JPH08236440A - Method and device for crystallizing amorphous thin film - Google Patents

Method and device for crystallizing amorphous thin film

Info

Publication number
JPH08236440A
JPH08236440A JP3393195A JP3393195A JPH08236440A JP H08236440 A JPH08236440 A JP H08236440A JP 3393195 A JP3393195 A JP 3393195A JP 3393195 A JP3393195 A JP 3393195A JP H08236440 A JPH08236440 A JP H08236440A
Authority
JP
Japan
Prior art keywords
thin film
light
crystallization
amorphous
amorphous thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3393195A
Other languages
Japanese (ja)
Other versions
JP3433856B2 (en
Inventor
Takanori Kato
隆典 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP03393195A priority Critical patent/JP3433856B2/en
Publication of JPH08236440A publication Critical patent/JPH08236440A/en
Application granted granted Critical
Publication of JP3433856B2 publication Critical patent/JP3433856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE: To readily and easily detect the degree of crystallization of an amorphous thin film deposited on a transparent substrate by passing monitoring light through the thin film and the substrate and detecting the variation of the transmissivity of the thin film. CONSTITUTION: The amorphous thin film 12a of a sample 2 obtained by depositing an amorphous thin film 12a on a transparent substrate 11 of glass, etc., is irradiated with the concentrated light of light (SR light) 1 emitted from a synchrotron. When the thin film 12a is irradiated with the concentrated light, the thin film 12a is crystallized and a crystallized area 12b is formed. Then, for example, He-Ne laser light 3 irradiates the area 12b through a lens 4 and the light transmitted through the area 12b and substrate 11 is received with a photodiode 5 to measure the transmissivity of the area 12b. When the measured transmissivity of the area 12a is compared with that of the thin film 12a measured before crystallization, the degree of crystallization of the thin film 12a can be evaluated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非晶質薄膜の結晶化方
法および装置に関し、特に結晶化の程度をその場観察で
きる非晶質薄膜の結晶化方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for crystallizing an amorphous thin film, and more particularly to a method and an apparatus for crystallizing an amorphous thin film capable of observing the degree of crystallization in situ.

【0002】[0002]

【従来の技術】非晶質シリコン薄膜は、太陽電池、半導
体装置等に用いられている。また、基板上に一旦非晶質
シリコン薄膜を形成し、その後熱処理、レーザ光照射等
により結晶化(多結晶化)することも電気的特徴の改善
等のために行なわれている。
2. Description of the Related Art Amorphous silicon thin films are used in solar cells, semiconductor devices and the like. In order to improve electrical characteristics, it is also performed that an amorphous silicon thin film is once formed on a substrate and then crystallized (polycrystallized) by heat treatment, laser light irradiation, or the like.

【0003】基板上に形成された非晶質シリコン薄膜を
真空中または不活性(ないし非酸化性)雰囲気中で熱的
あるいは非熱的に結晶化する場合、通常はその場で結晶
化の程度を検出することはせず、予め求めた結晶化条件
(パラメータ)の下で行なっている。
When an amorphous silicon thin film formed on a substrate is thermally or non-thermally crystallized in a vacuum or in an inert (or non-oxidizing) atmosphere, the degree of crystallization is usually in-situ. Is not detected, but is performed under the crystallization conditions (parameters) obtained in advance.

【0004】結晶化条件を求めるためには、種々の条件
で作製した結晶化サンプルを分析しておく必要がある。
したがって、サンプル作製と分析に大幅な時間を必要と
する。
In order to obtain the crystallization conditions, it is necessary to analyze crystallization samples prepared under various conditions.
Therefore, a considerable amount of time is required for sample preparation and analysis.

【0005】シリコン薄膜の結晶化を検出する方法とし
て、(a)ラマン散乱分光法、(b)X線回折法、
(c)反射高速電子線回折(RHEED)法、(d)光
学的反射率測定法等が知られている。ラマン散乱は結晶
の格子振動を検出する方法であり、X線回折は結晶の格
子面によるX線の回折を検出する方法であり、RHEE
DはX線回折と同様、結晶の格子面による電子線の回折
を測定する方法であり、いずれも結晶特有の性質を測定
する方法である。光学反射率測定法は、非晶質材料と結
晶材料との反射スペクトルの相違を測定する方法であ
る。
As a method for detecting crystallization of a silicon thin film, (a) Raman scattering spectroscopy, (b) X-ray diffraction method,
Known methods include (c) reflection high-energy electron diffraction (RHEED) method and (d) optical reflectance measurement method. Raman scattering is a method of detecting the lattice vibration of the crystal, X-ray diffraction is a method of detecting the diffraction of the X-ray by the lattice plane of the crystal, and RHEE
Similar to X-ray diffraction, D is a method for measuring the diffraction of an electron beam by the crystal lattice plane of the crystal, and both are methods for measuring the properties peculiar to the crystal. The optical reflectance measurement method is a method of measuring a difference in reflection spectrum between an amorphous material and a crystalline material.

【0006】ラマン散乱、X線回折は、結晶化薄膜の詳
細な物性を調べるためには極めて有効な方法であるが、
装置が大型かつ複雑となり、真空中あるいは小さなスペ
ースに組み込むことには制限がある。
Raman scattering and X-ray diffraction are extremely effective methods for investigating the detailed physical properties of the crystallized thin film.
The device becomes large and complicated, and there is a limitation in incorporating it in a vacuum or in a small space.

【0007】また、RHEEDは、電子銃と蛍光板で構
成でき、比較的構造が簡単であるが、対象とする観察物
がチャージアップを生じない導電性のものに限られる。
また、結晶化を検出できる深さが10nm程度と極めて
浅く、数百nm程度の結晶化薄膜では深さ方向の結晶化
の程度を検出できない。
The RHEED can be composed of an electron gun and a fluorescent plate and has a relatively simple structure, but the observation object is limited to a conductive one which does not cause charge-up.
Further, the depth at which crystallization can be detected is extremely shallow at about 10 nm, and the degree of crystallization in the depth direction cannot be detected at a crystallization thin film of about several hundred nm.

【0008】光学反射率は、反射率自身が非晶質と結晶
質の差に比較的鈍感である他、反射面の平坦性に大きく
左右され、正確な結晶化検出が難しい。また、反射光の
侵入深さは極めて浅いため、RHEED同様、観察物表
面近傍での状態しか検出できない。
The optical reflectance is relatively insensitive to the difference between amorphous and crystalline, and the optical reflectance is largely influenced by the flatness of the reflecting surface, and it is difficult to detect crystallization accurately. Further, since the penetration depth of the reflected light is extremely shallow, only the state near the surface of the observed object can be detected as in the case of RHEED.

【0009】[0009]

【発明が解決しようとする課題】非晶質薄膜の結晶化を
行なう際、結晶化の程度をその場観察することは種々の
理由により容易でなかった。
When crystallizing an amorphous thin film, it is not easy to observe the degree of crystallization in situ for various reasons.

【0010】本発明の目的は、非晶質薄膜の結晶化の程
度を簡便かつ容易に検出することのできる非晶質薄膜結
晶化方法および装置を提供することである。本発明の他
の目的は、非晶質薄膜の結晶化の程度をその場観察する
ことのできる非晶質薄膜結晶化方法および装置を提供す
ることである。
An object of the present invention is to provide an amorphous thin film crystallization method and apparatus which can detect the degree of crystallization of an amorphous thin film simply and easily. It is another object of the present invention to provide an amorphous thin film crystallization method and apparatus capable of observing the degree of crystallization of an amorphous thin film in-situ.

【0011】[0011]

【課題を解決するための手段】本発明の非晶質薄膜結晶
化方法は、透明基板上に堆積した非晶質の薄膜の結晶化
を行なう結晶化工程と、前記薄膜と透明基板を通してモ
ニタ光を透過させ、光透過率を測定するモニタ工程と、
前記光透過率の変化から結晶化の程度を判断する評価工
程とを有する。
A method for crystallizing an amorphous thin film of the present invention comprises a crystallization step for crystallizing an amorphous thin film deposited on a transparent substrate, and a monitor light passing through the thin film and the transparent substrate. And a monitor process for measuring the light transmittance,
And an evaluation step of judging the degree of crystallization from the change in the light transmittance.

【0012】たとえば、非晶質薄膜は非晶質シリコンで
あり、モニタ光は非晶質シリコンの吸収領域の光であ
り、かつ透明基板の透明領域の光である。結晶化工程
は、たとえばシンクロトロン放射(SR)光またはレー
ザ光を非晶質薄膜に照射することによって行なえる。
For example, the amorphous thin film is amorphous silicon, and the monitor light is light in the absorption region of amorphous silicon and light in the transparent region of the transparent substrate. The crystallization step can be performed by irradiating the amorphous thin film with synchrotron radiation (SR) light or laser light, for example.

【0013】透明基板は、典型的にはガラス、またはシ
リコンである。本発明の薄膜結晶化装置は、非晶質薄膜
の結晶化を行なうためのエネルギを与える結晶化手段
と、非晶質薄膜の吸収領域のモニタ光を発するモニタ光
源と、モニタ光を受光する検出器とを有する。
The transparent substrate is typically glass or silicon. The thin film crystallization apparatus of the present invention comprises a crystallization means for giving energy for crystallization of an amorphous thin film, a monitor light source for emitting monitor light of an absorption region of the amorphous thin film, and a detection for receiving monitor light. And a vessel.

【0014】結晶化手段は、たとえばSR光源またはレ
ーザ光源であり、モニタ光源はたとえば可視領域、また
は近赤外領域の光を発する光源である。
The crystallization means is, for example, an SR light source or a laser light source, and the monitor light source is, for example, a light source which emits light in the visible region or near infrared region.

【0015】[0015]

【作用】非晶質材料と結晶質材料とは、同一物質であっ
てもその光吸収特性が異なる。たとえば、非晶質シリコ
ンと結晶質シリコンのバンド端近傍の吸収係数は、大き
く異なる。非晶質薄膜が結晶化すると、光透過率が大き
く変化することになる。この光透過率の変化から結晶化
の程度を判断することができる。
The amorphous material and the crystalline material have different light absorption characteristics even if they are the same substance. For example, the absorption coefficients near the band edges of amorphous silicon and crystalline silicon are very different. If the amorphous thin film is crystallized, the light transmittance will change significantly. The degree of crystallization can be determined from this change in light transmittance.

【0016】非晶質シリコンはバンド端近傍の吸収が結
晶質シリコンよりも強い。この波長領域で光透過率を測
定することにより、結晶化の程度を判断することができ
る。非晶質の結晶化は、熱的に行なえるのみでなく、S
R光やレーザ光によって光励起によっても行なうことが
できる。
Amorphous silicon has stronger absorption near the band edge than crystalline silicon. By measuring the light transmittance in this wavelength range, the degree of crystallization can be judged. Amorphous crystallization can be performed not only thermally but also with S
It can also be performed by photoexcitation with R light or laser light.

【0017】ガラス基板やシリコン基板上に非晶質薄膜
を形成し、結晶化すると受光装置や半導体装置との結合
において用途が広い。モニタ光として可視領域または近
赤外領域の光を利用すると、取扱いが容易であり、かつ
非晶質シリコンと結晶質シリコンの識別に効率的であ
る。
When an amorphous thin film is formed on a glass substrate or a silicon substrate and crystallized, it has a wide range of applications in coupling with a light receiving device or a semiconductor device. When light in the visible region or near-infrared region is used as the monitor light, it is easy to handle and efficient in distinguishing between amorphous silicon and crystalline silicon.

【0018】[0018]

【実施例】図1は、本発明の実施例による非晶質薄膜の
結晶化装置を概略的に示す。試料2は、ガラス等の透明
基板11の上に非晶質薄膜12aを堆積したものであ
る。非晶質薄膜12aは、たとえば非晶質シリコン薄膜
である。
FIG. 1 schematically shows an apparatus for crystallizing an amorphous thin film according to an embodiment of the present invention. Sample 2 is obtained by depositing an amorphous thin film 12a on a transparent substrate 11 such as glass. The amorphous thin film 12a is, for example, an amorphous silicon thin film.

【0019】この試料2の非晶質薄膜に、集光したSR
光1を照射する。SR光1が照射された非晶質薄膜は、
結晶化を行い、結晶化領域12bが発生する。結晶化領
域は通常多結晶である。SR光1を図中縦方向に走査す
れば、結晶化領域12bを広く形成することができる。
SR focused on the amorphous thin film of sample 2
Irradiate light 1. The amorphous thin film irradiated with SR light 1
Crystallization is performed to generate a crystallized region 12b. The crystallized region is usually polycrystalline. By scanning the SR light 1 in the vertical direction in the figure, the crystallization region 12b can be formed widely.

【0020】なお、SR光1の代わりにエキシマレーザ
等のレーザ光を用いることもできる。レーザ光を用いる
場合は、試料の表面上で2次元的にレーザビームを走査
することが好ましい。
Instead of the SR light 1, a laser light such as an excimer laser can be used. When using a laser beam, it is preferable to two-dimensionally scan the surface of the sample with a laser beam.

【0021】また、非晶質材料の結晶化は熱的に行なう
こともできる。抵抗炉の加熱によって結晶化を行なうこ
ともできるが、本実施例においては測定を同一温度で行
なうことが望まれ。迅速に室温に降温するためには、加
熱的に結晶化を行なう場合にも熱はラピッドサーマルア
ニール(RTA)等のランプ加熱によることが望まし
い。
Also, the crystallization of the amorphous material can be performed thermally. Although crystallization can be performed by heating the resistance furnace, it is desirable that the measurement be performed at the same temperature in this embodiment. In order to rapidly reduce the temperature to room temperature, it is desirable that the heat is generated by lamp heating such as rapid thermal annealing (RTA) even when performing thermal crystallization.

【0022】非晶質薄膜12aを結晶化した結晶化領域
12bに、たとえばHe−Neレーザ3をレンズ4を介
して照射する。He−Neレーザの波長(632.8n
m)はシリコンの吸収領域内にある。薄膜の結晶化領域
12b、ガラス基板11を透過した光を、ホトダイオー
ド5で受光する。このようにして結晶化領域12bの光
透過率を測定することができる。結晶化する前にも、非
晶質薄膜12aの光透過率を測定しておく。結晶化前後
の光透過率を比較して結晶化の程度を評価する。
The crystallized region 12b obtained by crystallizing the amorphous thin film 12a is irradiated with, for example, a He--Ne laser 3 through a lens 4. Wavelength of He-Ne laser (632.8n
m) is in the absorption region of silicon. The light transmitted through the thin film crystallization region 12b and the glass substrate 11 is received by the photodiode 5. In this way, the light transmittance of the crystallized region 12b can be measured. Before the crystallization, the light transmittance of the amorphous thin film 12a is measured. The degree of crystallization is evaluated by comparing the light transmittances before and after crystallization.

【0023】なお、結晶化をモニタするためのモニタ光
源としてHe−Neレーザを用いる場合を説明したが、
モニタ光源は他の波長のレーザや発光ダイオードでもよ
い。また、受光器としてもホトダイオード以外を用いて
もよい。
The case where a He--Ne laser is used as a monitor light source for monitoring crystallization has been described.
The monitor light source may be a laser of another wavelength or a light emitting diode. Further, as the light receiver, a device other than the photodiode may be used.

【0024】一般的に、物質は温度が変わると光吸収特
性が変化する。したがって、透過率の測定は同一温度で
行なうことが望ましい。また、物質を高温にすると、物
質自体から光が放射する。この光も受光器に入射し、あ
たかも光透過率が高いような測定結果を与える。この点
からも測定は常温付近でほぼ同一温度で行なうことが望
ましい。
Generally, a substance changes its light absorption characteristics when the temperature changes. Therefore, it is desirable to measure the transmittance at the same temperature. Further, when a substance is heated to a high temperature, light is emitted from the substance itself. This light also enters the light receiver and gives a measurement result as if the light transmittance was high. From this point as well, it is desirable that the measurement be performed near room temperature and at approximately the same temperature.

【0025】以下、非晶質シリコンを結晶化する場合を
例にとって説明する。図2は、非晶質シリコンと結晶質
シリコンの光透過特性を示すグラフである。図中、横軸
は光子エネルギをeVで示し、縦軸は吸収係数をcm-1
で示す。曲線pは非晶質シリコン(a−Si)の吸収係
数を示し、曲線qは水素で終端化した非晶質シリコン
(a−Si:H)の吸収係数を示す。また、曲線rは結
晶質シリコンの吸収係数を示す。
The case of crystallizing amorphous silicon will be described below as an example. FIG. 2 is a graph showing the light transmission characteristics of amorphous silicon and crystalline silicon. In the figure, the horizontal axis represents the photon energy in eV, and the vertical axis represents the absorption coefficient in cm −1.
Indicated by The curve p shows the absorption coefficient of amorphous silicon (a-Si), and the curve q shows the absorption coefficient of amorphous silicon (a-Si: H) terminated with hydrogen. The curve r shows the absorption coefficient of crystalline silicon.

【0026】図に示した波長(エネルギ)範囲において
は、非晶質シリコン(a−Si)の吸収係数pは常に結
晶質シリコンの吸収係数rよりも約1桁程度以上高い。
非晶質シリコン(a−Si:H)の吸収係数は、長波長
側では結晶質シリコンよりも低いが、短波長になるに従
って結晶質シリコンよりも高くなり、やがて非晶質シリ
コン(a−Si)の吸収係数とほぼ同等の値となる。
In the wavelength (energy) range shown in the figure, the absorption coefficient p of amorphous silicon (a-Si) is always higher than the absorption coefficient r of crystalline silicon by about one digit or more.
The absorption coefficient of amorphous silicon (a-Si: H) is lower than that of crystalline silicon on the long wavelength side, but becomes higher than that of crystalline silicon at shorter wavelengths, and eventually amorphous silicon (a-Si: H). ) It becomes almost the same value as the absorption coefficient.

【0027】可視光領域(1.9−4.0eV)での吸
収係数は、常に非晶質シリコン(a−Siおよびa−S
i:H)の方が結晶質シリコンよりも著しく高い。この
性質を利用することにより、非晶質シリコンか結晶質シ
リコンかを見分けることができる。
The absorption coefficient in the visible light region (1.9-4.0 eV) is always amorphous silicon (a-Si and a-S).
i: H) is significantly higher than crystalline silicon. By utilizing this property, it is possible to distinguish between amorphous silicon and crystalline silicon.

【0028】可視光領域で透明なガラス等の透明基板上
に非晶質シリコンを堆積し、結晶化を行なった場合、数
百nm程度の非晶質シリコン薄膜が結晶質シリコンに変
換すると、可視光に対してはほとんど不透明であった膜
から光を透過する膜へ変化する。ガラス基板可視光に対
し透明であるので、光透過率をモニタすることにより、
シリコン薄膜の結晶化を評価することができる。
When amorphous silicon is deposited on a transparent substrate such as glass which is transparent in the visible light region and crystallized, when an amorphous silicon thin film of about several hundred nm is converted into crystalline silicon, it becomes visible. The film changes from a film that was almost opaque to light to a film that transmits light. Since the glass substrate is transparent to visible light, by monitoring the light transmittance,
The crystallization of silicon thin films can be evaluated.

【0029】水素終端化非晶質シリコン(a−Si:
H)の場合には、低エネルギ側で吸収係数が小さくなる
ので、モニタ光の光子エネルギを2.5eV以上に選択
することがさらに好ましい。
Hydrogen-terminated amorphous silicon (a-Si:
In the case of H), since the absorption coefficient becomes small on the low energy side, it is more preferable to select the photon energy of the monitor light to be 2.5 eV or more.

【0030】なお、非晶質シリコン(a−Si)の場
合、結晶質シリコンが透明領域になった長波長領域でも
かなり強い吸収が続く。この非晶質シリコンが吸収性で
あり、結晶質シリコンが透明である波長領域の光を用い
れば、基板が結晶シリコンである場合の非晶質シリコン
薄膜の結晶化の検出も行なえる。基板上に酸化シリコン
膜が形成されていても、酸化シリコンの透明領域のモニ
タ光を用いればよい。
Incidentally, in the case of amorphous silicon (a-Si), a considerably strong absorption continues even in a long wavelength region where crystalline silicon becomes a transparent region. By using light in the wavelength range in which the amorphous silicon is absorptive and the crystalline silicon is transparent, it is possible to detect the crystallization of the amorphous silicon thin film when the substrate is crystalline silicon. Even if the silicon oxide film is formed on the substrate, monitor light in the transparent region of silicon oxide may be used.

【0031】測定する薄膜の厚さdに対し、μd=1程
度になるようにモニタ光の波長を選択することにより、
薄膜の厚さが数十nmから数μmに変化しても同様の測
定を容易に行なうことができる。
By selecting the wavelength of the monitor light so that μd = 1 with respect to the thickness d of the thin film to be measured,
Similar measurement can be easily performed even when the thickness of the thin film changes from several tens of nm to several μm.

【0032】以下、非晶質シリコン薄膜の結晶化のため
の励起源として、SR光を用いる場合を説明する。SR
光照射による固相成長法は、たとえば特願平5−316
869号明細書の実施例中に開示した方法を用いること
ができる。
The case where SR light is used as an excitation source for crystallization of an amorphous silicon thin film will be described below. SR
The solid phase growth method by light irradiation is disclosed in, for example, Japanese Patent Application No. 5-316.
The methods disclosed in the examples of 869 can be used.

【0033】たとえば、ガラス基板上に非晶質シリコン
(a−Si)膜を厚さ約200nm堆積し、試料2を形
成する。このように作製した試料2を、図1に示す結晶
化装置中に配置し、He−Neレーザ光3を照射し、ホ
トダイオード5で受光して光透過率を常にモニタする。
入射光強度は試料2のない時に測定するか、別の光路を
形成して測定する。但し、モニタ光源の光強度が一定で
あれば、必ずしも測定しなくてもよい。
For example, a sample 2 is formed by depositing an amorphous silicon (a-Si) film on a glass substrate to a thickness of about 200 nm. The sample 2 manufactured in this way is placed in the crystallization apparatus shown in FIG. 1, irradiated with He—Ne laser light 3, and received by the photodiode 5 to constantly monitor the light transmittance.
The incident light intensity is measured when there is no sample 2 or by forming another optical path. However, if the light intensity of the monitor light source is constant, it is not always necessary to measure.

【0034】集光SR光1を試料2に照射する。試料2
上の非晶質シリコン薄膜12aに集光SR光1が照射す
ると、非晶質シリコンが結晶化し、結晶化領域12bが
発生する。
The sample 2 is irradiated with the condensed SR light 1. Sample 2
When the upper portion of the amorphous silicon thin film 12a is irradiated with the condensed SR light 1, the amorphous silicon is crystallized and the crystallized region 12b is generated.

【0035】He−Neレーザ光は波長632.8nm
であり、この波長の光を検出する検出器としては、検出
波長領域320−1000nm、ピーク波長720nm
のシリコンホトダイオードを用いることができる。な
お、図1に示した構成要素は、たとえば総て真空容器中
に配置される。
The He-Ne laser light has a wavelength of 632.8 nm.
As a detector for detecting light of this wavelength, the detection wavelength region is 320 to 1000 nm, and the peak wavelength is 720 nm.
The silicon photodiode of can be used. The components shown in FIG. 1 are all arranged in a vacuum container, for example.

【0036】非晶質シリコンの結晶化に伴う透過光の増
大は、次のようにして見積もることができる。なお、ガ
ラス基板での吸収はないものと考える。入射光強度をI
0 、透過光強度をIとすると、 I=I0 exp〔−μd〕 …(1) となる。ここで、μは膜の吸収係数であり、dは膜の厚
さである。
The increase in transmitted light accompanying crystallization of amorphous silicon can be estimated as follows. It is assumed that there is no absorption in the glass substrate. The incident light intensity is I
0 and the transmitted light intensity is I, then I = I 0 exp [−μd] (1) Here, μ is the absorption coefficient of the film and d is the thickness of the film.

【0037】非晶質シリコンの吸収係数をμa とする
と、結晶化開始前の光透過率は、 I(0)=I0 exp〔−μa d〕 …(2) となる。I(0)は、時刻0での透過光強度を表す。時
刻t=te で結晶化が終了したとする。結晶化シリコン
の吸収係数をμc とすると、 I(te )=I0 exp〔−μc d〕 …(3) となる。なお、膜の厚さが変化する場合は、da 、dc
で式(2)、(3)のdを置き換える。
Assuming that the absorption coefficient of amorphous silicon is μ a , the light transmittance before the start of crystallization is I (0) = I 0 exp [−μ a d] (2) I (0) represents the transmitted light intensity at time 0. Crystallization and was completed in time t = t e. When the absorption coefficient of the crystallized silicon and mu c, the I (t e) = I 0 exp [- [mu] c d] ... (3). When the film thickness changes, d a , d c
Replace d in equations (2) and (3) with.

【0038】SR光照射中は、非晶質薄膜が次第に結晶
質に変化する。時刻tでの非晶質領域の実質的厚さをd
a (t)とし、結晶質領域の厚さをdc (t)とする
と、結晶化工程途中での透過光強度は、 I(t)=I0 exp〔−μa a (t)−μc c (t)〕 …(4) となる。d=200nm、μa =7×104 (c
-1)、μc =4×103 (cm-1)とすれば、 I(0)=0.247I,I(te )=0.923I I(te )/I(0)≒3.7 …(5) が得られる。つまり結晶化に伴い、透過光強度が非晶質
の時の透過光強度の約3.7倍になる。
During SR light irradiation, the amorphous thin film gradually changes to crystalline. The substantial thickness of the amorphous region at time t is d
Letting a (t) and the thickness of the crystalline region be d c (t), the transmitted light intensity during the crystallization process is I (t) = I 0 exp [−μ a d a (t) − μ c d c (t)] (4) d = 200 nm, μ a = 7 × 10 4 (c
m -1), μ c = 4 × 10 3 ( if cm -1), I (0) = 0.247I, I (t e) = 0.923I I (t e) / I (0) ≒ 3.7 (5) is obtained. In other words, with crystallization, the transmitted light intensity becomes about 3.7 times the transmitted light intensity when it is amorphous.

【0039】実際に集光SR光1を照射し、ホトダイオ
ード5の出力の時間変化をモニタした時の結果を図3に
示す。図3において、横軸は時間を示し、縦軸は透過光
強度(任意単位)を示す。
FIG. 3 shows the result of actually irradiating the condensed SR light 1 and monitoring the time change of the output of the photodiode 5. In FIG. 3, the horizontal axis represents time and the vertical axis represents transmitted light intensity (arbitrary unit).

【0040】曲線sのs1の部分は、SR光を未だ照射
していない時の透過光強度を示す。すなわち、s1はI
(0)を示している。曲線のs2の部分は、SR光の照
射が始まった時の透過光強度を示す。SR光が照射され
ると、SR光に含まれる可視光成分がホトダイオードに
入射する。また、SR光照射によりガラス基板が発光
し、その発光がホトダイオードに入射する。このため、
見掛け上透過強度が上昇したように見える。
The portion s1 of the curve s shows the transmitted light intensity when SR light is not yet radiated. That is, s1 is I
(0) is shown. The s2 part of the curve shows the transmitted light intensity when the SR light irradiation starts. When the SR light is irradiated, the visible light component contained in the SR light enters the photodiode. Further, the SR substrate irradiation causes the glass substrate to emit light, and the emitted light enters the photodiode. For this reason,
Apparently, the transmission intensity seems to have increased.

【0041】SR光照射により、薄膜およびガラス基板
の温度が上昇する。この温度上昇、特に非晶質シリコン
薄膜の温度上昇により、試料の吸収係数が大きくなる。
このため、曲線のs3の部分では透過光強度が急激に減
少する。
The SR light irradiation raises the temperatures of the thin film and the glass substrate. This rise in temperature, especially the temperature of the amorphous silicon thin film, increases the absorption coefficient of the sample.
Therefore, the transmitted light intensity sharply decreases at the portion s3 of the curve.

【0042】やがて、非晶質薄膜が次第に結晶化する。
非晶質薄膜が結晶化すると、薄膜の吸収係数は低下す
る。曲線のs3の部分からs4の部分にかけて透過光強
度が上昇しているのは、薄膜の結晶化を表すものと考え
られる。曲線のs5の部分では透過光強度がほぼ一定と
なっている。薄膜の結晶化がほぼ完了しているものと考
えられる。
The amorphous thin film is gradually crystallized.
When the amorphous thin film crystallizes, the absorption coefficient of the thin film decreases. The increase in the transmitted light intensity from the s3 portion to the s4 portion of the curve is considered to represent crystallization of the thin film. The transmitted light intensity is almost constant in the portion s5 of the curve. It is considered that the crystallization of the thin film is almost completed.

【0043】曲線のs6の部分でSR光の照射を終了す
る。SR光照射終了により、SR光中の可視光成分の入
射およびガラスの発光の終了により、ホトダイオードが
受ける光は減少し、透過光強度は見掛け上減少したよう
に見える。
Irradiation of SR light ends at the portion s6 of the curve. When the SR light irradiation is completed, the visible light component in the SR light is incident and the light emission of the glass is completed, so that the light received by the photodiode is reduced and the transmitted light intensity seems to be apparently reduced.

【0044】SR光照射を終了すると、加熱されていた
試料は次第に冷却する。曲線のs7の部分は、試料が次
第に降温し、吸収係数が減少する過程を示していると考
えられる。やがて試料が常温になると、吸収係数の変化
も終了し、曲線s8の部分に示すように透過光強度が一
定となる。
Upon completion of SR light irradiation, the heated sample is gradually cooled. It is considered that the portion s7 of the curve shows the process in which the sample gradually cools and the absorption coefficient decreases. When the temperature of the sample reaches room temperature, the change of the absorption coefficient also ends, and the transmitted light intensity becomes constant as shown by the curve s8.

【0045】この状態は、結晶化工程を終了した後の薄
膜の透過光強度を示していると考えられる。したがっ
て、曲線のs1の部分とs8の部分の透過光強度の比を
とれば、シリコン薄膜の結晶化の程度がわかることにな
る。
This state is considered to indicate the transmitted light intensity of the thin film after the crystallization process is completed. Therefore, the degree of crystallization of the silicon thin film can be known by taking the ratio of the transmitted light intensities of the portion s1 and the portion s8 of the curve.

【0046】図3に示した測定においては、I(0)=
6.5、I(te )=8.1であり、I(te )/I
(0)=1.25となる。この値は、薄膜が結晶化した
時の結晶化前後の透過光強度の比として算出した式
(5)の値3.7よりも小さい。これは、集光SR光に
よる結晶化領域の縦方向の幅150μmであり、モニタ
用He−Neレーザ光のスポットが約φ500μmであ
ることによる。すなわち、入射レーザ光は結晶化領域の
みに照射されているわけではなく、結晶化が行なわれな
い非晶質領域にも照射されているためである。
In the measurement shown in FIG. 3, I (0) =
6.5, is I (t e) = 8.1, I (t e) / I
(0) = 1.25. This value is smaller than the value 3.7 of the formula (5) calculated as the ratio of the transmitted light intensity before and after crystallization when the thin film is crystallized. This is because the vertical width of the crystallization region by the condensed SR light is 150 μm, and the spot of the He-Ne laser light for monitoring is about φ500 μm. That is, the incident laser light is not only applied to the crystallized region, but also to the amorphous region which is not crystallized.

【0047】測定領域の面積をA+C、その内結晶化さ
れる領域の面積をC、非晶質のまま保たれる領域の面積
をAとすると、 I(te )/I(0)=〔Aexp(−μa d)+Cexp(−μc d)〕 /(A+C)exp(−μa d) …(6) (6)式を用いて計算すると、I(te )/I(0)=
1.26となる。この値は、実験より得られた値1.2
5とほぼ等しい。
The area of A + C of the measurement region, when the area of a region that is an inner crystallize C, and the area of the region is maintained remains amorphous and A, I (t e) / I (0) = [ Aexp (-μ a d) + Cexp (-μ c d) ] / is calculated using the (a + C) exp (-μ a d) ... (6) (6) formula, I (t e) / I (0) =
It becomes 1.26. This value is the value 1.2 obtained from the experiment.
It is almost equal to 5.

【0048】なお、この試料を装置外に取出し、ラマン
散乱分光で測定したところ、SR光照射領域で結晶化が
完了していることが確認できた。なお、試料上でSR光
を走査し、モニタ光が結晶化領域のみに照射されるよう
にすれば、より感度のよい測定が行なえる。
When this sample was taken out of the apparatus and measured by Raman scattering spectroscopy, it was confirmed that crystallization was completed in the SR light irradiation region. If SR light is scanned on the sample and the monitor light is irradiated only on the crystallization region, more sensitive measurement can be performed.

【0049】また、モニタ光の照射領域を縮小すること
で、微小領域の結晶化検出をより高精度で行なうことも
可能である。以上実施例に沿って本発明を説明したが、
本発明は実施例に制限されるものではない。たとえば、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。
Further, by reducing the irradiation area of the monitor light, it is possible to detect the crystallization of a minute area with higher accuracy. The present invention has been described above with reference to the embodiments,
The invention is not limited to the examples. For example,
It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0050】[0050]

【発明の効果】以上説明したように、本発明によれば、
光学的に透明な基板上の非晶質膜を結晶化させた時、非
晶質薄膜の結晶化が終了したことを簡便に検出すること
ができる。
As described above, according to the present invention,
When the amorphous film on the optically transparent substrate is crystallized, the completion of crystallization of the amorphous thin film can be easily detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による非晶質薄膜の結晶化装置
を示す概略図である。
FIG. 1 is a schematic view showing an apparatus for crystallizing an amorphous thin film according to an embodiment of the present invention.

【図2】非晶質シリコンおよび結晶質シリコンの吸収係
数を示すスペクトルである。
FIG. 2 is a spectrum showing absorption coefficients of amorphous silicon and crystalline silicon.

【図3】SR光を用いた非晶質薄膜の結晶化実験におい
て、測定した透過光強度の時間変化を示すグラフであ
る。
FIG. 3 is a graph showing a change with time of a transmitted light intensity measured in an crystallization experiment of an amorphous thin film using SR light.

【符号の説明】[Explanation of symbols]

1 SR光 2 試料 3 He−Neレーザ 4 レンズ 5 ホトダイオード 11 ガラス基板 12a 非晶質薄膜 12b 結晶化領域 1 SR Light 2 Sample 3 He-Ne Laser 4 Lens 5 Photodiode 11 Glass Substrate 12a Amorphous Thin Film 12b Crystallized Region

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透明基板上に堆積した非晶質の薄膜の結
晶化を行なう結晶化工程と、 前記薄膜と透明基板を通してモニタ光を透過させ、光透
過率を測定するモニタ工程と、 前記光透過率の変化から結晶化の程度を判断する評価工
程とを有する非晶質薄膜結晶化方法。
1. A crystallization step of crystallizing an amorphous thin film deposited on a transparent substrate; a monitor step of transmitting monitor light through the thin film and the transparent substrate to measure a light transmittance; An amorphous thin film crystallization method comprising an evaluation step of judging the degree of crystallization from a change in transmittance.
【請求項2】 前記非晶質の薄膜が非晶質シリコンであ
り、前記モニタ光が非晶質シリコンの吸収領域の光であ
り、かつ前記透明基板の透明領域の光である請求項1記
載の非晶質薄膜結晶化方法。
2. The amorphous thin film is amorphous silicon, the monitor light is light in an absorption region of amorphous silicon, and is light in a transparent region of the transparent substrate. Amorphous thin film crystallization method of.
【請求項3】 前記結晶化工程がSR光またはレーザ光
を非晶質の薄膜に照射する工程を含む請求項1ないし2
記載の非晶質薄膜結晶化方法。
3. The crystallization step includes the step of irradiating an amorphous thin film with SR light or laser light.
The amorphous thin film crystallization method as described.
【請求項4】 前記透明基板がガラス、またはシリコン
である請求項1〜3のいずれかに記載の非晶質薄膜結晶
化方法。
4. The method for crystallizing an amorphous thin film according to claim 1, wherein the transparent substrate is glass or silicon.
【請求項5】 非晶質薄膜の結晶化を行なうためのエネ
ルギを与える結晶化手段と、 非晶質薄膜の吸収領域のモニタ光を発するモニタ光源
と、 モニタ光を受光する検出器とを有する薄膜結晶化装置。
5. A crystallization means for giving energy for crystallization of an amorphous thin film, a monitor light source for emitting monitor light of an absorption region of the amorphous thin film, and a detector for receiving the monitor light. Thin film crystallizer.
【請求項6】 前記結晶化手段がSR光源またはレーザ
光源であり、前記モニタ光源が可視領域または近赤外領
域の光を発する光源である請求項5記載の薄膜結晶化装
置。
6. The thin film crystallization apparatus according to claim 5, wherein the crystallization means is an SR light source or a laser light source, and the monitor light source is a light source that emits light in the visible region or the near infrared region.
JP03393195A 1995-02-22 1995-02-22 Amorphous thin film crystallization method Expired - Fee Related JP3433856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03393195A JP3433856B2 (en) 1995-02-22 1995-02-22 Amorphous thin film crystallization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03393195A JP3433856B2 (en) 1995-02-22 1995-02-22 Amorphous thin film crystallization method

Publications (2)

Publication Number Publication Date
JPH08236440A true JPH08236440A (en) 1996-09-13
JP3433856B2 JP3433856B2 (en) 2003-08-04

Family

ID=12400267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03393195A Expired - Fee Related JP3433856B2 (en) 1995-02-22 1995-02-22 Amorphous thin film crystallization method

Country Status (1)

Country Link
JP (1) JP3433856B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338873A (en) * 2000-03-21 2001-12-07 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2005223304A (en) * 2004-01-06 2005-08-18 Oki Electric Ind Co Ltd Semiconductor wafer and method of manufacturing same
CN1315170C (en) * 2002-08-29 2007-05-09 株式会社液晶先端技术开发中心 Crystallized state in site monitoring method
JP2007158372A (en) * 2007-02-06 2007-06-21 Advanced Display Inc Method and apparatus for manufacturing semiconductor device
JP2007285810A (en) * 2006-04-14 2007-11-01 Mitsubishi Heavy Ind Ltd Device and method for evaluating photoelectric conversion layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338873A (en) * 2000-03-21 2001-12-07 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
CN1315170C (en) * 2002-08-29 2007-05-09 株式会社液晶先端技术开发中心 Crystallized state in site monitoring method
JP2005223304A (en) * 2004-01-06 2005-08-18 Oki Electric Ind Co Ltd Semiconductor wafer and method of manufacturing same
JP4714423B2 (en) * 2004-01-06 2011-06-29 Okiセミコンダクタ株式会社 Semiconductor wafer and manufacturing method thereof
JP2007285810A (en) * 2006-04-14 2007-11-01 Mitsubishi Heavy Ind Ltd Device and method for evaluating photoelectric conversion layer
JP2007158372A (en) * 2007-02-06 2007-06-21 Advanced Display Inc Method and apparatus for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3433856B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
US20120037603A1 (en) Method and apparatus for irradiating a semiconductor material surface by laser energy
KR100403792B1 (en) Laser surface treatment apparatus and method
JP2008211136A (en) Laser annealing device and method
US5229304A (en) Method for manufacturing a semiconductor device, including optical inspection
US20040253751A1 (en) Photothermal ultra-shallow junction monitoring system with UV pump
US20200064198A1 (en) Systems And Methods For Thermal Processing And Temperature Measurement Of A Workpiece At Low Temperatures
Reichel et al. Temperature measurement in rapid thermal processing with focus on the application to flash lamp annealing
JP3433856B2 (en) Amorphous thin film crystallization method
JPH07283138A (en) Creation of crystallographical match film of carbonization silicon by laser vapor deposition of carbon to silicon
US7307727B2 (en) Method and apparatus for forming substrate for semiconductor or the like
JPH09235172A (en) Production of recrystallized material, production unit therefor and heating
US20130120737A1 (en) Apparatus and method to measure temperature of 3d semiconductor structures via laser diffraction
JP2916452B1 (en) Evaluation method of crystalline semiconductor thin film and laser annealing apparatus
US4755049A (en) Method and apparatus for measuring the ion implant dosage in a semiconductor crystal
Ivlev et al. Optical-pyrometric diagnostics of the state of silicon during nanopulsed laser irradiation
JP2681613B2 (en) Silicon single crystal evaluation method
Ananchenko et al. Luminescence of F-type defects and their thermal stability in sapphire irradiated by pulsed ion beams
Kotereva et al. IR spectroscopy for precision monitoring of iron and chromium impurity diffusion profiles in zinc chalcogenides
JP3275022B2 (en) Photoluminescence measurement device in crystal
JPH1019689A (en) Substrate temperature measuring unit
Akhmetov et al. Infrared tomography of the charge-carrier lifetime and diffusion length in semiconductor-grade silicon ingots
JPH07120698B2 (en) Semiconductor evaluation method and device
JP3277669B2 (en) Semiconductor manufacturing equipment
JPS59194430A (en) Laser beam annealing method
JP2002116159A (en) X-ray structure analyzer for thin-film process

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees