examples 8 to 10 Polymerization reaction products having the same composition as in Example 1 were prepared and devolatilized under various conditions in the same manner as in Example 7 to obtain pelletized polymers. The results are also shown in Table 2.

【0048】実施例11〜14 重合体、メチルメタクリレート、メチルアクリレート及
び溶媒の濃度の異なる重合反応生成物を調製し、実施例
1と同様の方法により脱揮処理し、ペレット状の重合体
を取得した。結果は同様に表2、表3に示されている。
Examples 11 to 14 Polymerization reaction products having different concentrations of the polymer, methyl methacrylate, methyl acrylate and solvent were prepared and subjected to volatilization treatment in the same manner as in Example 1 to obtain a pelletized polymer. did. The results are also shown in Tables 2 and 3.

【0049】実施例15 アセトンを溶媒として用いて重合反応生成物を調製し、
実施例1と同様の方法により脱揮処理し、ペレット状の
重合体を取得した。結果は同様に表3に示されている。
Example 15 A polymerization reaction product was prepared by using acetone as a solvent,
A devolatilization treatment was carried out in the same manner as in Example 1 to obtain a polymer in pellet form. The results are also shown in Table 3.

【0050】実施例16〜17 エチルアクリレート及びn−ブチルアクリレートをコモ
ノマーとして用いて重合反応生成物を調製し、実施例1
と同様の方法により脱揮処理し、ペレット状の重合体を
取得した。結果は同様に表3に示されている。
Examples 16 to 17 Polymerization reaction products were prepared using ethyl acrylate and n-butyl acrylate as comonomers, and Example 1
A devolatilization treatment was carried out in the same manner as in 1. to obtain a pelletized polymer. The results are also shown in Table 3.

【0051】実施例18〜19 スチレンをコモノマーとして用いて重合反応生成物を調
製し、実施例1と同様の方法により脱揮処理し、ペレッ
ト状の重合体を取得した。結果は同様に表3〜表4に示
されている。
Examples 18 to 19 Polymerization reaction products were prepared by using styrene as a comonomer, and volatilized by the same method as in Example 1 to obtain pelletized polymers. The results are also shown in Tables 3-4.

【0052】比較例1 図1の装置を用い150℃に保ってポリメチルメタクリ
レート60部、メチルメタクリレート25.6部、メチ
ルアクリレート1.1部及びトルエン13.3部を含む
重合反応生成物を調製した。この重合反応生成物を1k
g/hの流量で加熱器3に供給し190℃まで昇温した
後、実施例1と同様の条件で脱揮したが、このときの加
熱器3の内圧は8kg/cm2 であった。第一ベント6
により脱揮された直後の重合体中には残存揮発分として
メチルメタクリレート9.5%、メチルアクリレート
0.28%及びトルエン4.93%が含まれた。この重
合体から同様の方法により第二ベント8によりさらに揮
発分を除去した後押し出して得られたペレット状重合体
はメチルメタクリレート1.16%、メチルアクリレー
ト0.03%及びトルエン0.60%を含み、総揮発分
濃度1.79%であった。
Comparative Example 1 A polymerization reaction product containing 60 parts of polymethyl methacrylate, 25.6 parts of methyl methacrylate, 1.1 parts of methyl acrylate and 13.3 parts of toluene was prepared by using the apparatus shown in FIG. did. 1 k of this polymerization reaction product
After supplying to the heater 3 at a flow rate of g / h and raising the temperature to 190 ° C., it was devolatilized under the same conditions as in Example 1, but the internal pressure of the heater 3 at this time was 8 kg / cm 2 . First vent 6
Immediately after being devolatilized by, the polymer contained 9.5% of methyl methacrylate, 0.28% of methyl acrylate and 4.93% of toluene as residual volatile components. A pellet-like polymer obtained by further removing volatile components from this polymer by a second vent 8 by the same method and then extruding the polymer contained 1.16% of methyl methacrylate, 0.03% of methyl acrylate and 0.60% of toluene. Including, the total volatile matter concentration was 1.79%.

【0053】比較例2 図1の装置を用い150℃に保ってポリメチルメタクリ
レート71部、メチルメタクリレート27.8部及びメ
チルアクリレート1.2部を含む重合反応生成物を調製
した。この重合反応生成物を1kg/hの流量で加熱器
3に供給し190℃まで昇温した後、実施例1と同様の
条件で脱揮したが、このときの加熱器3の内圧は7kg
/cm2 であった。第一ベント6により脱揮された直後
の重合体中には残存揮発分としてメチルメタクリレート
9.7%及びメチルアクリレート0.28%が含まれ
た。この重合体から同様の方法により第二ベント8によ
りさらに 揮発分を除去した後押し出して得られたペレ
ット状重合体は残存揮発成分としてメチルメタクリレー
ト1.18%及びメチルアクリレート0.03%を含
み、総揮発分濃度1.21%であった。
Comparative Example 2 A polymerization reaction product containing 71 parts of polymethyl methacrylate, 27.8 parts of methyl methacrylate and 1.2 parts of methyl acrylate was prepared by using the apparatus shown in FIG. This polymerization reaction product was supplied to the heater 3 at a flow rate of 1 kg / h, heated to 190 ° C., and then devolatilized under the same conditions as in Example 1, but the internal pressure of the heater 3 at this time was 7 kg.
Was / cm 2 . Immediately after being devolatilized by the first vent 6, the polymer contained 9.7% of methyl methacrylate and 0.28% of methyl acrylate as residual volatile components. The pellet-like polymer obtained by further removing the volatile matter from this polymer by the second vent 8 by the same method and then extruding, contained 1.18% of methyl methacrylate and 0.03% of methyl acrylate as residual volatile components, The total volatile matter concentration was 1.21%.

【0054】参考例1 図3の装置を用いて連続溶液重合を行った。メチルメタ
クリレート83.2部、メチルアクリレート3.5部、
メタノール13.3部、ジ-tert-アミルパーオキサイド
0.01部及びn−ドデシルメルカプタン0.23部を
調合槽17において窒素雰囲気下に混合し原料液を調製
する。重合槽16に予めこの原料液4.6kgを添加し
て密閉し、150℃に昇温して単量体転化率69%及び
重合体濃度60%に到達するまで重合させ、次に原料液
を1kg/hの流量で重合槽16に連続的に供給する。
重合槽16における反応温度を150℃、平均滞留時間
を4.6時間にすることにより重量平均分子量約10万
のポリメチルメタクリレート系重合体60部、メチルメ
タクリレート25.6部、メチルアクリレート1.1部
及びメタノール13.3部を含む重合反応生成物が生成
された。
Reference Example 1 Continuous solution polymerization was carried out using the apparatus shown in FIG. 83.2 parts of methyl methacrylate, 3.5 parts of methyl acrylate,
13.3 parts of methanol, 0.01 part of di-tert-amyl peroxide and 0.23 part of n-dodecyl mercaptan are mixed in a blending tank 17 under a nitrogen atmosphere to prepare a raw material liquid. 4.6 kg of this raw material liquid was added to the polymerization tank 16 in advance and the mixture was sealed, and the temperature was raised to 150 ° C. to polymerize until the monomer conversion rate reached 69% and the polymer concentration reached 60%. It is continuously supplied to the polymerization tank 16 at a flow rate of 1 kg / h.
By setting the reaction temperature in the polymerization tank 16 to 150 ° C. and the average residence time to 4.6 hours, 60 parts of a polymethylmethacrylate polymer having a weight average molecular weight of about 100,000, 25.6 parts of methyl methacrylate, and 1.1 parts of methyl acrylate. And a polymerization reaction product containing 13.3 parts of methanol was produced.

【0055】実施例20 図3の装置を用いて参考例1で生成される重合反応生成
物を連続的に定量ポンプ2により1kg/hの流量で加
熱器3に供給して190℃まで昇温した後、これから実
施例1と同様に第一ベント6のバレル下部の供給口5か
らベント押出機9内に注入した。このときコントロール
バルブ4によって加熱器3の内圧は25kg/cm2
維持された。第一ベント6により脱揮された直後の重合
体中には残存揮発成分としてメチルメタクリレート4.
1%、メチルアクリレート0.12%及びメタノール
0.04%が含まれた。、この重合体を実施例1と同様
の方法により第二ベント8によりさらに揮発分を除去し
た後押し出して得られたペレット中の残存揮発成分はメ
チルメタクリレート0.33%及びメチルアクリレート
0.01%を含み、総揮発分濃度0.34%であった。
メタノールは検出限界以下であった。また全光線透過率
は93%であり、無色透明で良好な外観を呈した。
Example 20 Using the apparatus shown in FIG. 3, the polymerization reaction product produced in Reference Example 1 was continuously fed to the heater 3 at a flow rate of 1 kg / h by the metering pump 2 and heated to 190 ° C. After that, like the first embodiment, it was injected into the vent extruder 9 from the supply port 5 at the bottom of the barrel of the first vent 6. At this time, the internal pressure of the heater 3 was maintained at 25 kg / cm 2 by the control valve 4. Methyl methacrylate as a residual volatile component in the polymer immediately after being devolatilized by the first vent 6.
1%, methyl acrylate 0.12% and methanol 0.04% were included. The residual volatile components in the pellets obtained by extruding this polymer after removing the volatile components by the second vent 8 in the same manner as in Example 1 contained 0.33% of methyl methacrylate and 0.01% of methyl acrylate. And the total volatile content was 0.34%.
Methanol was below the detection limit. The total light transmittance was 93%, which was colorless and transparent and had a good appearance.

