JPH08236406A - Electrode for electric double layer capacitor and manufacture thereof - Google Patents

Electrode for electric double layer capacitor and manufacture thereof

Info

Publication number
JPH08236406A
JPH08236406A JP7074136A JP7413695A JPH08236406A JP H08236406 A JPH08236406 A JP H08236406A JP 7074136 A JP7074136 A JP 7074136A JP 7413695 A JP7413695 A JP 7413695A JP H08236406 A JPH08236406 A JP H08236406A
Authority
JP
Japan
Prior art keywords
electrode
double layer
electric double
layer capacitor
polyvinylidene chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7074136A
Other languages
Japanese (ja)
Other versions
JP3527789B2 (en
Inventor
Toshikazu Takeda
敏和 竹田
Yoshinobu Tsuchiya
善信 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP07413695A priority Critical patent/JP3527789B2/en
Publication of JPH08236406A publication Critical patent/JPH08236406A/en
Application granted granted Critical
Publication of JP3527789B2 publication Critical patent/JP3527789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE: To provide a method for joining porous carbon particles to one another and solidifying more easily without using a special device in manufacturing porous carbon having numerous pores which is optimum as an electrode material of an electric double layer capacitor. CONSTITUTION: Porous carbon powder generated by heating polyvinylidene chloride resin to 700 to 900 deg.C in a nitrogen atmosphere and polyvinylidene chloride resin powder are mixed and molded, and heating under the same conditions as the above-mentioned is done again or heating in an nitrogen-vapor atmosphere is done, thereby obtaining an optimum material for an electrode of an electric double layer capacitor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気二重層コンデンサ用
電極及びその製法に関し、特に大静電容量を得るのに最
適な電気二重層コンデンサ用電極及びその製法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for an electric double layer capacitor and its manufacturing method, and more particularly to an electrode for an electric double layer capacitor most suitable for obtaining a large capacitance and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、電気二重層に基づく電荷の蓄積、
すなわち電気二重層原理を用いた電気二重層コンデンサ
が開発されて製品化されており、該コンデンサは大静電
容量が得られるため、小型のものは電子機器の半導体メ
モリ−用のバックアップ電源から、大型のものは車載の
鉛バッテリの用途の一部にまで使用されている。
2. Description of the Related Art In recent years, charge accumulation based on electric double layers,
That is, an electric double layer capacitor using the electric double layer principle has been developed and commercialized.Since the capacitor can obtain a large electrostatic capacity, a small one is used as a backup power source for a semiconductor memory of an electronic device, The large ones are even used in some of the applications of lead batteries in vehicles.

【0003】この種の電気二重層コンデンサ用の電極材
として、微細な細孔を有する活性炭微粒子が使用されて
おり、この活性炭微粒子については従来より種々の研究
がなされている。
As the electrode material for this type of electric double layer capacitor, fine particles of activated carbon having fine pores are used, and various studies have been made on the fine particles of activated carbon.

【0004】また、特許文献としても、例えば特開昭5
9−138327号公報、特開昭59−172230号
公報、特開昭60−211821号公報、特開昭61−
102023号公報、特開昭61−214417号公
報、特開昭63−187614号公報、特開平1−16
5108号公報、特開平1−227417号公報に開示
されており、これらはすべて活性炭を電極材としてい
る。ただし、電気二重層コンデンサ用の電極としては均
一な細孔径を有する材料を必要としているのに対し、活
性炭の細孔径分布は広い範囲の分布をしており、必ずし
も電気二重層コンデンサ用の電極材料として最適である
とは云い難い。
Also, as a patent document, for example, Japanese Patent Laid-Open No.
9-138327, JP-A-59-172230, JP-A-60-212821, and JP-A-61-161.
No. 102023, JP-A-61-214417, JP-A-63-187614, and JP-A-1-16.
5108 and Japanese Patent Application Laid-Open No. 1-227417, all of which use activated carbon as an electrode material. However, while an electrode for an electric double layer capacitor requires a material having a uniform pore size, the pore size distribution of activated carbon has a wide range of distribution, and it is not always the electrode material for an electric double layer capacitor. It is hard to say that it is optimal as.

【0005】こうした事情に鑑み、本出願人は、電気二
重層コンデンサ用電極に関して鋭意研究開発を行った結
果、ポリ塩化ビニリデン樹脂を非酸化雰囲気中で加熱
し、それによって原子および分子欠陥を生じさせて細孔
を形成した電極材料を開発し、これについて特許出願を
行った(特願平6−67827号)。この材料は、非常
に微細な細孔を有する多孔質炭素材料であって、従来の
活性炭に比べ高容量の電極材料となっている。
In view of these circumstances, the present applicant has conducted extensive research and development on electrodes for electric double layer capacitors, and as a result, heats polyvinylidene chloride resin in a non-oxidizing atmosphere, thereby causing atomic and molecular defects. An electrode material having pores formed therein was developed, and a patent application for this was made (Japanese Patent Application No. 6-67827). This material is a porous carbon material having extremely fine pores and has a higher capacity than that of conventional activated carbon.

【0006】[0006]

【発明の解決しようとする課題】この新規な電極材料
は、上述の如く優秀な材料であるが、電極として成形固
形化する時の工程などに、未だ改良の余地を残したもの
であった。例えば多孔質炭化材料の粉末を成形すると
き、その形状の保持が困難なこと、粉末を相互に接合し
固形化するには相当のエネルギ−を要すること等の点で
ある。
This novel electrode material is an excellent material as described above, but it still leaves room for improvement in the process of molding and solidifying as an electrode. For example, when molding powder of a porous carbonized material, it is difficult to maintain its shape, and considerable energy is required to bond and solidify the powder to each other.

【0007】[0007]

【課題を解決するための手段】この発明は、前記の課題
を解決し、また、製造コストの低減を目的として、非酸
化雰囲気中で加熱処理して炭化させたポリ塩化ビニリデ
ン樹脂の炭化粉末粒子と、ポリ塩化ビニリデン樹脂の粉
末粒子とを混合し、この混合粒子を加圧成形した後、さ
らに非酸化雰囲気又は非酸化水蒸気雰囲気中で加熱処理
して固形化させた点を特徴とする。ポリ塩化ビニリデン
樹脂の炭化粉末粒子とポリ塩化ビニリデン樹脂の粉末粒
子との混合割合は5:5〜7:3の割合であることが好
ましい。また、始めにポリ塩化ビニリデン樹脂を加熱す
る時の温度は700℃〜900℃であることが好まし
く、また、加圧成形後の固形化する時の加熱温度及び加
熱時間は、始めの加熱の時と同程度であることが望まし
い。
The present invention solves the above-mentioned problems and, for the purpose of reducing the manufacturing cost, carbonized powder particles of a polyvinylidene chloride resin which are carbonized by heat treatment in a non-oxidizing atmosphere. And powder particles of polyvinylidene chloride resin are mixed, the mixed particles are pressure-molded, and then heat-treated in a non-oxidizing atmosphere or a non-oxidizing steam atmosphere to be solidified. The mixing ratio of the carbonized powder particles of the polyvinylidene chloride resin and the powder particles of the polyvinylidene chloride resin is preferably 5: 5 to 7: 3. The temperature at the time of initially heating the polyvinylidene chloride resin is preferably 700 ° C to 900 ° C, and the heating temperature and the heating time at the time of solidification after pressure molding are the same as those at the time of the first heating. It is desirable to be about the same.

【0008】[0008]

【作用】炭化されたポリ塩化ビニリデン樹脂の粉末粒子
に対し、炭化されていない粉末粒子(ポリ塩化ビニリデ
ン樹脂そのものの粉末)はバインダ−として作用する。
つまり、炭化粉末粒子に「濡れ性」を付与することによ
り炭化粉末粒子相互間の粘着力を高め、加圧成形時にお
ける形状の保持性を大幅に向上させる。さらに、加熱処
理によって固形化することが可能であるので、固形化の
ために大量の電力を消費するものと比べると、はるかに
少ないエネルギ−で固形化することができ、装置として
も通常のものを使用することができる。
The non-carbonized powder particles (powder of the polyvinylidene chloride resin itself) act as a binder with respect to the powder particles of the carbonized polyvinylidene chloride resin.
That is, by imparting "wetting" to the carbonized powder particles, the adhesive force between the carbonized powder particles is increased, and the shape retention during pressure molding is significantly improved. Furthermore, since it can be solidified by heat treatment, it can be solidified with far less energy than that which consumes a large amount of electric power for solidification, and it is a normal device. Can be used.

【0009】製造された多孔質炭素材料は、もともとポ
リ塩化ビニリデン樹脂を原料とするものであるから、電
気二重層コンデンサの電極としての性能は、始めから炭
化粒子となっているもののみを固形化したものと比べ、
勝ってはいても劣ることはない。
Since the manufactured porous carbon material is originally made of polyvinylidene chloride resin as a raw material, the performance as an electrode of the electric double layer capacitor is solidified only from carbonized particles from the beginning. Compared to what you did,
Winning is not inferior.

【0010】[0010]

【実施例】この発明の電気二重層コンデンサ電極用多孔
質炭素材料の製造工程を図1に示す。まず、実施例1に
ついて説明する。粉末状のポリ塩化ビニリデン樹脂(P
VDC)を加熱処理し、これを炭化してポリ塩化ビニリ
デン樹脂の炭化粉末粒子を製造する。この工程では、窒
素ガス雰囲気等非酸化雰囲気中の加熱炉において、70
0℃〜900℃の温度で約1時間第一の加熱処理を行
う。その結果、ポリ塩化ビニリデン樹脂からは、水素、
一酸化炭素、メタノ−ル、塩化水素ガスが放出され、ポ
リ塩化ビニリデン樹脂には原子又は分子欠陥による微細
な細孔が形成される。これらの細孔は極めて均一な状態
で形成され、また、イオンの吸着性に優れており、電気
二重層コンデンサに使用したときに、大容量の電荷の蓄
積が可能となる。
EXAMPLE FIG. 1 shows a manufacturing process of a porous carbon material for an electric double layer capacitor electrode of the present invention. First, the first embodiment will be described. Powdered polyvinylidene chloride resin (P
VDC) is heat-treated and carbonized to produce carbonized powder particles of polyvinylidene chloride resin. In this step, in a heating furnace in a non-oxidizing atmosphere such as a nitrogen gas atmosphere, 70
The first heat treatment is performed at a temperature of 0 ° C. to 900 ° C. for about 1 hour. As a result, from the polyvinylidene chloride resin, hydrogen,
Carbon monoxide, methanol and hydrogen chloride gas are released, and fine pores are formed in the polyvinylidene chloride resin due to atomic or molecular defects. These pores are formed in an extremely uniform state and have excellent ion adsorption, and when used in an electric double layer capacitor, a large amount of charge can be stored.

【0011】このようにして形成したポリ塩化ビニリデ
ン樹脂の炭化粉末粒子と、そのままのポリ塩化ビニリデ
ン樹脂粉末粒子とを混合する。炭化粉末粒子とそのまま
の粉末粒子との割合は、炭化粉末粒子:そのままの粉末
粒子、の比率が5:5〜7:3(重量比)の範囲であ
る。さらに、このように混合した粉末粒子を金型に入
れ、約5,000kg /cm2 〜5,500kg /cm2 の圧力でバルク
状に成形する。
The carbonized powder particles of the polyvinylidene chloride resin thus formed are mixed with the polyvinylidene chloride resin powder particles as they are. The ratio of the carbonized powder particles to the powder particles as they are is such that the ratio of carbonized powder particles to the powder particles as they are is in the range of 5: 5 to 7: 3 (weight ratio). Further, the powder particles thus mixed are put into a mold and molded into a bulk at a pressure of about 5,000 kg / cm @ 2 to 5,500 kg / cm @ 2.

【0012】このときに、ポリ塩化ビニリデン樹脂の粉
末粒子は、炭化されたものに対してバインダ−の役目を
果たす。すなわち、炭化粒子表面に「濡れ」を生じさ
せ、相互の粘着力を大きくして形状の保持性を高め、ま
た、成分蒸発に伴う凝集力で炭化粒子間の距離を短くし
て炭化粒子間の相互接合性を高める。
At this time, the polyvinylidene chloride resin powder particles serve as a binder for the carbonized particles. That is, "wetting" is caused on the surface of the carbonized particles, the mutual adhesive force is increased to improve the shape retention, and the cohesive force accompanying the component evaporation shortens the distance between the carbonized particles to reduce the distance between the carbonized particles. Increase mutual connectivity.

【0013】次いで、バルク状に形成した材料を、再
度、第二の加熱処理を行って固形化する。このときの加
熱温度及び加熱時間は、始めにポリ塩化ビニリデン樹脂
の粉末を炭化する時と同程度とすることが好ましい。さ
らに、雰囲気としては、始めの加熱処理の時と同様窒素
ガス雰囲気等非酸化雰囲気とした。再度の加熱処理によ
って、バインダ−として作用したポリ塩化ビニリデン樹
脂の粉末粒子も炭化し、そこには、予め炭化した粒子と
同様な細孔が形成されることになる。
Next, the material formed in bulk is subjected to the second heat treatment again to be solidified. It is preferable that the heating temperature and the heating time at this time are the same as those at the time of first carbonizing the powder of polyvinylidene chloride resin. Further, the atmosphere was a non-oxidizing atmosphere such as a nitrogen gas atmosphere as in the first heat treatment. By the heat treatment again, the powder particles of the polyvinylidene chloride resin acting as the binder are also carbonized, and the same pores as the carbonized particles are formed therein.

【0014】こうして製造した多孔質炭素材料は、図2
に示す電気二重層コンデンサの固形電極として利用され
る。この多孔質炭素材料を用いた電気二重層コンデンサ
の固形電極の電気容量等についての実験結果を図3及び
図4に示す。これによると、第一及び第二の加熱処理温
度800℃でPVDC炭化粒子/PVDC含有率が6:
4の場合が一番体積比容量が大きくなった。また各温度
ともPVDC炭化粒子/PVDC含有率が6:4の場合
が一番容量が大きくなっている。この原因は、炭化前の
PVDCが炭化される際、不純物が排出される時に出来
る細孔が電解液の侵入を促進し、含有率6:4の場合が
電極密度とこの細孔の兼ね合いが最も良好のためと考え
られる。加熱処理温度での容量の違いは、加熱処理温度
が高い850℃では容量が小さくなっている。これは、
PVDC炭化粒子の細孔が炭化処理中に炭素原子の移動
によって潰されるためと考えられる。
The porous carbon material produced in this manner is shown in FIG.
It is used as a solid electrode of the electric double layer capacitor shown in. Experimental results on the electric capacity of the solid electrode of the electric double layer capacitor using this porous carbon material are shown in FIGS. 3 and 4. According to this, at the first and second heat treatment temperatures of 800 ° C., the PVDC carbon particle / PVDC content ratio is 6:
In the case of 4, the volume specific capacity was the largest. Further, at each temperature, the capacity is largest when the PVDC carbonized particles / PVDC content is 6: 4. The reason for this is that when PVDC before carbonization is carbonized, the pores formed when impurities are discharged promote the invasion of the electrolytic solution, and in the case where the content is 6: 4, the balance between the electrode density and the pores is the most. Probably because of good condition. The difference in the capacity at the heat treatment temperature is that the capacity is small at 850 ° C., where the heat treatment temperature is high. this is,
It is considered that the pores of the PVDC carbonized particles are crushed by the movement of carbon atoms during the carbonization treatment.

【0015】次に、実施例2として、図1の第一の加熱
処理温度を800℃とし、第二の加熱処理の際の雰囲気
を、窒素ガス等を温水にバブリングして生成した窒素ガ
ス等と水蒸気との混合気体雰囲気とし、加熱温度を70
0℃とし、加熱時間を1時間又は4時間とした以外は第
一の実施例と同様にして多孔質炭素材料を製造した。
Next, as Example 2, the first heat treatment temperature in FIG. 1 was set to 800 ° C., and the atmosphere during the second heat treatment was nitrogen gas produced by bubbling nitrogen gas or the like into hot water. A mixed gas atmosphere of water and water vapor is used, and the heating temperature is 70
A porous carbon material was produced in the same manner as in Example 1 except that the temperature was 0 ° C. and the heating time was 1 hour or 4 hours.

【0016】こうして製造した多孔質炭素材料は、実施
例1と同様に、図2に示す電気二重層コンデンサの固形
電極として利用される。この多孔質炭素材料を用いた電
気二重層コンデンサの固形電極の電気容量等についての
実験結果を図5に示す。これによると、第二の加熱処理
時間を1時間とした場合の方が4時間とした場合よりも
容量が大きく、またPVDC炭化粒子:PVDC含有率
が7:3の場合が一番容量が大きくなっている。ここ
で、PVDC炭化粒子:PVDC含有率が7:3以上で
は成形できないため、PVDC炭化粒子:PVDC含有
率が7:3の場合の容量が最も大きいことが分かった。
さらに、ベストのものの比較では実施例2の方が実施例
1に比較して約50%容量が大きいことが分かった。
The porous carbon material thus produced is used as a solid electrode of the electric double layer capacitor shown in FIG. FIG. 5 shows the experimental results on the electric capacity of the solid electrode of the electric double layer capacitor using this porous carbon material. According to this, when the second heat treatment time is 1 hour, the capacity is larger than when it is 4 hours, and the capacity is the largest when the PVDC carbon particle: PVDC content ratio is 7: 3. Has become. Here, it was found that when the PVDC carbonized particle: PVDC content ratio is 7: 3 or more, molding cannot be performed, and therefore the capacity is largest when the PVDC carbonized particle: PVDC content ratio is 7: 3.
Further, in comparison of the best one, it was found that the capacity of Example 2 was about 50% larger than that of Example 1.

【0017】また、比較のため、図6には、PVDCの
代わりにフェノ−ル樹脂をバインダ−として用いた場合
のPVDC炭化試料含有率に対するキャパシタ容量の関
係を示す。この結果より、バインダにPVDCを用いた
実施例1又は実施例2と比較すると、フェノ−ル樹脂を
バインダ−として用いた場合はPVDC炭化試料含有率
に関係なく重量比容量、体積比容量ともに小さな値とな
った。これは、バインダ−として用いたPVDCは炭化
されると容量に関与できるが、フェノ−ル樹脂は炭化さ
れても、容量に関与しないためと考えられる。また、フ
ェノ−ル樹脂がPVDC表面の細孔に入り込み細孔を潰
してしまっている可能性も考えられる。
For comparison, FIG. 6 shows the relationship between the capacitance of the PVDC carbonized sample and the capacitance of the capacitor when a phenol resin is used as the binder instead of PVDC. From this result, as compared with Example 1 or Example 2 in which PVDC was used as the binder, both the weight specific capacity and the volume specific capacity were small when the phenol resin was used as the binder regardless of the PVDC carbonized sample content. It became a value. It is considered that this is because the PVDC used as the binder can contribute to the capacity when carbonized, but the phenol resin does not contribute to the capacity even when carbonized. It is also possible that the phenol resin has entered the pores on the PVDC surface and crushed the pores.

【0018】実施例1と実施例2とのベストの容量を発
揮したサンプルについてその細孔分布を画像分析法で調
査した。炭素の細孔分析について詳しくは信州大学工学
部教授遠藤守信氏らの論文「活性炭繊維におけるポア構
造のフラクタル解析」(電子情報通信学会論文誌C−
(ギリシャの2)No.3 P139〜147 199
4年3月)に記載してありそれを参照願いたい。今回の
画像分析法はサンプルを撮影する電子顕微鏡として加速
電圧400KVの透過型電子顕微鏡を用い、これにより
倍率20万倍の画像を得、この画像を更に30倍に拡大
して印画紙に焼き付けたものを原画像とした。実施例1
及び実施例2の原画像をそれぞれ図7、図8に示す。つ
いでこれらの原画像を高分析能のCCDカメラによりコ
ンピュ−タに読み込んで細孔を分析した。すなわち、原
画像から読み込んだ濃淡デ−タを二次元フ−リエ変換
し、その変換デ−タから細孔径を求め、これらのデ−タ
を統計的に解析して細孔径の分布を求めた。実施例1及
び実施例2についてこの画像分析法によって得られた細
孔径分布をそれぞれ図9、図10に示す。これらの図の
横軸は細孔径を表し、縦軸は細孔の相対的な頻度を表し
ており絶対数ではない。
The pore distributions of the samples exhibiting the best capacity in Examples 1 and 2 were examined by image analysis. For details on the pore analysis of carbon, see the paper “Fractal Analysis of Pore Structure in Activated Carbon Fiber” by Morinobu Endo, a professor of Faculty of Engineering, Shinshu University.
(Greek 2) No. 3 P139 ~ 147 199
(March 4), please refer to it. In this image analysis method, a transmission electron microscope with an accelerating voltage of 400 KV was used as an electron microscope for photographing a sample, and an image with a magnification of 200,000 was obtained by this. The original image was used. Example 1
7 and 8 show the original images of Example 2 and Example 2, respectively. Then, these original images were read into a computer with a CCD camera having a high analysis capability to analyze the pores. That is, the grayscale data read from the original image was subjected to a two-dimensional Fourier transform, the pore size was obtained from the transformed data, and the pore size distribution was obtained by statistically analyzing these data. . The pore size distributions obtained by this image analysis method for Example 1 and Example 2 are shown in FIGS. 9 and 10, respectively. The horizontal axis of these figures represents the pore diameter, and the vertical axis represents the relative frequency of the pores, not the absolute number.

【0019】これら図9、図10から実施例1のサンプ
ルは直径が10オングストロ−ム以下の細孔が約35%
有るが、実施例2のサンプルでは約10%と非常に減少
していることが分かった。また、直径が10〜20オン
グストロ−ムの範囲の細孔が、実施例1のサンプルでは
約40%であるが、実施例2のサンプルでは約50%と
増加していることが分かった。これらの結果から、10
オングストロ−ム以下の細孔は容量にあまり寄与せず、
10〜20オングストロ−ムの範囲の細孔が、容量に大
きく寄与しているものと考えられ、第二の加熱処理を非
酸化・水蒸気雰囲気下で行うことは、10オングストロ
−ム以下の細孔を10〜20オングストロ−ムの範囲の
細孔に成長させる効果が有るものと考えられる。
9 and 10, the sample of Example 1 has about 35% of pores having a diameter of 10 angstroms or less.
However, it was found that the sample of Example 2 was extremely reduced to about 10%. Further, it was found that the number of pores having a diameter in the range of 10 to 20 angstrom was about 40% in the sample of Example 1 and about 50% in the sample of Example 2. From these results, 10
Pores smaller than angstrom do not contribute much to the capacity,
It is considered that pores in the range of 10 to 20 angstroms contribute significantly to the capacity, and performing the second heat treatment in a non-oxidizing / water vapor atmosphere means that pores of 10 angstroms or less. Is considered to have the effect of growing into the pores in the range of 10 to 20 angstrom.

【0020】[0020]

【発明の効果】上述のように、この発明によれば、ポリ
塩化ビニリデンの粉末粒子を炭化させて固化した電気二
重層コンデンサ用電極を、通常の装置を使用して、簡易
にしかも低コストで製造できる。また、電極としての性
能は、全て予め炭化した粉末粒子を固形化するものと比
べ、同等の性能を確保することができる。さらに、フェ
ノ−ル樹脂等をバインダ−として使用して炭化させるも
のと比べると、原料がポリ塩化ビニリデンのみであるの
で、電極性能の面で優れている。なお、バインダ−を炭
化させない炭素材料電極もあるが、このような材料では
バインダ−が劣化する問題点があるのに対し、この発明
の多孔質炭素材料にはその欠点がない。さらに、成形後
の第二の加熱処理の際に、非酸化・水蒸気雰囲気中で熱
処理を行うことにより第一の加熱処理(炭化)で生成さ
れた静電容量に寄与しない範囲の細孔、すなわち細孔径
が10オングストロ−ム以下(過去の実験結果から5〜
6オングストロ−ム以下の細孔であると考えられるが、
そのようなサンプルが製造できていないので明確ではな
い。)の細孔が静電容量に寄与する直径10オングスト
ロ−ム近辺の細孔となり静電容量のさらなる向上ができ
る。
As described above, according to the present invention, an electrode for an electric double layer capacitor obtained by carbonizing and solidifying powdery particles of polyvinylidene chloride can be easily and inexpensively manufactured by using an ordinary apparatus. Can be manufactured. Further, the performance as an electrode can ensure the same performance as that of solidifying all the powder particles which have been carbonized in advance. Further, as compared with the case where a phenol resin or the like is used as a binder for carbonization, the raw material is only polyvinylidene chloride, which is excellent in electrode performance. Although there is a carbon material electrode that does not carbonize the binder, such a material has a problem of degrading the binder, whereas the porous carbon material of the present invention does not have the drawback. Furthermore, during the second heat treatment after molding, by performing heat treatment in a non-oxidizing / steam atmosphere, pores in a range not contributing to the capacitance generated in the first heat treatment (carbonization), that is, Pore size less than 10 angstrom (from past experimental results
It is considered that the pores are 6 angstroms or less,
It is not clear as such samples have not been produced. The pores of 4) become pores in the vicinity of the diameter of 10 angstroms that contribute to the electrostatic capacity, and the electrostatic capacity can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の多孔質炭素材料の製造過程を示す工
程図である。
FIG. 1 is a process drawing showing a process for producing a porous carbon material of the present invention.

【図2】電気二重層コンデンサの構造を示す断面図であ
る。
FIG. 2 is a sectional view showing a structure of an electric double layer capacitor.

【図3】この発明の実施例1の多孔質炭素材料の電気的
性能を実験した一デ−タを示すグラフである。
FIG. 3 is a graph showing data obtained by conducting an experiment on electrical performance of the porous carbon material of Example 1 of the present invention.

【図4】この発明の実施例1の多孔質炭素材料の電気的
性能を実験した別のデ−タを示すグラフである。
FIG. 4 is a graph showing another data in which the electrical performance of the porous carbon material of Example 1 of the present invention was tested.

【図5】この発明の実施例2の多孔質炭素材料の電気的
性能を実験した一デ−タを示すグラフである。
FIG. 5 is a graph showing data obtained by conducting an experiment on electrical performance of the porous carbon material of Example 2 of the present invention.

【図6】バインダ−としてフェノ−ル樹脂を使用し製造
した炭素材料と比較したデ−タを示すグラフである。
FIG. 6 is a graph showing data compared with a carbon material produced by using a phenol resin as a binder.

【図7】実施例1の多孔質炭素材料の透過型電子顕微鏡
で撮影した原画像を示す写真である。
FIG. 7 is a photograph showing an original image of the porous carbon material of Example 1 taken with a transmission electron microscope.

【図8】実施例2の多孔質炭素材料の透過型電子顕微鏡
で撮影した原画像を示す写真である。
FIG. 8 is a photograph showing an original image of the porous carbon material of Example 2 taken with a transmission electron microscope.

【図9】実施例1の多孔質炭素材料の細孔径の分布を表
す図である。
9 is a diagram showing a distribution of pore diameters of the porous carbon material of Example 1. FIG.

【図10】実施例2の多孔質炭素材料の細孔径の分布を
表す図である。
FIG. 10 is a diagram showing a distribution of pore diameters of the porous carbon material of Example 2.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】非酸化雰囲気中で第一の加熱処理をしたポ
リ塩化ビニリデン樹脂の炭化粉末粒子と、ポリ塩化ビニ
リデン樹脂の粉末粒子とを混合し、この混合粒子を加圧
成形した後、さらに非酸化雰囲気中で第二の加熱処理を
行うことを特徴とする電気二重層コンデンサの電極用炭
素材料の製造方法。
1. A carbonized powder particle of a polyvinylidene chloride resin, which has been first heat-treated in a non-oxidizing atmosphere, and a powder particle of a polyvinylidene chloride resin are mixed, and the mixed particle is pressure-molded, and then further mixed. A method for producing a carbon material for an electrode of an electric double layer capacitor, which comprises performing a second heat treatment in a non-oxidizing atmosphere.
【請求項2】前記第二の加熱処理を非酸化水蒸気雰囲気
中で行うことを特徴とする請求項1に記載の電気二重層
コンデンサの電極用炭素材料の製造方法。
2. The method for producing a carbon material for an electrode of an electric double layer capacitor according to claim 1, wherein the second heat treatment is performed in a non-oxidizing water vapor atmosphere.
【請求項3】ポリ塩化ビニリデン樹脂の炭化粉末粒子と
ポリ塩化ビニリデン樹脂の粉末粒子との重量比が5:5
〜7:3の範囲にあることを特徴とする請求項1又は2
に記載の電気二重層コンデンサの電極用炭素材料の製造
方法。
3. A weight ratio of carbonized powder particles of polyvinylidene chloride resin to powder particles of polyvinylidene chloride resin is 5: 5.
It is in the range of to 7: 3.
A method for producing a carbon material for an electrode of an electric double layer capacitor according to.
【請求項4】前記第一の加熱処理の温度が700℃〜9
00℃の範囲にあることを特徴とする請求項1ないし3
のいずれかに記載の電気二重層コンデンサの電極用炭素
材料の製造方法。
4. The temperature of the first heat treatment is 700 ° C. to 9 ° C.
4. The composition according to claim 1, which is in the range of 00.degree.
5. A method for producing a carbon material for an electrode of an electric double layer capacitor according to any one of 1.
【請求項5】第一の加熱処理における加熱温度及び加熱
時間と、第二の加熱処理における加熱温度及び時間とが
同程度であることを特徴とする請求項1ないし4のいず
れかに記載の電気二重層コンデンサの電極用炭素材料の
製造方法。
5. The heating temperature and the heating time in the first heat treatment and the heating temperature and the time in the second heat treatment are approximately the same. A method for manufacturing a carbon material for an electrode of an electric double layer capacitor.
【請求項6】非酸化雰囲気中で第一の加熱処理をしたポ
リ塩化ビニリデン樹脂の炭化粉末粒子と、ポリ塩化ビニ
リデン樹脂の粉末粒子とを混合してこの混合粒子を加圧
成形し、さらに非酸化雰囲気中で第二の加熱処理を行っ
て固形化したことを特徴とする電気二重層コンデンサの
電極用炭素材料。
6. A mixture of carbonized powder particles of polyvinylidene chloride resin, which has undergone the first heat treatment in a non-oxidizing atmosphere, and powder particles of polyvinylidene chloride resin, and the mixed particles are pressure-molded. A carbon material for an electrode of an electric double layer capacitor, characterized by being solidified by performing a second heat treatment in an oxidizing atmosphere.
【請求項7】非酸化雰囲気中で第一の加熱処理をしたポ
リ塩化ビニリデン樹脂の炭化粉末粒子と、ポリ塩化ビニ
リデン樹脂の粉末粒子とを混合してこの混合粒子を加圧
成形し、さらに非酸化水蒸気雰囲気中で第二の加熱処理
を行って固形化したことを特徴とする電気二重層コンデ
ンサの電極用炭素材料。
7. A mixture of carbonized powder particles of polyvinylidene chloride resin subjected to the first heat treatment in a non-oxidizing atmosphere and powder particles of polyvinylidene chloride resin, and the mixed particles are pressure-molded. A carbon material for an electrode of an electric double layer capacitor, characterized by being solidified by performing a second heat treatment in an oxidizing steam atmosphere.
JP07413695A 1994-12-29 1995-03-30 Electrode for electric double layer capacitor and its manufacturing method Expired - Fee Related JP3527789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07413695A JP3527789B2 (en) 1994-12-29 1995-03-30 Electrode for electric double layer capacitor and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33911594 1994-12-29
JP6-339115 1994-12-29
JP07413695A JP3527789B2 (en) 1994-12-29 1995-03-30 Electrode for electric double layer capacitor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH08236406A true JPH08236406A (en) 1996-09-13
JP3527789B2 JP3527789B2 (en) 2004-05-17

Family

ID=26415272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07413695A Expired - Fee Related JP3527789B2 (en) 1994-12-29 1995-03-30 Electrode for electric double layer capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3527789B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028547A1 (en) * 1996-02-02 1997-08-07 Takeda Chemical Industries, Ltd. Activated carbon electrode and process for producing the same
CN103482601A (en) * 2013-09-06 2014-01-01 浙江大学 Preparation method for three-dimensional multistage porous carbon based on polyvinylidene chloride-polystyrene segmented copolymer
JP2015151324A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Activated carbon and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275690A (en) * 1975-12-19 1977-06-24 Agency Of Ind Science & Technol Production of carbon materials
JPH01111708A (en) * 1987-10-26 1989-04-28 Pentel Kk Production of activated carbon molded body
JPH05304047A (en) * 1992-04-28 1993-11-16 Matsushita Electric Ind Co Ltd Polarized electrode and manufacture thereof
JPH06267794A (en) * 1993-03-12 1994-09-22 Morinobu Endo Manufacture of polarizable electrode material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275690A (en) * 1975-12-19 1977-06-24 Agency Of Ind Science & Technol Production of carbon materials
JPH01111708A (en) * 1987-10-26 1989-04-28 Pentel Kk Production of activated carbon molded body
JPH05304047A (en) * 1992-04-28 1993-11-16 Matsushita Electric Ind Co Ltd Polarized electrode and manufacture thereof
JPH06267794A (en) * 1993-03-12 1994-09-22 Morinobu Endo Manufacture of polarizable electrode material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028547A1 (en) * 1996-02-02 1997-08-07 Takeda Chemical Industries, Ltd. Activated carbon electrode and process for producing the same
CN103482601A (en) * 2013-09-06 2014-01-01 浙江大学 Preparation method for three-dimensional multistage porous carbon based on polyvinylidene chloride-polystyrene segmented copolymer
JP2015151324A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Activated carbon and method for producing the same

Also Published As

Publication number Publication date
JP3527789B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
Jiang et al. Zinc‐tiered synthesis of 3D graphene for monolithic electrodes
JP7150741B2 (en) Natural graphite-based modified composite material, method for producing the same, and lithium-ion secondary battery containing the modified composite material
CN108039465B (en) Composite electrode material, preparation method and application thereof
KR101114414B1 (en) Method for forming graphene nano sheet
CN114171738B (en) Graphite negative electrode material, preparation method thereof and lithium ion battery
WO2015050352A1 (en) Method for preparing carbon nanotube-graphene composite, and carbon nanotube-graphene composite prepared thereby
CN110459409B (en) Electrode material, preparation method and application thereof
WO2014156098A1 (en) Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries
CN109461594B (en) High-voltage-resistance doped three-dimensional porous graphene/activated carbon electrode material and preparation method thereof
WO2015058113A1 (en) Porous carbon electrodes for energy storage applications
JP3527789B2 (en) Electrode for electric double layer capacitor and its manufacturing method
JP4762424B2 (en) Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon
EP3196905A1 (en) Electrode material for electrochemical capacitor, electrode coating solution for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor
US9916938B2 (en) Porous carbon electrodes for energy storage applications
JP3702300B2 (en) Manufacturing method of electrode for electric double layer capacitor
KR101585294B1 (en) Porous graphene/carbon complex and method for preparing the same
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
KR101850791B1 (en) METHOD FOR PRODUCING SYNTHESIS MATERIAL OF SILICON/Meso CARBON AS LITHIUM SECONDARY BATTERY ANODE MATERIAL
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
Shen et al. Carbon aerogel films synthesized at ambient conditions
JPWO2015025785A1 (en) Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
JP3722965B2 (en) Carbon material for electric double layer capacitors
JP3517310B2 (en) Method of manufacturing electrode for electric double layer capacitor
Yang et al. Ultrathin Nanosheets NiCo2O4/C Hollow Microtube Composites with Superior Performances for Supercapacitors
JP2004189587A (en) Activated carbon, polarizable electrode for electric double-layer capacitor, and electric double-layer capacitor using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees