JPH0823529B2 - Spectrum display method in ICP emission spectrometer - Google Patents
Spectrum display method in ICP emission spectrometerInfo
- Publication number
- JPH0823529B2 JPH0823529B2 JP61196399A JP19639986A JPH0823529B2 JP H0823529 B2 JPH0823529 B2 JP H0823529B2 JP 61196399 A JP61196399 A JP 61196399A JP 19639986 A JP19639986 A JP 19639986A JP H0823529 B2 JPH0823529 B2 JP H0823529B2
- Authority
- JP
- Japan
- Prior art keywords
- negative high
- high voltage
- spectrum
- photomultiplier tube
- gain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/73—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、ICP(結合誘導プラズマ)発光分析装置に
おけるスペトクル表示方法に関する。The present invention relates to a method for displaying a particle in an ICP (Coupling Induction Plasma) emission spectrometer.
(ロ)従来技術とその問題点 一般に、ICP発光分析装置は、高周波電源からプラズ
マトーチに高周波電力を供給する一方、分析対象となる
試料を霧化装置で霧化した後、プラズマトーチ内に導入
して発光させる。そして、この光を分光器で各元素のス
ペトクルに分光し、分光した各元素のスペクトルを光電
子増倍管で検出して電気信号に変換した後、この出力信
号から各元素のスペクトル強度を求め、元素の同定、定
量分析を行なう。(B) Conventional technology and its problems In general, an ICP emission spectrometer supplies high-frequency power from a high-frequency power source to a plasma torch, while the sample to be analyzed is atomized by an atomizer and then introduced into the plasma torch. Light up. Then, this light is split into a spectrum of each element with a spectroscope, the spectrum of each element that has been split is detected with a photomultiplier tube and converted into an electrical signal, and then the spectral intensity of each element is obtained from this output signal, Perform element identification and quantitative analysis.
ところで、上記の光電子増倍管は、光に対する出力信
号のゲインがダイノードに印加する負高圧によって変化
するので、測定中に単に光電子増倍管の負高圧を変化さ
せると、変化前後のスペクトル強度を直接比較できず、
したがって、元素の定量分析等ができない。このため、
従来のICP分析装置では、測定中は負高圧を固定した状
態で試料を分析していた。この場合のスペクトル強度の
ダイナミックレンジは最大で106程度であり、したがっ
て、測定されたスペクトル強度を表示するには、スケー
ルレンジをリニアな関係に設定しておくことで十分対応
することができた。By the way, in the above-described photomultiplier tube, the gain of the output signal with respect to light changes depending on the negative high voltage applied to the dynode, so if the negative high voltage of the photomultiplier tube is simply changed during measurement, the spectrum intensity before and after the change is changed. Can't compare directly,
Therefore, quantitative analysis of elements is not possible. For this reason,
In the conventional ICP analyzer, the sample was analyzed while the negative high pressure was fixed during the measurement. In this case, the dynamic range of the spectrum intensity is about 10 6 at maximum, and therefore, in order to display the measured spectrum intensity, setting the scale range in a linear relationship was sufficient. .
一方、本発明者らは、光電子増倍管の負高圧とゲイン
の相関データを予め求めておき、光電子増倍管に入力す
る光強度の大きさに応じて負高圧を変化させてゲインを
自動的に制御することで元素の含有量が試料によって大
きく異なる場合でも、確実に分析ができるようにした装
置を提供した(特願昭61−60303号参照)。On the other hand, the present inventors previously obtained correlation data between the negative high voltage and the gain of the photomultiplier tube and automatically changed the gain by changing the negative high voltage according to the intensity of the light input to the photomultiplier tube. A device was provided that enables reliable analysis even when the content of elements varies greatly depending on the sample by controlling automatically (see Japanese Patent Application No. 61-60303).
この装置で測定できるスペクトル強度のダイナミック
レンジは最大で108〜1012程度となり従来に比較してか
なり大きくなる。したがって、従来のようにスケールレ
ンジをリニアな関係のままで表示する場合には、試料間
で測定値の比較ができないことがある。たとえば、第3
図に示すように、一つの試料のMnスペクトルの強度がフ
ルスケール100の場合(同図(a))に表示できたと
し、一方、他の試料に含まれるMnのスペクトル強度がフ
ルスケール10000の場合(同図(b))に表示できた場
合において、2つの測定値を直接比較するためフルスケ
ール10000の状態で重ね表示したときには、同図(c)
に示すように、フルスケール100の場合のMn測定値(図
中破線で示される)が小さく表示されてしまい両者を比
較することができない。逆にフルスケール100の下で両
測定値を比較する場合には、フルスケール10000で測定
した試料のMnスペクトルがスケールオーバしてしまう。
このため、元素の同定や定量分析に支障をきたす等の難
点があった。The maximum dynamic range of the spectrum intensity that can be measured with this device is about 10 8 to 10 12, which is considerably larger than the conventional one. Therefore, when the scale ranges are displayed in a linear relationship as in the conventional case, it may not be possible to compare measured values between samples. For example, the third
As shown in the figure, if the intensity of the Mn spectrum of one sample was 100 at full scale ((a) in the same figure), the intensity of Mn contained in the other sample was 10000 at full scale. In the case of being able to display in the case ((b) of the same figure), in order to directly compare the two measured values, when they are overlaid and displayed in the state of full scale 10000, (c) of the same figure.
As shown in, the Mn measurement value (indicated by a broken line in the figure) in the case of full scale 100 is displayed in a small size, and the two cannot be compared. On the contrary, when the two measured values are compared under the full scale 100, the Mn spectrum of the sample measured at the full scale 10000 is scaled over.
For this reason, there are problems such as hindering the identification and quantitative analysis of elements.
本発明は、このように事情に鑑みてなされたものであ
って、大きなダイナミックレンジの下で測定された光強
度の異なる多数のスペクトルを同時に表示でき、相互の
比較が容易にできるようにすることを目的とする。The present invention has been made in view of the above circumstances, and it is possible to simultaneously display a large number of spectra with different light intensities measured under a large dynamic range, and to facilitate mutual comparison. With the goal.
(ハ)問題点を解決するための手段 本発明は、上述の目的を達成するため、光電子増倍管
から出力される検出出力の大きさに応じてこの光電子増
倍管に印加する負高圧を変化させてゲインを自動的に制
御するとともに、予め求めた負高圧とゲインとの相関デ
ータに基づいてスペクトル強度を算出し、このスペクト
ル強度を対数変換し、対数変換後のスペクトル強度を対
数目盛りで表示するようにしている。(C) Means for Solving the Problems In order to achieve the above-mentioned object, the present invention applies a negative high voltage applied to a photomultiplier tube in accordance with the magnitude of the detection output output from the photomultiplier tube. The gain is automatically controlled by changing it, and the spectrum intensity is calculated based on the correlation data between the negative high voltage and the gain obtained in advance, this spectrum intensity is logarithmically converted, and the spectrum intensity after logarithmic conversion is logarithmically scaled. I am trying to display it.
(ニ)実施例 第1図は、本発明方法を適用するためのICP発光分析
装置の構成図である。同図において、符号1はICP発光
分析装置を示し、2は図外の分光器で分光された元素の
スペクトル光を検出する光電子増倍管、4は光電子増倍
管2のダイノードに負高圧Veを印加するための負高圧電
源、6は光電子増倍管2の検出出力を積分する積分器、
8は積分器6で積分された測光値をデジタル化するA/D
変換器である。(D) Example FIG. 1 is a block diagram of an ICP emission spectrometer for applying the method of the present invention. In the figure, reference numeral 1 indicates an ICP emission spectrometer, 2 is a photomultiplier tube for detecting spectral light of an element dispersed by a spectroscope (not shown), and 4 is a negative high voltage Ve at a dynode of the photomultiplier tube 2. A negative high-voltage power supply for applying the voltage, 6 is an integrator for integrating the detection output of the photomultiplier tube 2,
8 is an A / D that digitizes the photometric value integrated by the integrator 6.
It is a converter.
10は積分器6の検出出力Vaと基準電圧Vbとを比較し、
その電圧差に応じた制御信号を負高圧電源4に出力する
差動増幅器、12は予め記憶されている光電子増倍管2に
印加される負高圧VeとゲインGとの相関データに基づい
て測定時のゲインGを算出し、算出したゲインGでA/D
変換器8からのデータを割り算してスペクトル強度を求
める演算回路、14は演算回路12で算出されたスペクトル
強度のデータを記憶するメモリ、16はメモリ14から読み
出されたデータをアナログ化するD/A変換器、18はスペ
クトル強度の表示においてスケールレンジをリニア関係
で表示する場合と対数目盛で表示する場合とで接続を切
り換える切り換え回路、20は測光値を対数変換するLog
変換器、22はスペクトル強度を縦軸に、横軸を波長とし
たスペクトルプロファイルを表示するCRTである。な
お、24は負高圧電源4の出力をデジタル化するA/D変換
器である。10 compares the detection output Va of the integrator 6 with the reference voltage Vb,
A differential amplifier that outputs a control signal corresponding to the voltage difference to the negative high voltage power source 4, and 12 is measured based on the correlation data between the negative high voltage Ve applied to the photomultiplier tube 2 and the gain G, which is stored in advance. Time gain G is calculated, and A / D is calculated with the calculated gain G.
An arithmetic circuit for dividing the data from the converter 8 to obtain the spectrum intensity, 14 a memory for storing the data of the spectrum intensity calculated by the arithmetic circuit 12, and 16 a D for analogizing the data read from the memory 14. / A converter, 18 is a switching circuit that switches the connection between displaying the scale range in a linear relationship and displaying it in a logarithmic scale in the display of the spectral intensity, and 20 is a logarithmic conversion of the photometric value.
The converter 22 is a CRT that displays a spectrum profile with the spectrum intensity on the vertical axis and the horizontal axis on the wavelength. Reference numeral 24 is an A / D converter that digitizes the output of the negative high voltage power supply 4.
次に、本発明方法について説明する。 Next, the method of the present invention will be described.
図外のプラズマトーチで試料を発光し、その光を分光
器で分光した後、光電子増倍管2でスペクトル光を検出
する。この検出出力を積分器6で積分し、その積分値Vd
をA/D変換器8でデジタル化した後、演算回路12に送出
するとともに、差動増幅器10にも与える。そして、差動
増幅器10でこの検出出力Vdを基準電圧Vbと比較し、差動
増幅器10の出力を負高圧電源4に加え、これによって、
光電子増倍管2のダイノードに印加する負高圧Veを制御
して光電子増倍管2のゲインを変化させる。上記に並行
して、負高圧電源4の印加電圧VeをA/D変換器24でデジ
タル化した後、演算回路12に送出する。これにより、演
算回路12には、積分器6からの出力と負高圧電源4から
の負高圧Veの値とが共に入力される。A sample is emitted by a plasma torch (not shown), the light is dispersed by a spectroscope, and then spectral light is detected by the photomultiplier tube 2. This detection output is integrated by the integrator 6, and the integrated value Vd
Is digitized by the A / D converter 8 and then sent to the arithmetic circuit 12 and also given to the differential amplifier 10. Then, the detection output Vd is compared with the reference voltage Vb in the differential amplifier 10, the output of the differential amplifier 10 is applied to the negative high voltage power supply 4, and
The negative high voltage Ve applied to the dynode of the photomultiplier tube 2 is controlled to change the gain of the photomultiplier tube 2. In parallel with the above, the applied voltage Ve of the negative high voltage power source 4 is digitized by the A / D converter 24 and then sent to the arithmetic circuit 12. As a result, the output from the integrator 6 and the value of the negative high voltage Ve from the negative high voltage power source 4 are both input to the arithmetic circuit 12.
一方、演算回路12には、予め負高圧VeとゲインGとの
相関データ記憶されているので、この相関データから測
定時のゲインGを算出し、算出したゲインGでA/D変換
器8からのデータを割り算してスペクトル強度を求め
る。そして、求めたスペクトル強度のデータをメモリ14
に記憶する。On the other hand, since the correlation data of the negative high voltage Ve and the gain G is stored in advance in the arithmetic circuit 12, the gain G at the time of measurement is calculated from this correlation data, and the calculated gain G is output from the A / D converter 8. The spectrum intensity is obtained by dividing the data of. Then, the obtained spectrum intensity data is stored in the memory 14
To memorize.
スペクトルプロファイルを表示する場合には、メモリ
14から測光値のデータを読み出し、そのデータをD/A変
換器16でアナログ化する。この場合、スケールレンジを
対数目盛で表示するには、切り換え回路18をLog変換器2
0側に切り換えてA/D変換器16の出力をLog変換器20で対
数変換し、対数変換後のスペクトル強度を縦軸に、波長
を横軸としてCRT22に第2図に示すようなスペクトルプ
ロファイルを表示する。この表示においては、縦軸のス
ケールレンジが対数目盛となっているので、たとえば、
一つの試料のMnのスペクトル強度がフルスケール100で
表示できた場合(同図(a))と、他の試料のMnのスペ
クトル強度がフルスケール10000で表示できた場合(同
図(b))とを直接比較するため、フルスケール10000
で重ね表示した場合でも、同図(c)に示すように、フ
ルスケール100の場合のMn測定値(図中破線で示され
る)もある程度の大きさのレベルで表示されるので、両
者を直接比較することが可能となる。このため、元素の
同定や定量分析に有効となる。Memory to display the spectral profile
The data of the photometric value is read from 14, and the data is converted into an analog signal by the D / A converter 16. In this case, to display the scale range in logarithmic scale, switch circuit 18 to Log converter 2
Switch to the 0 side, the output of the A / D converter 16 is logarithmically converted by the Log converter 20, and the spectrum intensity after logarithmic conversion is plotted on the ordinate and the wavelength on the abscissa on the CRT 22 as shown in FIG. Is displayed. In this display, since the scale range on the vertical axis is a logarithmic scale, for example,
When the Mn spectrum intensity of one sample can be displayed at full scale 100 (Fig. (A)) and when the Mn spectral intensity of another sample can be displayed at full scale 10000 (Fig. (B)). 10000 full scale for direct comparison with
Even when they are overlaid with each other, as shown in (c) of the same figure, the Mn measurement value (indicated by the broken line in the figure) in the case of full scale 100 is also displayed at a level of a certain size, so both are directly displayed. It becomes possible to compare. Therefore, it is effective for element identification and quantitative analysis.
(ホ)効果 以上のように本発明によれば、元素の含有量が試料に
よって大きく異なる場合でも光電子増倍管のゲインが自
動的に制御されるので、確実に分析ができる。さらに、
測光値のダイナミックレンジが大きい場合にも光強度の
異なる多数のスペクトルを同時に表示できるため、スペ
クトル強度を相互に直接比較できるようになる。このた
め、元素の同定、定量が従来よりも一層容易になる等の
優れた効果が発揮される。(E) Effect As described above, according to the present invention, the gain of the photomultiplier tube is automatically controlled even when the content of the element greatly differs depending on the sample, so that the analysis can be reliably performed. further,
Even if the dynamic range of the photometric value is large, a large number of spectra having different light intensities can be displayed simultaneously, so that the spectral intensities can be directly compared with each other. Therefore, excellent effects such as easier identification and quantification of elements than ever can be exhibited.
第1図は本発明方法を適用するためのICP発光分析装置
のプロック図、第2図は本発明のスペクトル強度のスケ
ールレンジを対数目盛で表示する例を示すスペクトルプ
ロファイル、第3図は従来のスペクトル強度のスケール
レンジをリニアな関係で表示する例を示すスペクトルプ
ロファイルである。 1……ICP発光分析装置、2……光電子増倍管、4……
負高圧電源、20……Log変換器、22……CRT。FIG. 1 is a block diagram of an ICP emission spectrometer for applying the method of the present invention, FIG. 2 is a spectrum profile showing an example in which the scale range of the spectral intensity of the present invention is displayed on a logarithmic scale, and FIG. It is a spectrum profile which shows the example which displays the scale range of spectrum intensity in a linear relationship. 1 ... ICP emission spectrometer, 2 ... Photomultiplier tube, 4 ...
Negative high voltage power supply, 20 …… Log converter, 22 …… CRT.
Claims (1)
きさに応じてこの光電子増倍管に印加する負高圧を変化
させてゲインを自動的に制御するとともに、予め求めた
負高圧とゲインとの相関データに基づいてスペクトル強
度を算出し、このスペクトル強度を対数変換し、対数変
換後のスペクトル強度を対数目盛りで表示することを特
徴とするICP発光分析装置におけるスペクトル表示方
法。1. A negative high voltage applied to a photomultiplier tube is changed in accordance with the magnitude of a detection output output from the photomultiplier tube to automatically control a gain, and a negative high voltage determined in advance. A spectrum display method in an ICP emission spectrometer, characterized in that the spectrum intensity is calculated based on the correlation data with the gain, the spectrum intensity is logarithmically converted, and the spectrum intensity after logarithmic conversion is displayed on a logarithmic scale.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61196399A JPH0823529B2 (en) | 1986-08-21 | 1986-08-21 | Spectrum display method in ICP emission spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61196399A JPH0823529B2 (en) | 1986-08-21 | 1986-08-21 | Spectrum display method in ICP emission spectrometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6352040A JPS6352040A (en) | 1988-03-05 |
JPH0823529B2 true JPH0823529B2 (en) | 1996-03-06 |
Family
ID=16357218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61196399A Expired - Lifetime JPH0823529B2 (en) | 1986-08-21 | 1986-08-21 | Spectrum display method in ICP emission spectrometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0823529B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2416078B1 (en) | 2009-04-03 | 2017-03-08 | Mitsubishi Electric Corporation | Air-conditioning device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58139036A (en) * | 1982-02-15 | 1983-08-18 | Japan Spectroscopic Co | Spectrophotometer |
JPS6131944A (en) * | 1984-07-25 | 1986-02-14 | Hitachi Ltd | Emission spectrum analysis device |
-
1986
- 1986-08-21 JP JP61196399A patent/JPH0823529B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6352040A (en) | 1988-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6594010B2 (en) | Emission spectrometer having a charge coupled device detector | |
JPS6337224A (en) | Fluorescent spectrophotometer | |
JPH0750033B2 (en) | Emission spectroscopy | |
JPH0823529B2 (en) | Spectrum display method in ICP emission spectrometer | |
GB1484742A (en) | Mass spectrometric system for rapid automatic and specific identification and quantification of compounds | |
JPH01214723A (en) | Spectral fluorescence photometer | |
O'Haver et al. | A microcomputer-controlled background correction system for atomic spectrometry | |
JP2003232681A (en) | Spectrophotometer | |
US4662748A (en) | Apparatus for measuring luminescence lifetime | |
JP3324186B2 (en) | Emission spectrometer | |
JPS5821144A (en) | Highly accurate and fully automatic analyzing method for icp | |
JPS61155735A (en) | Light source lighting apparatus for single beam spectroscope | |
JPS62215850A (en) | Photometric apparatus for emission spectrum analysis | |
JP2524256Y2 (en) | Electron beam micro analyzer | |
JP2000009645A (en) | Emission spectroscopic analyzer | |
JPH03295449A (en) | Emission spectrochemical analysis | |
US4680472A (en) | Process and apparatus for the stabilization of measuring results furnished by an "electron capture" detector with identification of anomalies affecting the detector | |
EP0227038A2 (en) | Atomic absorption spectrophotometer | |
SU840678A2 (en) | Photoelectric spectrum analyser | |
JPS61179539A (en) | Reactive ion etching equipment | |
JP2507886B2 (en) | Instrument for measuring trace impurities in gas | |
JPS63151838A (en) | Emission spectroanalyser | |
JPH0668468B2 (en) | Gain calibration method for photomultiplier tube in ICP emission spectrometer | |
JPH02168156A (en) | Apparatus for mass spectroscopy | |
JPS63127130A (en) | Wavelength scanning type spectral analyzer |