【0056】参考例2 図4の装置を用いて連続塊状重合を行った。メチルメタ
クリレート96部、メチルアクリレート4部、ジ-tert-
ブチルパーオキサイド0.018部及びn−ドデシルメ
ルカプタン0.2部を調合槽17において窒素雰囲気下
に混合し原料液を調製する。重合槽17に予めこの原料
液4.6kgを添加して密閉し、150℃に昇温して単
量体転化率60%に到達するまで重合させ、次に原料液
を1kg/hの流量で重合槽16に連続的に供給する。
重合槽16における反応温度を150℃、平均滞留時間
を約3時間にすることにより重量平均分子量約10万の
ポリメチルメタクリレート系重合体60部、メチルメタ
クリレート38.4部及びメチルアクリレート1.6部
を含む重合反応生成物が生成された。
Reference Example 2 Continuous bulk polymerization was carried out using the apparatus shown in FIG. Methyl methacrylate 96 parts, methyl acrylate 4 parts, di-tert-
0.018 parts of butyl peroxide and 0.2 parts of n-dodecyl mercaptan are mixed in a mixing tank 17 under a nitrogen atmosphere to prepare a raw material liquid. This raw material liquid (4.6 kg) was added to the polymerization tank 17 in advance and sealed, and the temperature was raised to 150 ° C. to polymerize until the monomer conversion rate reached 60%, and then the raw material liquid was flowed at a flow rate of 1 kg / h. It is continuously supplied to the polymerization tank 16.
By setting the reaction temperature in the polymerization tank 16 to 150 ° C. and the average residence time to about 3 hours, 60 parts of a polymethylmethacrylate polymer having a weight average molecular weight of about 100,000, 38.4 parts of methyl methacrylate and 1.6 parts of methyl acrylate. A polymerization reaction product containing was produced.

【0057】実施例21 図4の装置を用いて参考例2で生成される重合反応生成
物を定量ポンプ2により1kg/hの流量で連続的に抜
出した後、メタノールを注入口20より0.153kg
/hの流量で追添加して混合器19により均一に混合し
ポリメチルメタクリレート52.0部、メチルメタクリ
レート33.3部、メチルアクリレート1.4部及びメ
タノール13.3部を含む重合反応生成物を調製した。
この重合反応生成物を1.153kg/hの流量で連続
的に加熱器3に供給して190℃まで昇温した後、これ
から実施例1と同様に第一ベント6のバレル下部の供給
口5からベント押出機9内に注入した。このときコント
ロールバルブ4によって加熱器3の内圧は24kg/c
2 に維持された。第一ベント6により脱揮された直後
の重合体中には、残存揮発成分としてメチルメタクリレ
ート4.2%、メチルアクリレート0.12%及びメタ
ノール0.05%が含まれた。この重合体を実施例1と
同様の条件でベント押出機で処理して得られたペレット
中の残存揮発成分はメチルメタクリレート0.33%及
びメチルアクリレート0.01%を含み、総揮発分濃度
0.34%であった。メタノールは検出限界以下であっ
た。また全光線透過率は93%であり、無色透明で良好
な外観を呈した。
Example 21 The polymerization reaction product produced in Reference Example 2 was continuously withdrawn by the metering pump 2 at a flow rate of 1 kg / h using the apparatus shown in FIG. 153 kg
Polymerization reaction product containing 52.0 parts of polymethyl methacrylate, 33.3 parts of methyl methacrylate, 1.4 parts of methyl acrylate, and 13.3 parts of methanol, which was additionally added at a flow rate of 1 / h and uniformly mixed by the mixer 19. Was prepared.
This polymerization reaction product was continuously supplied to the heater 3 at a flow rate of 1.153 kg / h to raise the temperature to 190 ° C., and thereafter, as in Example 1, the supply port 5 at the bottom of the barrel of the first vent 6 was used. Was injected into the vent extruder 9. At this time, the internal pressure of the heater 3 is 24 kg / c by the control valve 4.
It was maintained at m 2 . Immediately after being devolatilized by the first vent 6, 4.2% of methyl methacrylate, 0.12% of methyl acrylate and 0.05% of methanol were contained as residual volatile components in the polymer. The residual volatile components in the pellets obtained by treating this polymer with a vent extruder under the same conditions as in Example 1 contained 0.33% methyl methacrylate and 0.01% methyl acrylate, and the total volatile content concentration was 0. It was 0.34%. Methanol was below the detection limit. The total light transmittance was 93%, which was colorless and transparent and had a good appearance.

【0058】[0058]

【発明の効果】本発明によれば、メタノール等の所定の
溶媒を含む重合反応生成物を加熱かつ加圧し、ベント押
出機に直接供給することにより、揮発成分が分離しなが
ら重合体が取り出され、容易に重合体が分離・精製で
き、着色等の変質を伴うことなく高品質の重合体を製造
することが可能となる。低廉な設備費用で,脱気効率の
向上と長期にわたる装置の安定運転が可能となる。
According to the present invention, the polymerization reaction product containing a predetermined solvent such as methanol is heated and pressurized and directly supplied to the vent extruder, whereby the polymer is taken out while the volatile components are separated. Further, the polymer can be easily separated and purified, and a high quality polymer can be produced without causing deterioration such as coloring. It is possible to improve degassing efficiency and operate the equipment stably for a long time with low equipment cost.

【0059】[0059]

【表1】実施例番号 1 2 3 4 5 6 使用コモノマー MA MA MA MA MA MA 重合体中の組成(%) 4 4 4 4 4 4 使用溶媒 Me Me Me Me Me Me 重合反応生成物組成(%) 重合体 60.0 60.0 60.0 60.0 60.0 60.0 MMA 25.6 25.6 25.6 25.6 25.6 25.6 コモノマー 1.1 1.1 1.1 1.1 1.1 1.1 溶媒 13.3 13.3 13.3 13.3 13.3 13.3 重合反応生成物の供給 供給温度(℃) 150 150 150 150 150 150 供給速度(kg/hr) 1.0 1.0 1.0 1.0 1.0 1.0 加熱器出口温度(℃) 190 190 190 190 170 210 加熱器入口内圧(kg/cm2) 25 35 25 20 15 30 ベント押出機への供給方法 (A) (A) (A) (A) (A) (A) 第一ベント内圧(気圧) 1.0 1.0 1.4 0.6 1.0 1.0 フラッシュ直後の残存揮発成分(%) MMA 4.20 4.70 4.90 2.40 5.60 3.00 コモノマー 0.12 0.14 0.14 0.07 0.16 0.09 溶媒 0.05 0.04 0.05 0.04 0.05 0.04 押出機バレル温度(℃) 230 230 230 230 230 230 第二ベント真空度(Torr) 150 150 150 150 150 150 押出ペレット中の残存揮発成分(%) MMA 0.33 0.36 0.37 0.23 0.41 0.27 コモノマー 0.01 0.01 0.01 0.01 0.01 0.01 溶媒 ND ND ND ND ND ND 全光線透過率(%) 93 93 93 93 93 93 Table 1 Example No. 1 2 3 4 5 6 Comonomers used MA MA MA MA MA MA MA MA Composition in polymer (%) 4 4 4 4 4 4 Solvent used Me Me Me Me Me Me Me Polymerization reaction composition (%) ) Polymer 60.0 60.0 60.0 60.0 60.0 60.0 MMA 25.6 25.6 25.6 25.6 25.6 25.6 Comonomer 1.1 1.1 1.1 1.1 1.1 1.1 Solvent 13.3 13.3 13.3 13.3 13.3 13.3 Supply of polymerization reaction product Supply temperature (℃) 150 150 150 150 150 150 Supply rate ( kg / hr) 1.0 1.0 1.0 1.0 1.0 1.0 Heater outlet temperature (℃) 190 190 190 190 170 210 Heater inlet internal pressure (kg / cm2) 25 35 25 20 15 30 Vent extruder supply method (A) (A) ) (A) (A) (A) (A) First vent internal pressure (atmospheric pressure) 1.0 1.0 1.4 0.6 1.0 1.0 Residual volatile components (%) immediately after flushing MMA 4.20 4.70 4.90 2.40 5.60 3.00 Comonomers 0.12 0.14 0.14 0.07 0.16 0.09 Solvent 0.05 0.04 0.05 0.04 0.05 0.04 Extruder barrel temperature (℃) 230 230 230 230 230 230 Second vent vacuum degree (Torr) 150 150 150 150 150 150 150 Residual volatile components in extruded pellets (%) MMA 0.33 0.36 0.37 0.23 0.41 0.27 Comonomers 0.01 0.01 0.01 0.01 0.01 0.01 Solvent ND ND ND ND ND ND Total light transmittance (%) 93 93 93 93 93 93

【0060】[0060]

【表2】実施例番号 7 8 9 10 11 12 使用コモノマー 重合体中の組成(%) MA MA MA MA MA MA 使用溶媒 4 4 4 4 4 4 重合反応生成物組成(%)Me Me Me Me Me Me 重合体 60.0 60.0 60.0 60.0 50.0 70.0 MMA 25.6 25.6 25.6 25.6 35.2 20.5 コモノマー 1.1 1.1 1.1 1.1 1.5 0.9 溶媒 13.3 13.3 13.3 13.3 13.3 8.6 重合反応生成物の供給 供給温度(℃) 150 150 150 150 150 150 供給速度(kg/hr) 1.0 1.0 1.0 1.0 1.0 1.0 加熱器出口温度(℃) 190 190 190 200 190 190 加熱器入口内圧(kg/cm2) 25 35 20 25 27 15 ベント押出機への供給方法 (B) (B) (B) (B) (A) (A) 第一ベント内圧(気圧) 1.0 1.0 0.6 1.0 1.0 1.0 フラッシュ直後の残存揮発成分(%) MMA 4.10 4.60 2.30 3.60 5.20 2.10 コモノマー 0.12 0.13 0.07 0.11 0.15 0.06 溶媒 0.04 0.05 0.04 0.05 0.04 0.05 押出機バレル温度(℃) 230 230 230 230 230 230 第二ベント真空度(Torr) 150 150 150 150 150 150 押出ペレット中の残存揮発成分(%) MMA 0.33 0.36 0.23 0.30 0.39 0.22 コモノマー 0.01 0.01 0.01 0.01 0.01 0.01 溶媒 ND ND ND ND ND ND 全光線透過率(%) 93 93 93 93 93 93 Table 2 Example No. 7 8 9 10 11 12 Comonomers Used Composition in polymer (%) MA MA MA MA MA MA MA Used solvent 4 4 4 4 4 4 Composition of polymerization reaction product (%) Me Me Me Me Me Me Me Polymer 60.0 60.0 60.0 60.0 50.0 70.0 MMA 25.6 25.6 25.6 25.6 35.2 20.5 Comonomer 1.1 1.1 1.1 1.1 1.5 0.9 Solvent 13.3 13.3 13.3 13.3 13.3 8.6 Supply of Polymerization Reaction Product Supply Temperature (℃) 150 150 150 150 150 150 Supply Rate ( kg / hr) 1.0 1.0 1.0 1.0 1.0 1.0 Heater outlet temperature (℃) 190 190 190 200 190 190 Heater inlet internal pressure (kg / cm2) 25 35 20 25 27 15 Vent extruder supply method (B) (B) ) (B) (B) (A) (A) First vent internal pressure (atmospheric pressure) 1.0 1.0 0.6 1.0 1.0 1.0 Remaining volatile components (%) immediately after flushing MMA 4.10 4.60 2.30 3.60 5.20 2.10 Comonomers 0.12 0.13 0.07 0.11 0.15 0.06 Solvent 0.04 0.05 0.04 0.05 0.04 0.05 extruder barrel temperature (℃) 230 230 230 230 230 230 second vent Check the degree (Torr) 150 150 150 150 150 150 residual volatiles extrusion pellet (%) MMA 0.33 0.36 0.23 0.30 0.39 0.22 comonomer 0.01 0.01 0.01 0.01 0.01 0.01 solvent ND ND ND ND ND ND Total light transmittance (%) 93 93 93 93 93 93

【0061】[0061]

【表3】実施例番号 13 14 15 16 17 18 使用コモノマー MA MA MA EA BA ST 重合体中の組成(%) 4 9 4 4 4 20 使用溶媒 Me Me AC Me Me Me 重合反応生成物組成(%) 重合体 40.6 60.0 60.0 60.0 60.0 69.4 MMA 28.2 24.3 25.6 25.6 25.6 13.9 コモノマー 1.2 2.4 1.1 1.1 1.1 3.5 溶媒 30.0 13.3 13.3 13.3 13.3 13.3 重合反応生成物の供給 供給温度(℃) 150 150 150 150 150 150 供給速度(kg/hr) 1.0 1.0 1.0 1.0 1.0 1.0 加熱器出口温度(℃) 190 190 190 190 190 190 加熱器入口内圧(kg/cm2) 30 25 20 25 25 25 ベント押出機への供給方法 (A) (A) (A) (A) (A) (A) 第一ベント内圧(気圧) 1.0 1.0 1.0 1.0 1.0 1.0 フラッシュ後の残存揮発成分(%) MMA 1.50 3.40 3.60 4.10 4.20 2.31 コモノマー 0.04 0.24 0.11 0.14 0.18 0.64 溶媒 0.04 0.05 0.04 0.04 0.05 0.04 押出機バレル温度(℃) 230 230 230 230 230 220 第二ベント真空度(Torr) 200 150 150 150 150 150 押出ペレット中の残存揮発成分(%) MMA 0.18 0.29 0.40 0.33 0.33 0.23 コモノマー 0.01 0.02 0.01 0.01 0.01 0.06 溶媒 ND ND ND ND ND ND 全光線透過率(%) 93 93 93 93 93 92 [Table 3] Example No. 13 14 15 16 17 18 18 Comonomer used MA MA MA MA EA BA ST Composition in polymer (%) 4 9 4 4 4 20 Solvent used Me Me AC Me Me Me Polymerization reaction composition (%) ) Polymer 40.6 60.0 60.0 60.0 60.0 69.4 MMA 28.2 24.3 25.6 25.6 25.6 13.9 Comonomer 1.2 2.4 1.1 1.1 1.1 3.5 Solvent 30.0 13.3 13.3 13.3 13.3 13.3 Supply of polymerization reaction product Supply temperature (℃) 150 150 150 150 150 150 Supply rate ( kg / hr) 1.0 1.0 1.0 1.0 1.0 1.0 Heater outlet temperature (℃) 190 190 190 190 190 190 Inside pressure of heater inlet (kg / cm2) 30 25 20 25 25 25 Vent extruder supply method (A) (A) ) (A) (A) (A) (A) First vent internal pressure (atmospheric pressure) 1.0 1.0 1.0 1.0 1.0 1.0 Residual volatile components after flash (%) MMA 1.50 3.40 3.60 4.10 4.20 2.31 Comonomer 0.04 0.24 0.11 0.14 0.18 0.64 Solvent 0.04 0.05 0.04 0.04 0.05 0.04 extruder barrel temperature (℃) 230 230 230 230 230 220 second base Doo vacuum (Torr) 200 150 150 150 150 150 residual volatiles extrusion pellet (%) MMA 0.18 0.29 0.40 0.33 0.33 0.23 comonomer 0.01 0.02 0.01 0.01 0.01 0.06 solvent ND ND ND ND ND ND Total light transmittance (%) 93 93 93 93 93 92

【0062】[0062]

【表4】実施例、比較例番号 実19 実20 実21 比1 比2 使用コモノマー 重合体中の組成(%) ST MA MA MA MA 使用溶媒 40 4 4 4 4 重合反応生成物組成(%) Me Me Me TOL なし 重合体 69.4 60.0 60.0 60.0 71.0 MMA 10.4 25.6 25.6 25.6 27.8 コモノマー 6.9 1.1 1.1 1.1 1.2 溶媒 13.3 13.3 13.3 13.3 0.0 重合反応生成物 供給温度(℃) 150 150 150 150 150 供給速度(kg/hr) 1.0 1.0 1.0 1.0 1.0 加熱器出口温度(℃) 190 190 190 190 190 加熱器入口内圧(kg/cm2) 25 25 24 8 7 ベント押出機への供給方法 (A) (A) (A) (A) (A) 第一ベント内圧(気圧) 1.0 1.0 1.0 1.0 1.0 フラッシュ後の残存揮発成分(℃) MMA 1.73 4.10 4.20 9.50 9.70 コモノマー 1.27 0.12 0.12 0.28 0.28 溶媒 0.05 0.04 0.05 4.93 0.00 押出機バレル温度(℃) 220 230 230 230 230 第二ベント真空度(Torr) 150 150 150 150 150 押出ペレット中の残存揮発成分(%) MMA 0.20 0.33 0.33 1.16 1.18 コモノマー 0.14 0.01 0.01 0.03 0.03 溶媒 ND ND ND 0.60 0.00 全光線透過率(%) 92 93 93 93 93 [Table 4] Example, Comparative Example No. 19 Actual 20 Actual 21 Ratio 1 Ratio 2 Comonomers used Composition in polymer (%) ST MA MA MA MA Solvent used 40 4 4 4 4 Composition of polymerization reaction product (%) Polymer without Me Me Me TOL 69.4 60.0 60.0 60.0 71.0 MMA 10.4 25.6 25.6 25.6 27.8 Comonomer 6.9 1.1 1.1 1.1 1.2 Solvent 13.3 13.3 13.3 13.3 0.0 Polymerization reaction product Supply temperature (℃) 150 150 150 150 150 Supply rate (kg / hr) ) 1.0 1.0 1.0 1.0 1.0 Heater outlet temperature (℃) 190 190 190 190 190 Heater inlet internal pressure (kg / cm2) 25 25 24 8 7 Vent Extruder supply method (A) (A) (A) (A) ) (A) Internal pressure of first vent (atmospheric pressure) 1.0 1.0 1.0 1.0 1.0 Remaining volatile components after flushing (° C) MMA 1.73 4.10 4.20 9.50 9.70 Comonomer 1.27 0.12 0.12 0.28 0.28 Solvent 0.05 0.04 0.05 4.93 0.00 Extruder barrel temperature (° C) 220 230 230 230 230 second vent vacuum degree (Torr) residual of 150 150 150 150 150 extrusion pellets Volatile component (%) MMA 0.20 0.33 0.33 1.16 1.18 comonomer 0.14 0.01 0.01 0.03 0.03 solvent ND ND ND 0.60 0.00 Total light transmittance (%) 92 93 93 93 93

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1〜6、実施例11〜19及び比較例
1〜2で用いた装置のフローの概念図である。
FIG. 1 is a conceptual diagram of a flow of an apparatus used in Examples 1 to 6, Examples 11 to 19 and Comparative Examples 1 and 2.

【図2】 実施例7〜10で用いた装置のフローの概念
図である。
FIG. 2 is a conceptual diagram of a flow of the apparatus used in Examples 7 to 10.

【図3】 実施例20で用いた装置のフローの概念図で
ある。
FIG. 3 is a conceptual diagram of a flow of the apparatus used in Example 20.

【図4】 塊状あるいは溶液重合法による重合体製造プ
ロセスにおいて重合液に前記溶媒を追添加・混合するこ
とにより本発明の方法を適用した実施例21のフローの
概念図である。
FIG. 4 is a conceptual diagram of a flow of Example 21 in which the method of the present invention is applied by additionally adding and mixing the solvent to the polymerization liquid in the polymer production process by the bulk or solution polymerization method.

【符号の説明】[Explanation of symbols]

1:攪拌槽 11:受器 2:定量ポンプ 12:蒸留搭 3:加熱器 13:押出機ダ
イ 4:コントロールバルブ 14:ペレタイ
ザー 5:押出機供給口 15:フラッシ
ュノズル 6:押出機第一ベント 16:完全混合
重合反応器 7:窒素導入口 17:調合槽 8:押出機第二ベント 18:定量ポン
プ 9:ベント押出機 19:混合機 10:凝縮器(コンデンサー) 20:注入口
1: Stirring tank 11: Receiver 2: Metering pump 12: Distillation tower 3: Heater 13: Extruder die 4: Control valve 14: Pelletizer 5: Extruder supply port 15: Flash nozzle 6: Extruder first vent 16 : Complete mixing polymerization reactor 7: Nitrogen inlet 17: Mixing tank 8: Extruder second vent 18: Metering pump 9: Vent extruder 19: Mixer 10: Condenser (condenser) 20: Inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日永田 真一 神奈川県平塚市東八幡5丁目6番2号 三 菱瓦斯化学株式会社平塚研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Hinagata 5-6-2 Higashihachiman, Hiratsuka-shi, Kanagawa Sanryo Gas Chemical Co., Ltd. Hiratsuka Laboratory

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 未反応単量体、反応副生成物、および、
メタノールとアセトンから選ばれた少なくとも一種以上
の溶媒からなる揮発成分を含む重合反応生成物から揮発
成分を分離除去し、重合反応生成物を精製する方法にお
いて、(A)該重合反応生成物を温度120〜270℃
に加熱し、(B)該重合反応生成物をバレル温度170
〜280℃にした複数のベント口を有する押出機に供給
し、先ず0.3〜3気圧に保持された第一ベントから前
記揮発成分の大部分を分離回収し、(C)次いで、ベン
ト部圧力1〜400Torrに設定した少なくとも1つ
以上の後方ベントで残りの揮発成分を除去することによ
り該重合体組成物の残存揮発分含量を1重量%以下にす
ることを特徴とする重合反応生成物の精製方法。
1. An unreacted monomer, a reaction by-product, and
In a method for purifying a polymerization reaction product by separating and removing the volatile component from a polymerization reaction product containing a volatile component consisting of at least one solvent selected from methanol and acetone, (A) temperature of the polymerization reaction product 120-270 ° C
And (B) the polymerization reaction product at a barrel temperature of 170.
The mixture is supplied to an extruder having a plurality of vent ports at 280 ° C, and most of the volatile components are separated and recovered from the first vent held at 0.3 to 3 atm, and (C) then the vent part. A polymerization reaction product characterized in that the residual volatile content of the polymer composition is reduced to 1% by weight or less by removing the remaining volatile components with at least one rear vent set to a pressure of 1 to 400 Torr. Purification method.
【請求項2】 重合反応生成物の押出機への供給口が、
第一ベント近傍のバレルに設置された供給口である請求
項1に記載の重合反応生成物の精製方法。
2. The supply port of the polymerization reaction product to the extruder is
The method for purifying a polymerization reaction product according to claim 1, which is a supply port installed in a barrel near the first vent.
【請求項3】 重合反応生成物の押出機への供給が、第
一ベント内部に設置したノズルを通して該押出機のスク
リューに向けてフラッシュさせる供給である請求項1記
載の重合反応生成物の精製方法。
3. The purification of the polymerization reaction product according to claim 1, wherein the supply of the polymerization reaction product to the extruder is a supply for flushing toward the screw of the extruder through a nozzle installed inside the first vent. Method.
【請求項4】 未反応単量体、反応副生成物、および、
メタノールとアセトンから選ばれた少なくとも一種以上
の溶媒からなる揮発成分を含む重合反応生成物を温度1
50〜250℃に加熱し、0.5〜1.5気圧に保持さ
れた押出機の第一ベントの内部もしくは近傍のバレルに
設置された供給口から該押出機のスクリュー上に放出す
る請求項1に記載の重合反応生成物の精製方法。
4. An unreacted monomer, a reaction by-product, and
A polymerization reaction product containing a volatile component composed of at least one solvent selected from methanol and acetone is used at a temperature of 1
Discharge to the screw of the extruder from a supply port installed in the barrel inside or near the first vent of the extruder which is heated to 50 to 250 ° C. and kept at 0.5 to 1.5 atm. 1. The method for purifying a polymerization reaction product according to 1.
【請求項5】 押出機が、高温シリンダー内で回転する
スクリューによって加熱溶融したポリマーを混練・可塑
化した後、ダイより押し出すことのできる単軸押出機で
ある請求項1〜4に記載の重合反応生成物の精製方法。
5. The polymerization according to claim 1, wherein the extruder is a single-screw extruder capable of extruding from a die after kneading and plasticizing the polymer heated and melted by a screw rotating in a high temperature cylinder. A method for purifying a reaction product.
【請求項6】 押出機が、高温シリンダー内で回転する
スクリューによって加熱溶融したポリマーを混練・可塑
化した後、ダイより押し出すことのできる二軸押出機で
ある請求項1〜4に記載の重合反応生成物の精製方法。
6. The polymerization according to claim 1, wherein the extruder is a twin-screw extruder capable of extruding from a die after kneading and plasticizing a polymer heated and melted by a screw rotating in a high temperature cylinder. A method for purifying a reaction product.
【請求項7】 重合反応生成物を押出機のスクリュー上
に放出する際、ノズルを使用し、そのノズルがニードル
バルブ、コントロールバルブ、ベントプラグおよびスト
ランドダイから選ばれたものである請求項1〜5に記載
の重合反応生成物の精製方法。
7. A nozzle is used for discharging the polymerization reaction product onto a screw of an extruder, and the nozzle is selected from a needle valve, a control valve, a vent plug and a strand die. 5. The method for purifying a polymerization reaction product according to item 5.
【請求項8】 重合反応生成物に含まれる溶媒がメタノ
ールである請求項1記載の重合反応生成物の精製方法。
8. The method for purifying a polymerization reaction product according to claim 1, wherein the solvent contained in the polymerization reaction product is methanol.
【請求項9】 重合反応生成物が未反応単量体5〜55
重量%および溶媒5〜65重量%を含むものである請求
項1に記載の重合反応生成物の精製方法。
9. The polymerization reaction product comprises unreacted monomers 5 to 55.
The method for purifying a polymerization reaction product according to claim 1, wherein the method comprises 5% by weight and 5 to 65% by weight of a solvent.
【請求項10】 重合反応生成物中の重合体が、75〜
100重量%のメチルメタクリレートと0〜25%のア
クリル酸エステル類からなる単量体成分を重合して得ら
れた重合体である請求項1記載の重合反応生成物の精製
方法。
10. The polymer in the polymerization reaction product is 75 to
The method for purifying a polymerization reaction product according to claim 1, which is a polymer obtained by polymerizing a monomer component composed of 100% by weight of methyl methacrylate and 0 to 25% of acrylic acid ester.
【請求項11】 重合反応生成物中の重合体が、5〜7
4重量%のメチルメタクリレートと26〜95重量%の
スチレンからなる単量体成分を重合して得られた重合体
である請求項1に記載の重合反応生成物の精製方法。
11. The polymer in the polymerization reaction product is 5 to 7
The method for purifying a polymerization reaction product according to claim 1, which is a polymer obtained by polymerizing a monomer component composed of 4% by weight of methyl methacrylate and 26 to 95% by weight of styrene.
【請求項12】 重合反応生成物が塊状重合法または溶
液重合法により得られた生成物に、更に溶媒を添加混合
して調製されたものである請求項1記載の重合反応生成
物の精製方法。
12. The method for purifying a polymerization reaction product according to claim 1, wherein the polymerization reaction product is prepared by adding and mixing a solvent to the product obtained by the bulk polymerization method or the solution polymerization method. .
JP04549495A 1995-03-06 1995-03-06 Purification method of polymerization reaction product Expired - Fee Related JP4180125B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP04549495A JP4180125B2 (en) 1995-03-06 1995-03-06 Purification method of polymerization reaction product
TW85110727A TW399061B (en) 1995-03-06 1996-09-03 Process for preparing methacrylic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04549495A JP4180125B2 (en) 1995-03-06 1995-03-06 Purification method of polymerization reaction product

Publications (2)

Publication Number Publication Date
JPH08239420A true JPH08239420A (en) 1996-09-17
JP4180125B2 JP4180125B2 (en) 2008-11-12

Family

ID=12720961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04549495A Expired - Fee Related JP4180125B2 (en) 1995-03-06 1995-03-06 Purification method of polymerization reaction product

Country Status (1)

Country Link
JP (1) JP4180125B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014430A1 (en) * 1999-08-25 2001-03-01 Daikin Industries, Ltd. Method for stabilizing fluorocopolymers
JP4942344B2 (en) * 2003-12-09 2012-05-30 三菱レイヨン株式会社 Graft copolymer, impact strength improver using the same, thermoplastic resin composition, and method for producing graft copolymer
WO2020256018A1 (en) * 2019-06-18 2020-12-24 日本ゼオン株式会社 Method for producing acrylic rubber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014430A1 (en) * 1999-08-25 2001-03-01 Daikin Industries, Ltd. Method for stabilizing fluorocopolymers
US6846904B1 (en) 1999-08-25 2005-01-25 Daikin Industries, Ltd. Method for stabilizing fluorocopolymers
JP4942344B2 (en) * 2003-12-09 2012-05-30 三菱レイヨン株式会社 Graft copolymer, impact strength improver using the same, thermoplastic resin composition, and method for producing graft copolymer
WO2020256018A1 (en) * 2019-06-18 2020-12-24 日本ゼオン株式会社 Method for producing acrylic rubber
JP2020203993A (en) * 2019-06-18 2020-12-24 日本ゼオン株式会社 Method for manufacturing acryl rubber

Also Published As

Publication number Publication date
JP4180125B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
KR100473179B1 (en) Manufacturing method of polymer
CN113999332B (en) Supercritical carbon dioxide assisted periodic devolatilization process and device
CN1083458C (en) Method for removing volatile substances from polymer composition
US5708133A (en) Process for purifying polymer
JPH0153682B2 (en)
US5565537A (en) Maleimide-based copolymer and process for producing it
JPH01172401A (en) Continuous solution polymerization of acrylic ester
EP0348800B1 (en) Process for preparation of modified methacrylic resin molding material
KR100324986B1 (en) Purification Method of Polymer
JPH08239420A (en) Method for purifying polymerization product
JPS6289710A (en) Production of methacrylic resin
WO2016031849A1 (en) Method for producing (meth)acrylic resin composition
JP3013951B2 (en) Acrylic resin manufacturing method
CN114272878B (en) Devolatilization feeding two-in-one device, solution polymerization device and polymerization method
JPH10306107A (en) Production of polymer
JPH08127618A (en) Method for purifying polymerization reactional product
JP2002161109A (en) Method for removing organic solvent and manufacturing pellet from solution of isobutylene-based block copolymer
JP3078652B2 (en) Maleimide copolymer
JP3981769B2 (en) Purification method of polymerization reaction product
JP3269033B2 (en) Method for producing maleimide-based copolymer
US20210122086A1 (en) Extrusion method for producing a thermoplastic molding compound, and device for carrying out the method
JPH048754A (en) Production of thermoplastic resin and apparatus therefor
JPH11129319A (en) Production of thermoplastic polymer and screw devolatilizing extruder used therein
CN1050087C (en) Direct extruding shaping method for thermoplastic resin
WO2021107533A1 (en) Graft copolymer and method for preparing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061211

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees