JPH0823596B2 - Primary circulation loop Water level meter Pressure water reactor - Google Patents

Primary circulation loop Water level meter Pressure water reactor

Info

Publication number
JPH0823596B2
JPH0823596B2 JP1001989A JP198989A JPH0823596B2 JP H0823596 B2 JPH0823596 B2 JP H0823596B2 JP 1001989 A JP1001989 A JP 1001989A JP 198989 A JP198989 A JP 198989A JP H0823596 B2 JPH0823596 B2 JP H0823596B2
Authority
JP
Japan
Prior art keywords
water level
core
reactor
level gauge
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1001989A
Other languages
Japanese (ja)
Other versions
JPH02183198A (en
Inventor
光弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP1001989A priority Critical patent/JPH0823596B2/en
Publication of JPH02183198A publication Critical patent/JPH02183198A/en
Publication of JPH0823596B2 publication Critical patent/JPH0823596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、事故時の安全性を改良した加圧水型原子炉
に関する。詳しくは、本発明は、米国スリーマイル島原
子力発電所2号炉(TMI−2)の事故を含む加圧水型原
子炉(PWR)の各種小破断冷却材喪失事故や、その後の
プラント回復操作時及び一次循環ポンプ停止時におい
て、加圧器水位計のみでは検出できない原子炉容器上部
の保有水量を、原子炉容器内には水位計を設置すること
なく、一次循環ループ内の対応する高さの部分に設置し
た差圧式水位計により検出し、事故時の安全性を改良し
た加圧水型原子炉に関するものである。
TECHNICAL FIELD The present invention relates to a pressurized water nuclear reactor with improved safety in the event of an accident. Specifically, the present invention relates to various small break coolant loss accidents in a pressurized water reactor (PWR) including an accident at the Three Mile Island Nuclear Power Plant Unit 2 (TMI-2) in the United States, and subsequent plant recovery operations. When the primary circulation pump is stopped, the amount of water retained in the upper part of the reactor vessel that cannot be detected by the pressurizer water level meter alone is stored in the corresponding height part of the primary circulation loop without installing a water level meter in the reactor vessel. The present invention relates to a pressurized water reactor with improved safety in the event of an accident, detected by a differential pressure type water level gauge installed.

(従来の技術) 上記TMI−2原子炉事故は、一次系内唯一の水位計設
置機器である加圧器頂部(圧力逃し弁)からの冷却材喪
失事故であったため、一次系圧力は低下する一方で加圧
器水位が上昇する事態となり、当惑した原子炉運転員は
加圧器水位を重視して原子炉保有水が十分あるものと判
断した。従って、実際には原子炉容器内保有水量が低下
していったことに長時間にわたり気がつかず、更に他の
原因も加わり、最終的には炉心溶融という最悪の事態に
至ったものである。
(Prior Art) Since the TMI-2 reactor accident was a loss of coolant from the top of the pressurizer (pressure relief valve), which is the only water level gauge installed device in the primary system, the primary system pressure decreases while At this point, the water level of the pressurizer increased, and the embarrassed reactor operator placed importance on the water level of the pressurizer and decided that there was enough water in the reactor. Therefore, in reality, the decrease in the amount of water held in the reactor vessel was not noticed for a long time, and other causes were also added, which eventually led to the worst situation of core melting.

米国原子力規制委員会は、事故後、このことに注目
し、加圧水型原子炉の原子炉容器内保有水量を直接検出
できる改善を指示した。このため、コンバッションエン
ジニアリング社(CE社)は原子炉容器上部に加熱熱電対
式水位計を、そして、ウエスチングハウス社(W社)に
おいては、原子炉容器頂部・底部に差圧式水位計を付加
する保有水量検出システムを開発した(資料1参照)。
Following the accident, the US Nuclear Regulatory Commission paid attention to this fact and instructed an improvement to directly detect the amount of water held in the reactor vessel of a pressurized water reactor. For this reason, Combation Engineering Co. (CE) added a heating thermocouple type water level gauge to the upper part of the reactor vessel, and Westinghouse (W company) added a differential pressure type water level gauge to the top and bottom of the reactor vessel. We have developed a system for detecting the amount of water held (see Reference 1).

しかしながら、これには、原子炉容器自体に計測用ノ
ズルを設置するという構造強度上の問題と、後に示すよ
うに、本願発明における水位計設置位置の水位に比べ
て、炉心発熱による混合水位スエリングのために高温側
配管ノズル位置以下に水位が低下する時刻がかなり遅れ
る問題、更に高放射線下の炉心部に接近した位置にある
ため水位計の設置、保守、調整等に一定の制約を伴う等
の問題点がある。
However, this involves a structural strength problem of installing a measurement nozzle in the reactor vessel itself, and, as will be shown later, compared to the water level at the water level gauge installation position in the present invention, the mixed water level swelling due to core heat generation Therefore, there is a problem that the time when the water level drops below the position of the high temperature side pipe nozzle is considerably delayed, and there are certain restrictions on the installation, maintenance, adjustment, etc. of the water level gauge because it is located close to the core under high radiation. There is a problem.

(発明が解決しようとする課題) 本願発明の目的は、このような問題点を解決し、原子
炉保有水量検出を容易にした一次循環ループ水位計付加
圧水型原子炉を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve the above problems and to provide a primary circulation loop water level gauge-added pressurized water reactor which facilitates detection of the amount of water held by the reactor.

(課題を解決するための手段) 本願発明においては、水位計はW社型のPWR(W型PW
R)やCE社型のPWRと同型のPWRに設置するものであり、
原子炉容器頂部・底部間の水位計の持つ問題点や制約の
解消ないしは低減をはかることができる。本願発明にお
いては、水位計は、既存の温度補償付差圧式水位計であ
り、液体の代表密度はループシール部の液体温度及び一
次系代表圧力により求め、一次系全ループの蒸気発生器
出口プレナム上端とループシール部下端との間に設置す
る。全ループに設置することにより余剰性を確保し、更
に一次系内に流体或いは圧力の振動がある場合でも、水
位データの時間平均及びシステム全体の平均化を行うこ
とにより、保有水量検出の信頼度を上げることができ
る。
(Means for Solving the Problem) In the present invention, the water level gauge is a WWR type PWR (W type PW).
R) or CE company type PWR and is installed in the same type PWR,
It is possible to eliminate or reduce the problems and restrictions of the water level gauge between the top and bottom of the reactor vessel. In the present invention, the water level gauge is an existing differential pressure type water level gauge with temperature compensation, and the representative density of the liquid is determined by the liquid temperature of the loop seal part and the representative pressure of the primary system, and the steam generator outlet plenum of the primary loop is obtained. Install between the upper end and the lower end of the loop seal. By installing in all loops, the surplus property is secured, and even if there are fluid or pressure oscillations in the primary system, the reliability of detection of the amount of water retained is performed by averaging the water level data over time and averaging the entire system. Can be raised.

詳しくは、加圧器水位計より下方で、炉心下端より上
方にある一次循環ループの垂直部分を含む蒸気発生器出
口プレナムからループシール下端までの部分に、温度補
償付差圧式水位計を設置し、通常運転時には一次循環流
量の検出に利用し、米国スリーマイル島原子炉事故を含
む各種小破断冷却材喪失事故や一次循環ポンプ停止時で
原子炉容器内保有水量が低下する場合には、該水位計が
炉心部水位低下に先行した水位低下を検出し、更に原子
炉容器上部の水位に対応した水位挙動を検出できる特性
に基づき、原子炉容器自体には水位計を設置することな
しに、原子炉容器上部の保有水量検出を行い、更に一次
循環系の全ループに同様の水位計を設置してその余剰性
を確保し、原子炉崩壊熱除去に必要な保有水量確保を容
易にするものである。
Specifically, below the pressurizer water level gauge, in the portion from the steam generator outlet plenum including the vertical portion of the primary circulation loop above the core lower end to the loop seal lower end, a differential pressure type water gauge with temperature compensation is installed, It is used to detect the primary circulation flow rate during normal operation, and if there are various small fracture coolant loss accidents, including the United States Three Mile Island reactor accident, and the water volume in the reactor vessel drops when the primary circulation pump is stopped, the water level is reduced. Based on the characteristics that the meter can detect the water level drop preceding the core core water level drop and also detect the water level behavior corresponding to the water level at the upper part of the reactor vessel, The amount of water held in the upper part of the reactor vessel is detected, and similar water level gauges are installed in all loops of the primary circulation system to secure its surplus, and it is easy to secure the amount of water held necessary for removal of reactor decay heat. is there

本願発明の加圧水型原子炉を図面について説明する。 The pressurized water reactor of the present invention will be described with reference to the drawings.

第1図は、W型PWRと加圧器水位測定範囲、及び本願
発明における水位計の測定範囲を示す。本願発明におけ
る水位計の主たる測定範囲は、蒸気発生器出口プレナム
上端から一次系水平配管部下端までの約2.2mであるが、
それより下部でループシール部下端までの約3.7mを測定
範囲に含めることにより、後に述べるループシール・ク
リアリング時の一時的炉心水位低下現象も検出すること
ができる。
FIG. 1 shows a W-type PWR, a pressurizer water level measurement range, and a water level gauge measurement range in the present invention. The main measurement range of the water level gauge in the present invention is about 2.2 m from the upper end of the steam generator outlet plenum to the lower end of the primary horizontal pipe section,
By including 3.7m below the lower end of the loop seal part in the measurement range, it is possible to detect the temporary reactor core water level lowering phenomenon at the time of loop seal clearing described later.

第2図は、W型PWR(熱出力3423Mwt、4ループ)を容
積比1/48、高さ実寸で模擬した大型非定常実験装置(LS
TF)における高さと内容積の関係と、本願発明における
水位計の測定範囲及び炉心の範囲とを示す。一次系内容
積の全容積に対する比率と高さとの関係は、この装置で
太短くした加圧器と内部詰物を除去した蒸気発生器出口
プレナム部の上部とを除外すれば、ほぼW型PWRに一致
するものである。この関係は、一次系内各部に水位差が
生じない平静な状態における水位と水容積の関係を表す
ものであり、事故時等においては一つの目安となるもの
である。加圧器水位は、原子炉容器より高い位置にあ
り、その測定範囲に対応する一次系容積は約60%以上の
範囲である。
Fig. 2 shows a large-scale unsteady experimental device (LS) that simulates a W-type PWR (heat output 3423Mwt, 4 loops) at a volume ratio of 1/48 and actual height.
TF) shows the relationship between the height and the internal volume, and the measurement range of the water level gauge and the range of the core in the present invention. The relationship between the ratio of the volume of the primary system to the total volume and the height is almost the same as the W-type PWR, except for the pressurizer shortened by this device and the upper part of the steam generator outlet plenum where internal packing is removed. To do. This relationship expresses the relationship between the water level and the water volume in a calm state where no water level difference occurs in each part in the primary system, and is one guideline in the event of an accident. The pressurizer water level is higher than the reactor vessel, and the primary system volume corresponding to the measurement range is approximately 60% or more.

一方、本願発明における水位計の一次系水平配管下端
より上方の約2.2mの範囲に対応する一次系容積は全体の
27〜60%の範囲にある。全容積の1/3がこの測定範囲に
集中しているので、この範囲の水位変化は、他の一次系
内の部分に比べて、時間変化が最も緩やかである。一次
系水平配管部より下方の約3.7mに対応する一次系容積は
全体の15%であり、合計して全体の約1/2の一次系容積
が本願発明における水位計の全測定範囲に対応してい
る。なお、炉心部は、ループシール部下端をほぼその中
心部として、一次系全容積の7〜20%の容積に相当する
位置にあるものである。なお、本願発明における水位計
の差圧導圧管は1/2インチ管程度の細管であり、仮にこ
の配管の1本が破断する場合を想定しても、そこから流
出する流量は、高圧注入系(又は高圧充填系)により十
分カバーすることができるものである。
On the other hand, the primary system volume corresponding to a range of about 2.2 m above the lower end of the primary system horizontal pipe in the present invention is
It is in the range of 27-60%. Since 1/3 of the total volume is concentrated in this measurement range, the water level change in this range has the slowest time change compared to other parts in the primary system. The primary system volume corresponding to about 3.7 m below the primary system horizontal piping part is 15% of the total, and the total primary system volume of about 1/2 corresponds to the entire measurement range of the water level gauge in the present invention. are doing. The core portion is at a position corresponding to a volume of 7 to 20% of the total volume of the primary system, with the lower end of the loop seal portion being substantially the center thereof. It should be noted that the differential pressure introducing pipe of the water level gauge in the present invention is a thin tube of about 1/2 inch pipe, and even if one of the pipes is supposed to be broken, the flow rate flowing out from the pipe is high. (Or high-pressure filling system) can be sufficiently covered.

(実施例) 次に、実施例について本願発明を具体的に説明する。(Examples) Next, the present invention will be specifically described with reference to Examples.

LSTF(資料2参照)においては、蒸気発生器出口プレ
ナムの下部とループシール部下端との間の約4.5mの高さ
の差圧を測定できる。この装置で実施した小破断冷却材
喪失事故の模擬実験のうち、TMI−2原子炉事故を模擬
したSB3実験及びこれと同程度の破断面積を持ち、破断
位置を原子炉容器底部、低温側配管、高温側配管、原子
炉容器頂部に設定した4っつの実験(それぞれSPI、SC
C、SH3、SP2実験と称する)の結果(資料3参照)か
ら、第3図に示すように、炉心部の水位低下による燃料
棒表面温度上昇開始に先行して、本願発明における水位
計に相当する差圧計の応答が生じたことが分かる。すな
わち、蒸気発生器出口プレナム部の下部における水位低
下開始は、SPI実験の場合には408秒、SP2実験の場合に
は2088秒、SH3実験の場合には1385秒、炉心温度上昇開
始より早い。
The LSTF (see Reference 2) can measure a differential pressure of about 4.5 m between the lower part of the steam generator outlet plenum and the lower end of the loop seal part. Among the small-breakage coolant loss accident simulation experiments conducted with this device, the SB3 experiment simulating the TMI-2 reactor accident and the same fracture area as the fracture position, the fracture position was the bottom of the reactor vessel and the low temperature side piping. , High temperature side piping, four experiments set on the top of the reactor vessel (SPI, SC respectively)
From the results of C, SH3, and SP2 experiments) (refer to Material 3), as shown in FIG. 3, it corresponds to the water level gauge in the present invention prior to the start of the fuel rod surface temperature rise due to the water level drop in the core. It can be seen that a differential pressure gauge response has occurred. That is, the water level starts to drop in the lower part of the steam generator outlet plenum at 408 seconds in the SPI experiment, 2088 seconds in the SP2 experiment, 1385 seconds in the SH3 experiment, and earlier than the core temperature rise start.

このLSTFループシール部差圧計の上端は、本願発明に
おける水位計の上端より1.4m低い位置にあるので、本願
発明における水位計を使用すれば、これらの実験結果よ
りも更に早く水位低下が検出されることは明らかであ
る。蒸気発生器出口プレナムの水位低下開始から炉心水
位低下までの経過時間は、第3図のように、一次系内の
破断位置により変化するが、この他に、当然破断面積に
も依存する。LSTF実験の場合、上述のSCC実験では、こ
の経過時間は981秒であるが、同じ破断位置で破断面積
が10倍の実験では経過時間は300秒であった。
Since the upper end of this LSTF loop seal differential pressure gauge is located 1.4 m lower than the upper end of the water level gauge of the present invention, the use of the water level gauge of the present invention allows the water level drop to be detected earlier than these experimental results. It is clear that The elapsed time from the start of lowering the water level at the steam generator outlet plenum to the lowering of the core water level varies depending on the fracture position in the primary system, as shown in Fig. 3, but naturally also depends on the fracture area. In the case of the LSTF experiment, this elapsed time was 981 seconds in the above-described SCC experiment, but in the experiment in which the fracture area was 10 times at the same fracture position, the elapsed time was 300 seconds.

また第3図から、蒸気発生器出口プレナムの水位低下
開始は、原子炉容器内水位が一次系水平配管ノズル位置
以下に低下し始める時刻より300秒ないし1000秒早いこ
とがわかる。これは、蒸気発生器出口プレナムやループ
シール部の流体が蒸気発生器二次系により冷却された飽
和水であるのに対し、炉心側は炉心の崩壊熱により生成
されたボイドが上昇して蒸気発生器へ流れるために混合
水位の低下が遅れることによるものである。原子炉容器
内の差圧式水位測定の場合は、このような炉心部上昇流
とボイド率分布の影響があることに加えて、高温側配管
ノズル位置より下に水位が低下する時刻が本願発明にお
ける水位計の場合より遅れ、従って、炉心水位低下まで
の経過時間が本願発明の場合より短くなるものである。
Also, from FIG. 3, it can be seen that the water level in the steam generator outlet plenum starts to drop 300 to 1000 seconds earlier than the time when the water level in the reactor vessel begins to drop below the primary horizontal pipe nozzle position. This is because the fluid at the steam generator outlet plenum and the loop seal part is saturated water cooled by the steam generator secondary system, but on the core side, the voids generated by the decay heat of the core rise and steam This is because the drop in the mixed water level is delayed due to the flow to the generator. In the case of differential pressure type water level measurement in the reactor vessel, in addition to the influence of such a core upstream flow and void fraction distribution, the time when the water level drops below the high temperature side piping nozzle position in the present invention. This is later than in the case of the water level gauge, and therefore the elapsed time until the core water level is lowered becomes shorter than in the case of the present invention.

次に、ループシール下降側の水位挙動の特性について
示す。前述のSH3実験では、蒸気発生器出口プレナムか
ら低下した水位は、ループシール下降側の低温側水平配
管位置に到達すると、それ以後長時間にわたり、同じ高
さに保持されていたが、その間に炉心水位は低下した。
つまり、ループシール部に水が残存した状態で原子炉容
器内の保有水が減少した。
Next, the characteristics of the water level behavior on the descending side of the loop seal will be shown. In the SH3 experiment described above, the water level lowered from the steam generator outlet plenum was held at the same height for a long time after reaching the low temperature side horizontal piping position on the loop seal descending side, but during that time, the core The water level has dropped.
In other words, the retained water in the reactor vessel decreased with water remaining in the loop seal.

一方、SP1、SP2、SH3実験の場合では、蒸気発生器出
口プレナムから低下した水位は、低温側配管水平部より
低下するが、ループシール下端までは到達せず、この水
平部と下端の中間的位置にあり、高圧注入系作動後に、
下端まで低下した。炉心水位はこの間に低下した。SCC
(低温側配管破断)実験の場合は、これらと若干異なっ
た水位挙動を示した。蒸気発生器出口プレナムから低温
側配管水平部まで低下した水位は、更に低下し続け、ル
ープシール部下端に到達した。このため、ループシール
下降側の蒸気が上昇側に流入し、ループシール部に残存
していた保有水は低温側配管から一部は原子炉容器に流
入した。この過程で炉心は一時的に露出し、炉心中央部
より上方の燃料棒の温度上昇が検出されたが、ループシ
ール部の前後の圧力差が一時的に解消したことに伴い、
原子炉容器内の炉心とダウンカマー間の水位差も減少
し、炉心は一時冷却された。このループシール・クリア
リング現象の後に、炉心は保有水減少により再び露出し
た。これらの結果からわかることは、一次系配管水平部
より下方のループシール部における水位は、一般に炉心
側の水位変化に対応しないが、蒸気発生器出口プレナム
から一次系配管水平部までの水位低下は炉心側の水位低
下予知に役立つことである。ただし、低温側配管破断の
ように、ループシール下降側水位が下端まで到達する場
合には、炉心水位低下による燃料棒温度上が生じている
ことが予想される。
On the other hand, in the case of SP1, SP2 and SH3 experiments, the water level lowered from the steam generator outlet plenum was lower than the horizontal part of the low temperature side pipe, but did not reach the lower end of the loop seal, Position and after high pressure injection system operation,
It fell to the bottom. The core water level dropped during this period. SCC
In the case of the (pipe breakage on the low temperature side) experiment, the water level behavior was slightly different from these. The water level, which dropped from the steam generator outlet plenum to the horizontal part of the low temperature side pipe, continued to drop and reached the lower end of the loop seal part. For this reason, the steam on the descending side of the loop seal flowed into the rising side, and the retained water remaining in the loop seal part partially flowed into the reactor vessel from the low temperature side pipe. During this process, the core was temporarily exposed, and the temperature rise of the fuel rods above the central part of the core was detected, but with the temporary elimination of the pressure difference before and after the loop seal part,
The water level difference between the core in the reactor vessel and the downcomer also decreased, and the core was cooled temporarily. After this loop seal / clearing phenomenon, the core was exposed again due to the reduction of water content. These results show that the water level in the loop seal part below the horizontal part of the primary system pipe does not generally correspond to the water level change on the core side, but the water level drop from the steam generator outlet plenum to the horizontal part of the primary system pipe does not occur. This is useful for predicting water level drop on the core side. However, when the water level on the loop seal descending side reaches the lower end, as in the case of pipe breakage on the low temperature side, it is expected that the fuel rod temperature will rise due to the decrease in the core water level.

最後に、LSTFのループシール部(下降側)差圧計の特
性から、一次循環ポンプが回転している場合の配管内流
動抵抗による圧力損失の影響について示す。この差圧測
定範囲には、流れの障害となる構造物はなく、この間の
圧力損失は、炉心を測定範囲に持つ原子炉容器頂部・底
部間の圧力損失に比べれば、無視し得る程小さい。LSTF
の場合の抵抗係数は全測定範囲に対して2.75×10-3であ
った。実炉の定格流量条件では、水頭に匹敵する圧力損
失になるが、流速が2m/s以下の水単相流が流れる場合に
は、その圧力損失の影響を無視できる。実炉のループシ
ール配管に比べると、LSTF配管は長さが同等で、配管径
が約1/5であるので、この配管の抵抗係数は実炉よりか
なり大きいものと考えられる。いずれにしても、実炉に
本願発明における水位計を設置して通常運転状態で使用
する場合には、水位計測定範囲の流動抵抗係数を予め求
めておき、一次循環水による圧力損失の影響を分離する
ことにより流量の確認に用いることができる。水位計と
して用いることができるのは、一次循環ポンプ回転が停
止されている条件下であり、流速が2m/s以下の場合には
近似的に水位計の機能を保持できる。
Finally, from the characteristics of the differential pressure gauge of the loop seal part (downward side) of the LSTF, the effect of pressure loss due to flow resistance in the pipe when the primary circulation pump is rotating is shown. In this differential pressure measurement range, there are no structures that obstruct the flow, and the pressure loss during this is negligibly small compared to the pressure loss between the top and bottom of the reactor vessel whose core is the measurement range. LSTF
In this case, the resistance coefficient was 2.75 × 10 -3 for the entire measurement range. Under the rated flow condition of an actual reactor, the pressure loss is comparable to that of the head, but when a water single-phase flow with a flow velocity of 2 m / s or less flows, the effect of the pressure loss can be ignored. Compared to the loop seal pipe of the actual furnace, the LSTF pipe has the same length and the diameter of the pipe is about 1/5, so it is considered that the resistance coefficient of this pipe is considerably larger than that of the actual furnace. In any case, when the water level gauge according to the present invention is installed in an actual reactor and used in a normal operation state, the flow resistance coefficient of the water level gauge measurement range is obtained in advance, and the influence of the pressure loss due to the primary circulating water is measured. By separating, it can be used to confirm the flow rate. The water level meter can be used under the condition that the rotation of the primary circulation pump is stopped, and the function of the water level meter can be approximately retained when the flow velocity is 2 m / s or less.

参考資料 1. Yih−Yun Hsu et al.,Some Possible Wa
ys to Improve Nuclear Power Plant Instrumentation,
Nucler Safety,22(6) 1981 参考資料 2. The ROSA−IV Group,ROSA−IV Large Sc
ale Test Facility(LSTF)System Description,JAERI
−M 84−237(Jan.1985) 参考資料 3. M.Suzuki,Break Location Effects on P
WR Small Break LOCA Phenomena−−Inadequate Core C
ooling in Lower Plenum Break Test at LSFT−−,JAER
I−M 88−271(Jan.1989).
Reference Material 1. Yih-Yun Hsu et al., Some Possible Wa
ys to Improve Nuclear Power Plant Instrumentation,
Nucler Safety, 22 (6) 1981 Reference Material 2. The ROSA-IV Group, ROSA-IV Large Sc
ale Test Facility (LSTF) System Description, JAERI
−M 84−237 (Jan.1985) Reference Material 3. M.Suzuki, Break Location Effects on P
WR Small Break LOCA Phenomena−−Inadequate Core C
ooling in Lower Plenum Break Test at LSFT−−, JAER
I-M 88-271 (Jan. 1989).

【図面の簡単な説明】[Brief description of drawings]

第1図は、W型PWRの概念と加圧器及び本願発明におけ
る水位計の位置の関係を示す説明図である。 1……原子炉容器 2……炉心 3……加圧器 4……蒸気発生器 5……一次循環ポンプ 6……ループシール下降側 7……ループシール上昇側 8……一次系配管水平部(低温側配管、高温側配管) 9……本願発明における水位計 10……加圧器水位計 第2図は、W型PWRを模擬したLSTF装置の高さと容積比
の関係(11)を示す。 12……蒸気発生器出口プレナム上端 13……一次系配管水平部下端 14……ループシール下端 15……炉心上端 16……炉心下端 17……本件水位計主測定範囲 18……本件水位計全測定範囲 19……炉心 第3図は、実炉2インチ管相当のLSTF小破断実験におけ
る破断位置と主な事象の時刻との関係を示す。 20……原子炉容器底部破断(SP1) 21……低温側配管破断(SCC) 22……高温側配管破断(SH3) 23……原子炉容器頂部破断 24……TM1−2型破断 25……蒸気発生器出口プレナム水位低下 26……原子炉容器水位・水平配管部より低下 27……炉心露出(水位低下)
FIG. 1 is an explanatory view showing the relationship between the concept of the W-type PWR and the position of the pressurizer and the water level gauge in the present invention. 1 …… Reactor vessel 2 …… Core 3 …… Pressurizer 4 …… Steam generator 5 …… Primary circulation pump 6 …… Loop seal descending side 7 …… Loop seal ascending side 8 …… Primary system horizontal part ( Low-temperature side piping, high-temperature side piping) 9 ... Water level gauge in the present invention 10 ... Pressurizer water level gauge Fig. 2 shows the relationship between the height and volume ratio (11) of the LSTF device simulating a W-type PWR. 12 …… Steam generator outlet plenum upper end 13 …… Primary system horizontal pipe lower end 14 …… Loop seal lower end 15 …… Core upper end 16 …… Core lower end 17 …… Main water level gauge Main measurement range 18 …… All water level gauge Measurement range 19 ... Reactor core Figure 3 shows the relationship between the fracture position and the time of the main event in the LSTF small fracture experiment corresponding to the actual reactor 2 inch tube. 20 …… Reactor vessel bottom rupture (SP1) 21 …… Low temperature side pipe rupture (SCC) 22 …… High temperature side pipe rupture (SH3) 23 …… Reactor vessel top rupture 24 …… TM1-2 type rupture 25 …… Steam generator outlet plenum water level drop 26 …… Reactor vessel water level / drop from horizontal piping 27 …… Core exposure (water level drop)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】加圧器水位計より下方で、炉心下端より上
方にある一次循環ループの垂直部分を含む蒸気発生器出
口プレナムからループシール下端までの部分に、温度補
償付差圧式水位計を設置し、一次循環ポンプ停止後の循
環流停滞時を水位計使用条件としたことを特徴とする一
次循環ループ水位計付加圧水型原子炉。
1. A temperature compensating differential pressure type water level gauge is installed in a portion from a steam generator outlet plenum including a vertical portion of a primary circulation loop below a pressurizer water level gauge and above a core lower end to a loop seal lower end. However, the primary circulation loop water level gauge-added pressurized water reactor is characterized in that the water level meter is used when the circulation flow is stagnant after the primary circulation pump is stopped.
JP1001989A 1989-01-10 1989-01-10 Primary circulation loop Water level meter Pressure water reactor Expired - Fee Related JPH0823596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001989A JPH0823596B2 (en) 1989-01-10 1989-01-10 Primary circulation loop Water level meter Pressure water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001989A JPH0823596B2 (en) 1989-01-10 1989-01-10 Primary circulation loop Water level meter Pressure water reactor

Publications (2)

Publication Number Publication Date
JPH02183198A JPH02183198A (en) 1990-07-17
JPH0823596B2 true JPH0823596B2 (en) 1996-03-06

Family

ID=11516890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001989A Expired - Fee Related JPH0823596B2 (en) 1989-01-10 1989-01-10 Primary circulation loop Water level meter Pressure water reactor

Country Status (1)

Country Link
JP (1) JPH0823596B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611703C2 (en) * 1996-03-25 1998-04-09 Siemens Ag Method and device for securing the removal of residual heat from a reactor of a nuclear power plant
CN110895975B (en) * 2018-09-13 2021-11-16 中国船舶重工集团公司第七一九研究所 Voltage stabilizer suitable for ocean nuclear power platform

Also Published As

Publication number Publication date
JPH02183198A (en) 1990-07-17

Similar Documents

Publication Publication Date Title
Kukita et al. Nonuniform steam generator U-tube flow distribution during natural circulation tests in ROSA-IV large scale test facility
JPH0823596B2 (en) Primary circulation loop Water level meter Pressure water reactor
Kawanishi et al. Experimental study on heat removal during cold leg small break LOCAs in PWRs
Tuunanen et al. Analyses of PACTEL passive safety injection experiments GDE-21 through GDE-25
Shotkin et al. Implications of the ROSA/AP600 high-and intermediate-pressure test results
Leung et al. Critical heat flux predictions during blowdown transients
Rashid Coolability of volumetrically heated particle beds
Kukita et al. The noncondensable gas effects on loss-of-coolant accident steam condensation loads in boiling water reactor pressure suppression pool
Lee Limiting countercurrent flow phenomenon in small break LOCA transients
Ryu et al. Integral effect test on cooling performance of hybrid safety injection tank
Akimoto et al. Pressure drop through broken cold leg during reflood phase of loss-of-coolant accident of pressurized water reactor
Asaka et al. Results of 0.5% hot-leg break loss-of-coolant accident experiments at ROSA-IV/LSTF: the effect of break orientation
Pavel Non-Standard Natural Circulation in Primary Circuit of VVER-440. Behavior of Horizontal Steam Generator in this Regime.
Gouat Dimensioning the EVITA semi-open loop at BR2 for qualification of full size JHR fuel elements
JP2849409B2 (en) Spectral shift operation method and operation control device for boiling water reactor
Gast et al. Cooling disturbances in the core of sodium-cooled fast reactors as causes of fast failure propagation
Lomperski et al. Natural circulation experiments with a VVER reactor geometry
Kovtonyuk et al. Safety of evolutionary reactors: feasibility study for the experimental program of SPES facility
Dumaz Three Mile Island Unit 2 Analysis Exercise: CATHARE Computations of Phases 1 and 2 of the Accident
Gavelli Transport and Mixing of a Volume of Fluid in a Complex Geometry
Cho et al. System-Core Thermal Hydraulic Interaction During a Reflood Phase of a Cold-Leg LBLOCA in the Atlas Integral Effect Test Facility
Seo et al. Return momentum effect on water level distribution during mid-loop operations
Suzuki et al. Experimental study on secondary depressurization action for PWR vessel bottom small break LOCA with HPI failure and gas inflow (ROSA-V/LSTF Test SB-PV-03)
Smith Safety implications of control systems program at ORNL
JPS6141991A (en) Method of detecting fluid state of nuclear reactor and temperature of fuel coated tube

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees