JPH02183198A - Pressurized water nuclear reactor with water level gauge for primary circulation loop - Google Patents

Pressurized water nuclear reactor with water level gauge for primary circulation loop

Info

Publication number
JPH02183198A
JPH02183198A JP1001989A JP198989A JPH02183198A JP H02183198 A JPH02183198 A JP H02183198A JP 1001989 A JP1001989 A JP 1001989A JP 198989 A JP198989 A JP 198989A JP H02183198 A JPH02183198 A JP H02183198A
Authority
JP
Japan
Prior art keywords
water level
level gauge
volume
primary
primary system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1001989A
Other languages
Japanese (ja)
Other versions
JPH0823596B2 (en
Inventor
Mitsuhiro Suzuki
光弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP1001989A priority Critical patent/JPH0823596B2/en
Publication of JPH02183198A publication Critical patent/JPH02183198A/en
Publication of JPH0823596B2 publication Critical patent/JPH0823596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To obtain an improved reliability of a volume detection of a held water by providing water level gauges between upper ends of outlet plenums and lower ends of loop seals of steam generators in all primary loops. CONSTITUTION:A temperature compensated pressure difference typed water level gauge 9 is provided at a part which is located between an outlet plenum of a steam generator 4 containing a vertical portion of a primary circulating loop which is located underneath a pressurizer water level gauge 10 and above a lower end of a reactor core 2, and a lower end of a loop seal, and moreover the same typed water level gauges are provided to all loops of the primary circulation systems. A volume of the primary system corresponding to a 2.2m range above a lower end of a primary system horizontal piping of the water level gauge 9 stays within a range of 27 to 60% of the whole volume. As one third of the whole volume is concentrated to this measuring range, a level change in this range is the slowest change with an elapsing time, as compared with other parts within the primary system. Also, a primary system volume corresponding to a 3.7m portion underneath the primary system horizontal piping is 15% of the whole volume and around 1/2 of the whole primary system volume, in total, corresponding to a whole measuring range of the water level gauge 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、事故時の安全性を改良した加圧木型原子炉に
関する。詳しくは、本発明は、米国スリーマイル島原予
力発電所2芳炉(TMI−2)の事故を含む加圧木型原
子炉(PWR)の各種小破断冷却材喪失事故や、その後
のプラント回復操作時及び−次循環ポンプ停止時におい
て、加圧器水位計のみでは検出できない原子炉容器内保
有水量を、原子炉容器内には水位計を設置することなく
、−次循環ループ内の対応する高さの部分に設置した差
圧式水位計により検出し、事故時の安全性を改良した加
圧木型原子炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pressurized wooden nuclear reactor with improved safety in the event of an accident. Specifically, the present invention is applicable to various small breakage loss of coolant accidents in pressurized wood reactors (PWRs), including the Three Mile Shimabara Prepower Plant 2 (TMI-2) accident in the United States, and subsequent plant recovery. During operation and when the secondary circulation pump is stopped, the amount of water held in the reactor vessel that cannot be detected only by the pressurizer water level gauge can be detected by measuring the corresponding high water level in the secondary circulation loop without installing a water level gauge in the reactor vessel. This relates to a pressurized wooden nuclear reactor that has improved safety in the event of an accident by detecting the water level using a differential pressure type water level gauge installed at the bottom of the reactor.

(従来の技術) 上記TM I −2原子炉事故は、−次系内唯一の水位
計設置機器である加圧器頂部(圧力逃し弁)からの冷却
材喪失事故であったため、−次系圧力は低下する一方で
加圧器水位が上昇する事態となり、当惑した原子炉運転
員は加圧器水位を重視して原子炉保有水が十分あるもの
と判断した。従って、実際には原子炉容器内保有水量が
低下していったことに長時間に亘り気がつかず、更に他
の原因も加わり、最終的には炉心溶融という最悪の事態
に到ったものである。
(Prior art) The TM I-2 nuclear reactor accident mentioned above was an accident in which coolant was lost from the top of the pressurizer (pressure relief valve), which is the only equipment installed with a water level gauge in the -second system, so the -second system pressure was While the water level in the pressurizer was decreasing, the water level in the reactor rose, and the reactor operators were perplexed and decided that the water level in the reactor was important and that there was enough water in the reactor. Therefore, the fact that the amount of water held in the reactor vessel was actually decreasing was not noticed for a long time, and other causes were also added, which ultimately led to the worst case scenario of core meltdown. .

米国原子力規制委員会は、事故後、このことに注目し、
加圧木型原子炉の原子炉容器内保有水量を直接検出でき
る改善を指示した。そして、ウエスティングハウス社(
W社)におては、原子炉容器頂部・底部に差圧式水位計
を付加した(資料1参照)。しかしながら、これには、
原子炉容器自体に軽装用ノズルを設置するという構造強
度上の問題と、後に示すように、本願発明における水位
計設置位置の水位に比べて、炉心発熱による混合水位ス
エリングのために高温側配管ノズル位置以下に水位が低
下する時刻がかなり遅れる問題、更に高放射線下の炉心
部に接近した位置にあるため水位計の設置、保守、調整
等に一定の制約を伴う等の問題点がある。
The U.S. Nuclear Regulatory Commission took note of this after the accident,
Ordered improvements to enable direct detection of the amount of water held in the reactor vessel of pressurized wooden reactors. And Westinghouse (
Company W) added differential pressure type water level gauges to the top and bottom of the reactor vessel (see Document 1). However, this
There is a structural strength problem of installing light nozzles in the reactor vessel itself, and as will be shown later, the high-temperature side piping nozzle is lower than the water level at the water level gauge installation position in the present invention due to mixed water level swelling due to core heat generation. There are problems such as a considerable delay in the time when the water level drops below the current level, and furthermore, there are certain restrictions on the installation, maintenance, and adjustment of water level gauges because they are located close to the reactor core, which is under high radiation.

(発明が解決しようとする課題) 本願発明の目的は、このような問題点を解決した一次循
環ループ水位計付加圧木型原子炉を提供することにある
(Problems to be Solved by the Invention) An object of the present invention is to provide a pressure wooden nuclear reactor with a primary circulation loop water level gauge that solves the above-mentioned problems.

(課題を解決するための手段) 本願発明においては、水位計はW社則のPWR(W型P
WR)に設置するものであり、原子炉容器頂部・底部間
の水位計の持つ問題点や制約の解消ないしは低減をはか
ることができる。本願発明においては、水位計は、既存
の温度補償付差圧式水位計であり、液体の代表密度はル
ープシール部の液体温度及び−次代表圧力により求め、
−次系全ループの蒸気発生器出口プレナム上端とループ
シール部下端との間に設置する。全ループに設置するこ
とにより余剰性を確保し、更に一次系内に流体或いは圧
力の振動がある場合でも、水位データの時間平均及びシ
ステム全体の平均化を行うことにより、保有水量検出の
信顛度を上げることができる。
(Means for solving the problem) In the present invention, the water level gauge is a PWR (W type P
WR), and can eliminate or reduce the problems and limitations of water level gauges between the top and bottom of the reactor vessel. In the present invention, the water level gauge is an existing temperature-compensated differential pressure type water level gauge, and the representative density of the liquid is determined from the liquid temperature at the loop seal portion and the following representative pressure.
- Installed between the upper end of the steam generator outlet plenum and the lower end of the loop seal for all subsequent loops. By installing it in all loops, redundancy is ensured, and even if there are fluid or pressure fluctuations in the primary system, by averaging the water level data over time and averaging the entire system, reliability in detecting the amount of water held is ensured. You can increase the degree.

従って、本発明の加圧水型原子炉は、加圧器水位計より
下方で、炉心下端より上方にある一次循環ループの垂直
部分を含む蒸気発生器出口プレナムからループシール下
端までの部分に、温度補償付差圧式水位計を設置し、更
に一次循環系の全ループに同様の水位計を設置したこと
を特徴とするウェスチングハウス社型加圧水型原子炉で
ある。
Therefore, the pressurized water reactor of the present invention has a temperature-compensated section from the steam generator outlet plenum to the lower end of the loop seal, including the vertical section of the primary circulation loop below the pressurizer water level gauge and above the lower end of the core. This is a Westinghouse-type pressurized water nuclear reactor that is equipped with a differential pressure water level gauge and a similar water level gauge installed in all loops of the primary circulation system.

詳しくは、加圧器水位計より下方で、炉心下端より上方
にある一次循環ループの垂直部分を含む蒸気発生器出口
プレナムからループシール下端までの部分に、温度補償
付差圧式水位計を設置し、通常運転時には一次循環流量
の検出に利用し、米国スリーマイル島原子炉事故を含む
各種小破断冷却材喪失事故や一次循環ボンブ停止時で原
子炉容器内保有水量が低下する場合には、該水位計が炉
心部水位低下に先行した水位低下を検出し、更に原子炉
容器内水位に対応した水位挙動を検出できる特性に基づ
き、原子炉容器自体には水位計を設置することなしに原
子炉容器内保有水量検出を行い、更に一次循環系の全ル
ープに同様の水位計を設置してその余剰性を確保し、原
子炉崩壊熱除去に必要な保有水量確保を容易にする一次
循環ループ水位計付加圧水型原子炉である。
Specifically, a temperature-compensated differential pressure water level gauge is installed in the area from the steam generator outlet plenum to the lower end of the loop seal, including the vertical part of the primary circulation loop below the pressurizer water level gauge and above the lower end of the core. During normal operation, it is used to detect the primary circulation flow rate, and when the amount of water held in the reactor vessel decreases due to various small fracture loss of coolant accidents, including the Three Mile Island nuclear reactor accident in the United States, or when the primary circulation bomb is stopped, the water level Based on the characteristic that the water level gauge can detect the drop in water level that precedes the drop in the water level in the reactor core, and can also detect the water level behavior corresponding to the water level inside the reactor vessel, it is possible to detect the water level in the reactor vessel without installing a water level gauge in the reactor vessel itself. A primary circulation loop water level gauge that detects the amount of water held within the reactor, and also installs similar water level gauges in all loops of the primary circulation system to ensure surplus, making it easy to secure the amount of water needed to remove reactor decay heat. It is a pressurized water reactor.

本願発明の加圧水型原子炉を図面について説明する。第
1図は、W型PWRと加圧器水位測定範囲、及び本願発
明における水位計の測定範囲を示す0本願発明における
水位計の主たる測定範囲は蒸気発生器出口プレナム上端
から一次系水平測定配管部下端までの2.2mであるが
、それより下部でループシール部下端までの3.7mを
測定範囲に含めることにより、後に述べるループシール
・クリアリング時の一時的炉心水位低下現象も検出する
ことができる。第2図は、W型PWR(熱出力3423
Mれ、4ループ)を容積比1/48、高さ実寸で模擬し
た大型非定常実験装置(LSTF)における高さと内容
積の関係と、本願発明における水位計の測定範囲及び炉
心の範囲とを示す。−次系内容積の全容積に対する比率
と高さとの関係は1、この装置で太短くした加圧器と内
部詰物を除去した蒸気発生器出口プレナム部の上部とを
除外すれば、はぼW型PWRに一致するものである。
The pressurized water nuclear reactor of the present invention will be explained with reference to the drawings. Figure 1 shows the W-type PWR, the water level measurement range of the pressurizer, and the measurement range of the water level meter in the present invention.The main measurement range of the water level meter in the present invention is from the upper end of the steam generator outlet plenum to the primary system horizontal measurement piping. The measurement range is 2.2m to the bottom end, but by including 3.7m below that to the bottom end of the loop seal, it is also possible to detect the temporary core water level drop phenomenon during loop seal clearing, which will be described later. Can be done. Figure 2 shows a W-type PWR (thermal output 3423
The relationship between the height and internal volume in a large unsteady experimental facility (LSTF), which simulates M, 4 loops) at a volume ratio of 1/48 and the actual height, and the measurement range of the water level gauge and the range of the reactor core in the present invention. show. -The relationship between the ratio of the internal volume of the next system to the total volume and the height is 1.If you exclude the pressurizer, which has been made thicker and shorter in this device, and the upper part of the steam generator outlet plenum from which internal fillings have been removed, it is almost W-shaped. This corresponds to PWR.

この関係は、−次系内各部に水位差が生じない平静な状
態における水位と水容積の関係を表すものであり、事故
時等においては一つの目安となるものである。加圧器水
位計は、原子炉容器より高い位置にあり、その測定範囲
に対応する一次系容積は約60%以下の範囲である。
This relationship represents the relationship between water level and water volume in a calm state where there is no difference in water level in each part of the subsystem, and can serve as a guide in the event of an accident. The pressurizer water level gauge is located at a higher position than the reactor vessel, and the primary system volume corresponding to its measurement range is approximately 60% or less.

一方、本願発明における水位針の一次系水平配管部下端
より上方の2.2mの範囲に対応する一次系容積は全体
の27〜60%の範囲にある。全容積の1/3がこの測
定範囲に集中しているので、この範囲の水位変化は、他
の一次系内の部分に比べて、最も時間変化が緩やかであ
る。−次系水平配管部より下方の3.7mに対応する一
次系容積は全体の15%であり、合計して全体の約17
2の一次系容積が本願発明における水位計の全測定範囲
に対応している。なお、炉心部は、ループシール部下端
をほぼその中心部として、−次系全容積の7〜20%の
容積に相当する位置にあるものである。
On the other hand, in the present invention, the primary system volume corresponding to the 2.2 m range above the lower end of the primary horizontal piping of the water level needle is in the range of 27 to 60% of the total volume. Since 1/3 of the total volume is concentrated in this measurement range, the water level changes in this range are the most gradual over time compared to other parts of the primary system. - The volume of the primary system corresponding to the 3.7m below the horizontal piping section of the secondary system is 15% of the total, and the total volume is approximately 17m of the total.
The primary system volume of 2 corresponds to the entire measurement range of the water level meter in the present invention. The core portion is located at a position corresponding to 7 to 20% of the total volume of the -order system, with the lower end of the loop seal being approximately at its center.

なお、本願発明における水位計の差圧導圧管は172イ
ンチ管程度の細管であり、仮にこの配管の1本が破断す
る場合を想定しても、そこから流出する流量は、高圧注
入系(又は高圧充填系)により十分カバーすることがで
きるものである。
In addition, the differential pressure impulse pipe of the water level gauge in the present invention is a thin pipe of about 172 inches, and even if one of these pipes were to break, the flow rate flowing out from it would be limited to the high pressure injection system (or high-pressure filling system).

(実施例) 次に、実施例について本願発明を具体的に説明する。(Example) Next, the present invention will be specifically explained with reference to Examples.

LSTF (資料2参照)においては、蒸気発生器出口
プレナムの下部とループシール部下端の間の約4.5m
の高さの差圧を測定できる。この装置で実施した小破断
冷却材喪失事故の模擬実験のうち、TM I −2原子
炉事故を模擬したSB3実験及びこれと同程度の破断面
積を持ち、破断位置を原子炉容器底部、低温側配管、高
温側配管、原子炉容器頂部に設定した4つの実験(それ
ぞれSPl、SCC,SH3,SP2実験と略す)の結
果(資料3参照)から、第3図に示すように、炉心部の
水位低下による燃料棒表面温度上昇開始に先行して、本
願発明における水位計に相当する差圧計の応答が生じた
ことがわかる。すなわち、蒸気発生器出口プレナム部の
下部における水位低下開始は、SPI実験の場合には4
08秒、SP2実験の場合には2088秒、SB3実験
の場合には1385秒、炉心温度上昇開始より早い。
For LSTF (see Document 2), approximately 4.5 m between the bottom of the steam generator outlet plenum and the bottom end of the loop seal.
It is possible to measure the differential pressure at a height of . Among the simulation experiments of small fracture loss of coolant accidents conducted using this equipment, the SB3 experiment, which simulates the TM I-2 nuclear reactor accident, and the SB3 experiment, which had a similar fracture area and the fracture location was at the bottom of the reactor vessel, on the low-temperature side. From the results of four experiments (abbreviated as SPl, SCC, SH3, and SP2 experiments, respectively) set on piping, high-temperature side piping, and the top of the reactor vessel (refer to Document 3), the water level in the reactor core was determined as shown in Figure 3. It can be seen that the response of the differential pressure gauge, which corresponds to the water level gauge in the present invention, occurred prior to the start of the fuel rod surface temperature rise due to the decrease. In other words, the start of the water level drop at the bottom of the steam generator outlet plenum is 4 in the case of the SPI experiment.
08 seconds, 2088 seconds in the case of the SP2 experiment, and 1385 seconds in the case of the SB3 experiment, which is earlier than the start of the core temperature rise.

このLSTFループシール部差圧計の上端は、本願発明
における水位計の上端より1.4m低い位置にあるので
、本願発明における水位計を使用すれば、これらの実験
結果よりも更に早く水位低下が検出されることは明らか
である。蒸気発生器出口プレナムの水位低下開始から炉
心水位低下までの経過時間は、第3図のように、−次系
的破断位置により変化するが、この他に、当然破断面積
にも依存する。LSTF実験の場合、上述のSCC実験
ではこの経過時間は981秒であるが、同じ破断位置で
破断面積が10倍の実験では経過時間は約300秒であ
った。
The upper end of this LSTF loop seal differential pressure gauge is located 1.4 m lower than the upper end of the water level gauge in the present invention, so if the water level gauge in the present invention is used, a drop in water level will be detected even earlier than these experimental results. It is clear that As shown in FIG. 3, the elapsed time from the start of the water level drop in the steam generator outlet plenum to the core water level drop varies depending on the position of the -order system fracture, but it also naturally depends on the fracture area. In the case of the LSTF experiment, this elapsed time was 981 seconds in the SCC experiment described above, but in an experiment with the same fracture location and 10 times the fracture area, the elapsed time was about 300 seconds.

また、第3図から蒸気発生器出口プレナムの水位低下開
始は、原子炉容器内水位が一次系水平配管ノズル位置よ
り低下し始める時刻より300秒ないし1000秒早い
ことがわかる。これは、蒸気発生器出口プレナムやルー
プシール部の流体が蒸気発生器二次系により冷却された
飽和水であるのに対して、炉心側は炉心の崩壊熱により
生成されたボイドが上昇して蒸気発生器へ流れるために
混合水位の低下が遅れることによるものである。
Furthermore, from FIG. 3, it can be seen that the water level in the steam generator outlet plenum begins to fall 300 to 1000 seconds earlier than the time when the water level in the reactor vessel starts to fall below the position of the primary horizontal piping nozzle. This is because the fluid in the steam generator outlet plenum and loop seal is saturated water cooled by the steam generator secondary system, while on the reactor core side, voids generated by the decay heat of the core rise. This is due to the delay in lowering the mixing water level as it flows to the steam generator.

原子炉容器内の差圧式水位測定の場合には、このような
炉心部上昇流とボイド率分布の影響があることに加えて
、高温側配管ノズル位置より下に水位が低下する時刻が
本願発明における水位計の場合より遅れ、従って、炉心
水位低下までの経過時間が本願発明の場合より短くなる
ものである。
In the case of differential pressure type water level measurement in the reactor vessel, in addition to being affected by the upward flow in the core and the void fraction distribution, the present invention also determines the time when the water level drops below the high temperature side piping nozzle position. Therefore, the elapsed time until the core water level drops is shorter than in the case of the present invention.

次に、ループシール下降側の水位挙動7の特性について
示す。前述のSB3実験では、蒸気発生器出口プレナム
から低下した水位は、ループシール下降側の低温側配管
(水平部)に到達すると、それ以後長時間に亘り、同じ
高さに保持されていたが、その間に炉心水位は低下した
。つまり、ループシール部に水が残存した状態で原子炉
容器内の保有水が減少した。
Next, the characteristics of the water level behavior 7 on the lowering side of the loop seal will be described. In the above-mentioned SB3 experiment, the water level that dropped from the steam generator outlet plenum reached the low-temperature side piping (horizontal part) on the descending side of the loop seal, and then remained at the same height for a long time. During that time, the core water level decreased. In other words, the amount of water retained in the reactor vessel decreased while water remained in the loop seal.

一方、SPI、SF3、SH3実験の場合は、蒸気発生
器出口プレナムから低下した水位は、低温側配管水平部
より低下するが、ループシール下端までは到達せず、こ
の水平部と下端の中間的位置にあり、高圧注入系作動後
に、下端まで低下した。炉心水位はこの間に低下した。
On the other hand, in the case of SPI, SF3, and SH3 experiments, the water level lowered from the steam generator outlet plenum is lower than the horizontal part of the low-temperature side piping, but does not reach the lower end of the loop seal, and is located between this horizontal part and the lower end. position, and after activation of the high-pressure injection system, it dropped to the lower end. The core water level decreased during this time.

SCC(低温側配管破断)実験の場合は、これらと若干
異った水位挙動を示した。蒸気発生器出口プレナムから
低温側配管水平部まで低下した水位は、更に低下し続け
、ループシール部下端に到達した。このため、ループシ
ール下降側の蒸気が上昇側に流入し、ループシール部に
残存していた保有水は低温側配管から一部は原子炉容器
に流入した。この過程で炉心は一時的に露出し、炉心中
央部より上方の燃料棒の温度上昇が検出されたが、ルー
プシール部の前後の圧力差が一時的に解消したことに伴
い、原子炉容器内の炉心とダウンカマー間の水位差も減
少し、炉心は一時冷却された。このループシール・クリ
アリング現象の後に、炉心は保有水減少により再び露出
した。これらの結果かられかることは、−次系配管水平
部より下方のループシール部における水位は炉心側の水
位変化に対応しないが、蒸気発生器出口プレナムから一
次系配管水平部までの水位低下は炉心側の水位低下予知
に役立つことである。ただし、低温側配管破断のように
、ループシール下降側水位が下端まで到達する場合には
、炉心水位低下による燃料棒温度上昇が生じていること
が予想される。
In the case of the SCC (cold side pipe rupture) experiment, water level behavior was slightly different from these. The water level that had dropped from the steam generator outlet plenum to the horizontal section of the cold-side piping continued to drop further and reached the lower end of the loop seal. Therefore, the steam on the descending side of the loop seal flowed into the ascending side, and a portion of the water remaining in the loop seal flowed into the reactor vessel from the low-temperature side piping. During this process, the reactor core was temporarily exposed and a temperature rise in the fuel rods above the center of the core was detected, but as the pressure difference before and after the loop seal was temporarily resolved, The water level difference between the core and the downcomer also decreased, and the core was temporarily cooled. After this loop-seal clearing phenomenon, the core was exposed again due to water retention. What is clear from these results is that the water level at the loop seal below the horizontal section of the primary system piping does not correspond to changes in the water level on the core side, but the water level drop from the steam generator outlet plenum to the horizontal section of the primary system piping does. This will be useful in predicting the drop in water level on the core side. However, if the water level on the descending side of the loop seal reaches the lower end, as in the case of a rupture of the low-temperature side pipe, it is expected that the temperature of the fuel rods will increase due to the drop in the core water level.

最後に、LSTFのループシール部(下降側)差圧計の
特性から、−次循環ポンプが回転している場合の配管内
流動抵抗による圧力損失の影響について示す。この差圧
測定範囲には、流れの障害となる構造物はなく、この間
の圧力損失は、炉心を測定範囲に持つ原子炉容器頂部・
底部間の圧力損失に比べれば、無視しうる程小さい。L
STFの場合の抵抗係数は全測定範囲に対して2.75
 x 10−3であった。実炉の定格流量条件では、水
頭に匹敵する圧力損失になるが、流速が2 m/s以下
の水車相流が流れる場合には、その圧力損失の影響を無
視できる。実炉のループシール配管に比べると、LST
F配管は長さが同等で、配管径が約115であるので、
この配管の抵抗係数は実炉よりかなり大きいものと考え
られる。いずれにしても、実炉に本願発明における水位
計を設置して通常運転状態で使用する場合には、水位計
測定範囲の流動抵抗係数を予め求めておき、−次循環水
による圧力損失の影響を分離することにより流量の確認
に用い−ることかできる。水位計として用いることがで
きるのは、−次循環ボンブ回転が停止されている条件下
であり、流速が2m/秒以下の場合には近似的に水位計
の機能を保持できる。
Finally, from the characteristics of the differential pressure gauge at the loop seal part (downward side) of the LSTF, we will show the influence of pressure loss due to flow resistance in the piping when the secondary circulation pump is rotating. There are no structures that obstruct the flow in this differential pressure measurement range, and the pressure loss during this time is limited to the top of the reactor vessel, which has the core in the measurement range.
Compared to the pressure loss between the bottoms, it is negligible. L
Resistance coefficient for STF is 2.75 for the entire measurement range
x 10-3. Under the rated flow conditions of an actual reactor, the pressure loss is comparable to the water head, but when a turbine-phase flow with a flow rate of 2 m/s or less flows, the effect of the pressure loss can be ignored. Compared to loop seal piping in an actual furnace, LST
Since the F piping is the same length and the piping diameter is approximately 115,
The resistance coefficient of this piping is considered to be considerably larger than that of an actual furnace. In any case, when installing the water level meter according to the present invention in an actual reactor and using it in normal operating conditions, the flow resistance coefficient of the water level meter measurement range should be determined in advance, and the influence of pressure loss due to circulating water By separating it, it can be used to check the flow rate. It can be used as a water level gauge under the condition that the rotation of the secondary circulation bomb is stopped, and when the flow velocity is 2 m/sec or less, the function of the water level gauge can be maintained approximately.

参考資料 1.  Yih−Yun Hsu et a
l、、 SomePossible Ways  to
  Improve Nuclear Power P
lantInstrumentation 、 Nuc
lear 5afety+ 22(6)  (1981
)。
Reference materials 1. Yih-Yun Hsu et a.
l, Some Possible Ways to
Improve Nuclear Power P
lant Instrumentation, Nuc
lear 5afety+ 22(6) (1981
).

参考資料 2.  The ROSA−IV Grou
p、 ROSA−IVLarge 5cale Te5
t Facility  (LSTF)  Syste
mDescription  、   JAERI−M
  84−237    (Jan、1985)。
Reference materials 2. The ROSA-IV Grou
p, ROSA-IVLarge 5cale Te5
t Facility (LSTF) System
mDescription, JAERI-M
84-237 (Jan, 1985).

参考資料 3.  M、5uzuki、  Break
 LocationEffects  on  PWR
Small  Break  LOCA  Pheno
menaInadequate Core Cooli
ng  in Loever Plenum Brea
kTest at LSTF−−、JAERI−M(t
o be published)。
Reference materials 3. M, 5uzuki, Break
LocationEffects on PWR
Small Break LOCA Pheno
menaInadequate Core Cooli
ng in Loever Plenum Brea
kTest at LSTF--, JAERI-M(t
o be published).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、W型PWHの概念と加圧器及び本願発明にお
ける水位計の位置の関係を示す説明図である。 1、原子炉容器 2、炉心 3、加圧器 4、蒸気発生器 5、−次循環ポンプ 6、ループシール下降側 7、ループシール上昇側 8、−次系配管水平部(低温側配管、高温側配管)9、
本願発明における水位計 10、  加圧器水位針 第2図は、W型PWRを模擬したLSTF装置の高さと
容積比の関係(11)を示す。 12、蒸気発生器出口プレナム上端 13、−次系配管水平部下端 14、ループシール下端 15、炉心上端 16、炉心下端 17、  本件水位計測定範囲 18、本件水位計全測定範囲 19、炉心 第3図は、LSTF小破断実験、実炉2インチ管相当に
おける破断位置と主な事象の時刻との関係を示す。 20、  原子炉容器底部破断(SPI)21゜ 22゜ 23゜ 24゜ 25゜ 26゜ 27゜ 低温側配管破断(S CC) 高温配管破断(SH3) 原子炉容器頂部破断 TMI−2型破断 蒸気発生器出口プレナム水位低下 原子炉容器水位・水平配管部より低下 炉心露出(水位低下)
FIG. 1 is an explanatory diagram showing the relationship between the concept of a W-type PWH and the positions of a pressurizer and a water level gauge in the present invention. 1. Reactor vessel 2, core 3, pressurizer 4, steam generator 5, secondary circulation pump 6, loop seal descending side 7, loop seal ascending side 8, secondary system piping horizontal section (low temperature side piping, high temperature side Piping) 9,
Water level gauge 10 and pressurizer water level needle in the present invention FIG. 2 shows the relationship (11) between the height and volume ratio of an LSTF device simulating a W-type PWR. 12, Steam generator outlet plenum upper end 13, secondary system piping horizontal lower end 14, loop seal lower end 15, core upper end 16, core lower end 17, Water level meter measurement range 18, Water level meter total measurement range 19, Core No. 3 The figure shows the relationship between the fracture position and the time of major events in the LSTF small fracture experiment and the equivalent of a 2-inch tube in an actual reactor. 20. Reactor vessel bottom rupture (SPI) 21° 22° 23° 24° 25° 26° 27° Cold side pipe rupture (SCC) High temperature pipe rupture (SH3) Reactor vessel top rupture TMI-2 type rupture steam generation Lower reactor vessel outlet plenum water level Lower reactor vessel water level/horizontal piping section exposed core (lower water level)

Claims (1)

【特許請求の範囲】[Claims] 加圧器水位計より下方で、炉心下端より上方にある一次
循環ループの垂直部分を含む蒸気発生器出口プレナムか
らループシール下端までの部分に、温度補償付差圧式水
位計を設置し、更に一次循環系の全ループに同様の水位
計を設置したことを特徴とするウエスチングハウス社型
一次循環ループ水位計付加圧水型原子炉。
A temperature-compensated differential pressure water level gauge is installed in the area from the steam generator outlet plenum to the lower end of the loop seal, which includes the vertical part of the primary circulation loop below the pressurizer water level gauge and above the bottom end of the core. A Westinghouse type primary circulation loop water level gauge pressure water reactor characterized by having similar water level gauges installed in all loops of the system.
JP1001989A 1989-01-10 1989-01-10 Primary circulation loop Water level meter Pressure water reactor Expired - Fee Related JPH0823596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001989A JPH0823596B2 (en) 1989-01-10 1989-01-10 Primary circulation loop Water level meter Pressure water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001989A JPH0823596B2 (en) 1989-01-10 1989-01-10 Primary circulation loop Water level meter Pressure water reactor

Publications (2)

Publication Number Publication Date
JPH02183198A true JPH02183198A (en) 1990-07-17
JPH0823596B2 JPH0823596B2 (en) 1996-03-06

Family

ID=11516890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001989A Expired - Fee Related JPH0823596B2 (en) 1989-01-10 1989-01-10 Primary circulation loop Water level meter Pressure water reactor

Country Status (1)

Country Link
JP (1) JPH0823596B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036302A1 (en) * 1996-03-25 1997-10-02 Siemens Aktiengesellschaft Method and device for making safe the discharge of residual heat from a nuclear power plant reactor
CN110895975A (en) * 2018-09-13 2020-03-20 中国船舶重工集团公司第七一九研究所 Voltage stabilizer suitable for ocean nuclear power platform

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036302A1 (en) * 1996-03-25 1997-10-02 Siemens Aktiengesellschaft Method and device for making safe the discharge of residual heat from a nuclear power plant reactor
US6026138A (en) * 1996-03-25 2000-02-15 Siemens Aktiengesellschaft Method and device for safeguarding the discharge of residual heat from a reactor of a nuclear power station
CN110895975A (en) * 2018-09-13 2020-03-20 中国船舶重工集团公司第七一九研究所 Voltage stabilizer suitable for ocean nuclear power platform
CN110895975B (en) * 2018-09-13 2021-11-16 中国船舶重工集团公司第七一九研究所 Voltage stabilizer suitable for ocean nuclear power platform

Also Published As

Publication number Publication date
JPH0823596B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
Kukita et al. Nonuniform steam generator U-tube flow distribution during natural circulation tests in ROSA-IV large scale test facility
WO1995027985A1 (en) Non-condensable gas tolerant condensing chamber
Addabbo et al. The LOBI integral system test facility experimental programme
Aksan Target phenomena in nuclear thermal-hydraulics
JPH02183198A (en) Pressurized water nuclear reactor with water level gauge for primary circulation loop
Shotkin et al. Implications of the ROSA/AP600 high-and intermediate-pressure test results
Tuunanen et al. Analyses of PACTEL passive safety injection experiments GDE-21 through GDE-25
Lee et al. Preliminary Thermal-Hydraulic Analysis of Beam Tube Break (BTLOCA) Accident at HANARO
Lee Limiting countercurrent flow phenomenon in small break LOCA transients
Akimoto et al. Pressure drop through broken cold leg during reflood phase of loss-of-coolant accident of pressurized water reactor
Schleisiek et al. Mol 7C experiments on local fault propagation in irradiated LMFBR fuel subassemblies
Choi et al. RELAP5/MOD3 analysis of a ROSA-IV/LSTF loss-of-RHR experiment with a 5% cold leg break
Gast et al. Cooling disturbances in the core of sodium-cooled fast reactors as causes of fast failure propagation
Hohorst et al. TMI-2 analysis using SCDAP/RELAP5/MOD3. 1
Vlassenbroeck et al. Assessment of natural circulation interruption during asymmetric cooldown transients
JP2849409B2 (en) Spectral shift operation method and operation control device for boiling water reactor
Pavel Non-Standard Natural Circulation in Primary Circuit of VVER-440. Behavior of Horizontal Steam Generator in this Regime.
Gavelli Transport and Mixing of a Volume of Fluid in a Complex Geometry
Crawford et al. Safety consequences of local initiating events in an LMFBR
Kovtonyuk et al. Safety of evolutionary reactors: feasibility study for the experimental program of SPES facility
Cohen et al. The southwest experimental fast oxide reactor
Akimoto et al. System pressure effect on system and core cooling behavior during reflood phase of PWR LOCA
Smith Safety implications of control systems program at ORNL
Sarrette Effect of noncondensable gases on circulation of primary coolant in nuclear power plants in abnormal situations
Krepper et al. Natural circulation experiments at the ISB-VVER integral test facility and calculations using the thermal-hydraulic code athlet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees