JPH08234142A - Optical isolator and its production - Google Patents

Optical isolator and its production

Info

Publication number
JPH08234142A
JPH08234142A JP6675395A JP6675395A JPH08234142A JP H08234142 A JPH08234142 A JP H08234142A JP 6675395 A JP6675395 A JP 6675395A JP 6675395 A JP6675395 A JP 6675395A JP H08234142 A JPH08234142 A JP H08234142A
Authority
JP
Japan
Prior art keywords
optical
isolator
solder
optical isolator
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6675395A
Other languages
Japanese (ja)
Inventor
Manabu Hashima
学 橋間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6675395A priority Critical patent/JPH08234142A/en
Publication of JPH08234142A publication Critical patent/JPH08234142A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide an inexpensive metal junction optical isolator having high characteristics and consistent quality by adopting a structure to allow a simultaneous treatment and to suppress the outflow of solder to optical paths at the time of fixing by soldering, unlike the conventional treatment method by each optical chip, and realizing the simplification of production stages and a process for producing such isolator. CONSTITUTION: The optical isolator featuring good mass productivity is provided by using the structure to join blanks for optical elements by interposing stress buffer plates 9, 10 between these blanks as means for relieving the stresses and strains generated among the optical elements including a polarizer 1, Faraday rotator 2 and analyzer 3 to be joined. In addition, parts for preventing the solder flow are formed around the apertures of the stress buffer plate 9 and patterned metallic thin film layers are formed on the joint surfaces of the blanks for the respective optical elements of a size to allow the layout of plural pieces and are joined by soldering and thereafter, the blanks are cut, by which the optical isolator is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ファラデー効果を利用
した光アイソレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator utilizing the Faraday effect.

【0002】[0002]

【従来の技術】半導体レーザを光通信等の光伝送系の光
源として用いる場合、半導体レーザからの出射光の一部
が、伝送路や伝送用光学部品で反射して半導体レーザに
帰還した場合、半導体レーザの発振特性の不安定化や雑
音の増加を引き起こす原因となる。この戻り光を阻止す
るために、光アイソレータが使用される。
2. Description of the Related Art When a semiconductor laser is used as a light source for an optical transmission system such as optical communication, when a part of light emitted from the semiconductor laser is reflected by a transmission line or optical components for transmission and returned to the semiconductor laser, This may cause instability of the oscillation characteristics of the semiconductor laser and increase of noise. An optical isolator is used to block this returning light.

【0003】図5は、光アイソレータの基本構成を示
す。図5において、入射光が偏光子1を透過した後、フ
ァラデー回転子2によって、その偏光面が45度回転
し、さらに、前記偏光子1の偏光面に対して、45度傾
いた偏光面を有する検光子3を透過する。一方、前記入
射光とは逆方向の反射戻り光は、検光子3に対して偏光
面が一致した成分のみが検光子3を透過し、この後、フ
ァラデー回転子2によって、その偏光面が回転される。
従って、ファラデー回転子2を透過した反射戻り光は、
偏光子1に対して、その偏光面が90度回転しているこ
ととなり、ここで、反射戻り光は透過を阻止される。こ
のように、光アイソレータ反射戻り光は遮断され、光ア
イソレータの機能が発揮される。図5に示した基本構成
の光アイソレータを複数段で構成すれば、さらに大きな
アイソレーション効果を得ることができる。
FIG. 5 shows the basic structure of an optical isolator. In FIG. 5, after the incident light has passed through the polarizer 1, the Faraday rotator 2 rotates the plane of polarization by 45 degrees, and further, the plane of polarization inclined by 45 degrees with respect to the plane of polarization of the polarizer 1 is formed. It passes through the analyzer 3. On the other hand, in the reflected return light in the direction opposite to the incident light, only the component whose polarization plane matches that of the analyzer 3 passes through the analyzer 3, and then the polarization plane is rotated by the Faraday rotator 2. To be done.
Therefore, the reflected return light transmitted through the Faraday rotator 2 is
This means that the plane of polarization is rotated by 90 degrees with respect to the polarizer 1, and here the reflected return light is blocked from being transmitted. In this way, the return light reflected by the optical isolator is blocked, and the function of the optical isolator is exerted. If the optical isolator having the basic configuration shown in FIG. 5 is configured in a plurality of stages, a greater isolation effect can be obtained.

【0004】光アイソレータの組立を行う場合、各構成
部品の固定方法には、有機接着法とメタル接合法があ
る。有機接着法は、各構成部品を有機接着剤により接着
固定する方法である。また、有機接着法は、接着剤硬化
時において、多くの場合、接着層の収縮が発生する。こ
の接着層の収縮は、光アイソレータの光学特性に悪い影
響を及ぼし、問題となる。特に、構成部品の中で、光学
素子の接着は、光透過面側を有機接着剤で接着するた
め、温度や湿度の厳しい使用環境においては、耐久性が
著しく劣る。
When assembling the optical isolator, there are an organic bonding method and a metal bonding method as a method of fixing each component. The organic bonding method is a method of bonding and fixing each component with an organic adhesive. Further, in the organic adhesive method, in many cases, the adhesive layer shrinks when the adhesive is cured. The shrinkage of the adhesive layer adversely affects the optical characteristics of the optical isolator and causes a problem. In particular, among the constituent parts, the optical element is bonded to the light transmitting surface side with an organic adhesive, so that the durability is remarkably poor in a use environment where temperature and humidity are severe.

【0005】こうした理由から、有機接着法による光ア
イソレータに代わって、最近は、高信頼性を有するメタ
ル接合法が主流となっている。メタル接合法は、各構成
部品を半田を用いて接合する方法である。半田には、主
にAuSn合金等が用いられる。ホルダの表面には、半
田が付き易い状態にするため、予めNi,Au等でめっ
き処理を施す。また、非金属材料からなる磁気光学素子
や、偏光ガラス等からなる偏光子、検光子等の光学素子
の接合面には、めっき処理が困難なため、スパッタリン
グ法等、物理的成膜法により金属薄膜を成膜する。前記
の各光学素子は、この金属膜を介してホルダに半田付け
される。一般に、半田付けは、電気炉を用い、不活性気
体雰囲気中で半田が溶融する温度まで加熱して行われ
る。さらに、半田付けされた光学素子の光学軸調整を行
った後、ホルダ同士をレーザ溶接して、光アイソレータ
を作製する。
For these reasons, in recent years, a metal bonding method having high reliability has become the mainstream in place of the optical isolator by the organic bonding method. The metal joining method is a method of joining each component using solder. AuSn alloy or the like is mainly used for the solder. The surface of the holder is preliminarily plated with Ni, Au, or the like so that the solder is easily attached to the surface. In addition, since it is difficult to perform plating treatment on the bonding surface of a magneto-optical element made of a non-metal material, a polarizer made of a polarizing glass, etc. Form a thin film. Each of the above optical elements is soldered to the holder via this metal film. Generally, soldering is performed by using an electric furnace and heating to a temperature at which the solder melts in an inert gas atmosphere. Further, after adjusting the optical axis of the soldered optical element, the holders are laser-welded to manufacture an optical isolator.

【0006】[0006]

【発明が解決しようとする課題】メタル接合型の光アイ
ソレータは、図6に示すように、通常、2つの部分から
構成されている。一方は、偏光子1とファラデー回転子
2とマグネット8がホルダに収容された偏光子側部分2
7[図6(a)の左部分]であり、他方は、検光子3が
ホルダに収容された検光子側部分28[図6(a)の右
部分]である。これら偏光子側部分27、検光子側部分
28は、各々組立て、半田付け工程を経て各々のホルダ
に固定される。さらに、各ホルダに固定した状態で偏光
子1と検光子3の光学軸を調整し、所定の角度でホルダ
同士のYAGレーザ溶接を行って、図6(b)に示すメ
タル接合型の光アイソレータの組立てが完了する。
As shown in FIG. 6, a metal-junction type optical isolator is usually composed of two parts. One is a polarizer-side portion 2 in which a polarizer 1, a Faraday rotator 2, and a magnet 8 are housed in a holder.
7 [left part of FIG. 6 (a)], and the other is an analyzer side part 28 [right part of FIG. 6 (a)] in which the analyzer 3 is housed in a holder. The polarizer side portion 27 and the analyzer side portion 28 are fixed to their respective holders after assembling and soldering steps. Further, the optical axes of the polarizer 1 and the analyzer 3 are adjusted in a state of being fixed to each holder, YAG laser welding of the holders is performed at a predetermined angle, and the metal junction type optical isolator shown in FIG. Is completed.

【0007】しかし、上に記した従来のメタル接合法で
は、複数個の光学素子が取得可能な広い面積の光学素子
用素材同士を、ホルダ等の支持材を用いずに直接半田付
けによって固定することは、相互の熱膨張係数の差のた
め、困難である。従来は、そのため、光アイソレータ1
個分の狭い面積の光学素子片に加工した後、この光学素
子片を光学素子支持材であるホルダと半田付けによっ
て、固定することを余儀なくされ、製作コストが高くな
るという問題があった。また、従来の金属薄膜のみを介
して半田接合する光アイソレータでは、十分に接合時の
応力歪を除去できず、アイソレータ完成後、特性が変化
してしまうという問題があった。
However, in the above-described conventional metal joining method, optical element materials having a large area capable of obtaining a plurality of optical elements are directly fixed by soldering without using a supporting material such as a holder. This is difficult due to the difference in thermal expansion coefficient between them. Conventionally, therefore, the optical isolator 1
After processing the optical element pieces having a small area for each piece, the optical element pieces are forced to be fixed by soldering with a holder which is an optical element supporting material, which causes a problem of high manufacturing cost. Further, in the conventional optical isolator that is joined by soldering only through the metal thin film, there is a problem that the stress strain at the time of joining cannot be sufficiently removed, and the characteristics change after the isolator is completed.

【0008】さらに、前記光学素子片を、めっき処理さ
れたホルダに半田付けによって固定する際、溶融した半
田が、接合部(金属薄膜部)以外の、特に、光路に流出
する問題があった。光路に流出した半田は、光アイソレ
ータを透過する光に対して散乱の原因となる。このた
め、半田溶融時における半田ぬれ性を制御する必要ある
が、従来の方法では、制御が困難であった。
Further, when the optical element piece is fixed to the plated holder by soldering, there is a problem that the melted solder flows out to the optical path other than the joint portion (metal thin film portion). The solder that has flowed out into the optical path causes scattering of the light that passes through the optical isolator. Therefore, it is necessary to control the solder wettability when the solder is melted, but it is difficult to control by the conventional method.

【0009】従って、本発明の課題は、上述の問題が解
消された、量産性があり、光学特性の安定した安価な光
アイソレータと、その製造方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an inexpensive optical isolator which is free from the above-mentioned problems, has mass productivity, and has stable optical characteristics, and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】本発明は、上述の課題を
解決できる、光学素子を半田付けによって接合固定す
るメタル接合型の光アイソレータにおいて、光学素子間
の接合部が両光学素子の表面に加工された金属薄膜層
と、この金属薄膜層に接する半田層と、前記半田層に接
する応力歪緩衝板から構成されていることを特徴とする
光アイソレータであり、上記の光アイソレータにおい
て、前記応力歪緩衝板が、Cu,Ti,Pt,Al23
の少なくとも1種類以上からなることを特徴とする光ア
イソレータであり、上記の光アイソレータにおいて、
前記応力歪緩衝板表面のアパーチャ付近の半田ぬれ性を
低下せしめた半田流れ防止部を設けたことを特徴とする
光アイソレータであり、光学素子を半田付けによって
固定するメタル接合型の光アイソレータの製造方法で、
前記光学素子を複数個取得し得る面積の光学素子用素材
の少なくとも一方の面に、金属薄膜を形成し、該光学素
子用素材の少なくとも一方の面に、半田シート、応力緩
衝板、半田シート、および前記光学用素材と同様に、一
方の面に金属薄膜を形成した他の光学素子用素材を順次
重ね合わせ、半田により接合し、この接合した接合体
を、所定の大きさになるように厚さ方向に切断し、アイ
ソレータチップを作製し、このアイソレータチップを用
いて光アイソレータを構築することを特徴とする光アイ
ソレータの製造方法である。
SUMMARY OF THE INVENTION The present invention is a metal-junction type optical isolator capable of solving the above-mentioned problems by bonding and fixing optical elements by soldering. A processed metal thin film layer, a solder layer in contact with the metal thin film layer, and an optical isolator comprising a stress strain buffer plate in contact with the solder layer, wherein in the optical isolator, the stress The strain buffer plate is made of Cu, Ti, Pt, Al 2 O 3
An optical isolator characterized by comprising at least one kind of
An optical isolator characterized in that a solder flow preventive portion having reduced solder wettability near the aperture on the surface of the stress-strain buffer plate is provided, and a metal-junction type optical isolator for fixing an optical element by soldering is manufactured. By the way
A metal thin film is formed on at least one surface of an optical element material having an area capable of obtaining a plurality of the optical elements, and a solder sheet, a stress buffer plate, a solder sheet, on at least one surface of the optical element material. Similarly to the optical material, another optical element material having a metal thin film formed on one surface thereof is sequentially stacked and joined by solder, and the joined body is thickened to a predetermined size. It is a method for manufacturing an optical isolator, which is characterized in that an isolator chip is manufactured by cutting in the vertical direction, and an optical isolator is constructed using this isolator chip.

【0011】[0011]

【作用】メタル接合型光アイソレータの作製において、
光学素子の固定は、個別の被接合材との間に半田を溶融
することにより行われる。光学素子を半田付けにより接
合する時に発生する接合部の応力歪が問題となる。これ
ら応力歪の主な要因は、接合材相互の熱膨張係数差であ
る。本発明によれば、半田接合層を光学素子−金属薄膜
−半田−応力歪緩衝材−半田−金属薄膜−光学素子とな
る構造とすることにより、光学素子の接合歪(応力歪)
を低減させることができる。これによって、接合歪を原
因とする特性劣化を防止することができる。さらに、光
学素子用素材上に、図2に示すような金属薄膜22をパ
ターン形成し、接合層を前記構造とすることにより、ホ
ルダを用いることなく、各光学素子に対応した光学素子
用素材15の間の半田接合が可能となり、所定の切りし
ろ24の部分で切断することにより、大量の光アイソレ
ータ素子(光アイソレータチップ)を一括生産すること
が可能となる。
[Operation] In manufacturing a metal junction type optical isolator,
The fixing of the optical element is performed by melting the solder between the individual members to be joined. There is a problem of stress strain of the joint portion which occurs when the optical element is joined by soldering. The main factor of these stress strains is the difference in thermal expansion coefficient between the joining materials. According to the present invention, the solder joint layer has a structure of optical element-metal thin film-solder-stress strain buffering material-solder-metal thin film-optical element, whereby the joint strain (stress strain) of the optical element is obtained.
Can be reduced. As a result, it is possible to prevent the characteristic deterioration due to the bonding strain. Further, by patterning the metal thin film 22 as shown in FIG. 2 on the optical element material and forming the bonding layer with the above structure, the optical element material 15 corresponding to each optical element can be used without using a holder. It becomes possible to solder joints between them, and by cutting at a predetermined cut portion 24, it becomes possible to mass-produce a large number of optical isolator elements (optical isolator chips).

【0012】応力歪緩衝板9,10(図1、図3参照)
は、ヤング率が大きい軟質薄板からできており、例え
ば、Cu,Ti,Pt,Al23の少なくとも1種類以
上の材質で構成され、光学素子用素材の半田接合時に生
じる応力歪、さらに、外気温度変化で生じる接合層収縮
による影響等も吸収、緩和することができる。
Stress-strain buffer plates 9 and 10 (see FIGS. 1 and 3)
Is made of a soft thin plate having a large Young's modulus, and is made of, for example, at least one kind of material such as Cu, Ti, Pt, and Al 2 O 3 , and stress strain generated at the time of solder joining of the optical element material, It is possible to absorb and mitigate the effects of shrinkage of the bonding layer caused by changes in the outside air temperature.

【0013】また、溶融半田は、一般に、金属めっき表
面に対して、ぬれ性を示すが、めっき処理を施さない表
面では、ぬれ性が低下するものがある。図3に示すよう
に、本発明の応力歪緩衝板9は、アパーチャ18(光透
過用穴)付近の金属めっき層を除去したり、逆に、ぬれ
性の悪い層を加工して、半田流れ防止部20を形成する
ことにより、アパーチャへの半田流出を防止できる。即
ち、図3(b)に示すように、半田流れ防止部20をア
パーチャ18の径(L1)より大きく、つまり、溶融半
田がアパーチャに流れ込まない構造としている。逆に、
例えば、Cuのように、半田ぬれ性の良い金属薄板の応
力歪緩衝板を使用する場合は、半田ぬれ防止部20に酸
化皮膜や有機樹脂膜を形成することによる同様の効果が
得られる。従って、半田ぬれ性を制御することによっ
て、流出した半田による入射光散乱等を防止し、安定し
た特性の光アイソレータを作製することができる。
Further, the molten solder generally exhibits wettability with respect to the metal-plated surface, but the wettability may be lowered on the surface not subjected to the plating treatment. As shown in FIG. 3, in the stress-strain buffering plate 9 of the present invention, the metal plating layer in the vicinity of the aperture 18 (light transmitting hole) is removed, or conversely, a layer having poor wettability is processed to remove solder flow. By forming the prevention portion 20, it is possible to prevent the solder from flowing out to the aperture. That is, as shown in FIG. 3B, the solder flow prevention portion 20 has a structure larger than the diameter (L1) of the aperture 18, that is, the molten solder does not flow into the aperture. vice versa,
For example, when a stress-strain buffer plate made of a thin metal plate having good solder wettability, such as Cu, is used, the same effect can be obtained by forming an oxide film or an organic resin film on the solder wettability preventing portion 20. Therefore, by controlling the solder wettability, it is possible to prevent incident light scattering and the like due to the solder flowing out, and to manufacture an optical isolator having stable characteristics.

【0014】本発明による光アイソレータの製造は、複
数のアイソレータチップがとれる大きな光学素子用素材
を用いて、一度に複数のアイソレータチップを作製でき
るので、個々のアイソレータチップに対して、光学軸調
整を行う必要が無く、洗浄工程等も削減できる。従っ
て、製造コストを低減することができ、しかも、安定し
た特性を有する光アイソレータを、大量、安価に提供す
ることができる。
In the manufacture of the optical isolator according to the present invention, a plurality of isolator chips can be manufactured at a time by using a large optical element material capable of producing a plurality of isolator chips. Therefore, the optical axis adjustment can be performed for each isolator chip. It is not necessary to carry out, and the washing process etc. can be reduced. Therefore, the manufacturing cost can be reduced, and a large number of optical isolators having stable characteristics can be provided at low cost.

【0015】[0015]

【実施例】以下に、本発明の実施例及び比較例を説明す
る。
EXAMPLES Examples and comparative examples of the present invention will be described below.

【0016】本発明による光アイソレータに用いられる
アイソレータチップは、図1に示すように、偏光子1、
応力歪緩衝板9、ファラデー回転子2、応力歪緩衝板1
0、検光子3を構成する各光学素子用素材と応力歪緩衝
板用素材から構成される。ファラデー回転子2、偏光子
1、検光子3、及び2枚の応力歪緩衝板9,10の寸法
形状は、それぞれ10mm角とした。偏光子及び検光子
の偏光軸13は、図1(a)に示すように、予め偏光子
1の偏光軸13(偏光方向)に対して、検光子3の偏光
軸13が45度傾いているように、切断された光学素子
用素材を使用した。
The isolator chip used in the optical isolator according to the present invention, as shown in FIG.
Stress-strain buffer plate 9, Faraday rotator 2, stress-strain buffer plate 1
0, each of the optical element materials forming the analyzer 3 and the stress-strain buffer plate material. The Faraday rotator 2, the polarizer 1, the analyzer 3, and the two stress-strain buffer plates 9 and 10 were each 10 mm square. As shown in FIG. 1A, the polarization axis 13 of the polarizer 3 and the analyzer is tilted by 45 degrees with respect to the polarization axis 13 (polarization direction) of the polarizer 1 in advance. The cut optical element material was used as described above.

【0017】図2に示すように、ファラデー回転子を形
成する光学素子用素材15、及び偏光子1、検光子3を
形成する偏光ガラス等を用いる光学素子用素材15に
は、図2(a)のように、パターン化しためっき処理を
施すことが困難である。そのため、図2(b)に示すよ
うな複数層の金属薄膜22を成膜した。これら金属薄膜
22は、各光学素子の固定部分にマスキング法とスパッ
タリング法を組み合わせてパターンニングした。パター
ンニングした金属薄膜22は、3層から成り、図2
(b)に示すように積層し、それぞれの膜厚を、Crは
0.10μm、Niは0.30μm、Auは0.15μm
とした。金属薄膜22は、単一の金属層でもよいが、接
合力と半田性の双方を十分得るには、組み合わせた複数
層の金属薄膜層がよい。
As shown in FIG. 2, the optical element material 15 for forming the Faraday rotator and the optical element material 15 using the polarizing glass for forming the polarizer 1 and the analyzer 3 are shown in FIG. ), It is difficult to apply a patterned plating treatment. Therefore, a plurality of layers of metal thin film 22 as shown in FIG. 2B were formed. These metal thin films 22 were patterned on the fixed portion of each optical element by combining a masking method and a sputtering method. The patterned metal thin film 22 is composed of three layers, as shown in FIG.
As shown in (b), the layers are laminated, and the film thicknesses of Cr are 0.10 μm, Ni is 0.30 μm, and Au is 0.15 μm.
And The metal thin film 22 may be a single metal layer, but a combination of a plurality of metal thin film layers is preferable in order to obtain sufficient bonding strength and solderability.

【0018】応力歪緩衝板9は、材料として、0.1m
m厚Cuプレートを用い、図3に示すような形状で、寸
法は光学素子用素材と同様に、10mm角とした。光透
過部分(アパーチャ18)には、穴加工を施し、半田接
合可能にするため、表面にNiAuめっきを施した。さ
らに、半田接合時、アパーチャ18近傍への半田流入を
防止するための、めっきを除去した半田流れ防止部20
を設けた。この半田流れ防止部20は、アパーチャ付近
にフォトレジストを塗布し、その後、めっき処理、めっ
き終了後、処理溶剤にてレジスト部分を除去することに
より、アパーチャ付近にめっきされないようにした。図
4(b)に示すように、前記光学素子用素材15及び応
力歪緩衝板9の接合には、図4(a)に示すような外形
寸法が10mm角の半田シート17を用いた。PbSn
共晶半田(成分比は重量比で、38/62%,融点18
3℃)を使用し、半田シート17の厚さは、必要な半田
の体積を考慮し、50μmとした。
The stress strain buffer plate 9 is made of a material of 0.1 m.
An m-thick Cu plate was used, the shape was as shown in FIG. 3, and the dimensions were 10 mm square, like the optical element material. The light-transmitting portion (aperture 18) was subjected to hole processing, and its surface was plated with NiAu in order to enable soldering. Further, in solder joining, the solder flow prevention portion 20 without plating is provided to prevent the solder from flowing into the vicinity of the aperture 18.
Was provided. In this solder flow prevention unit 20, a photoresist is applied near the aperture, and after the plating process and after the plating is finished, the resist portion is removed with a processing solvent so that the vicinity of the aperture is prevented from being plated. As shown in FIG. 4B, a solder sheet 17 having an outer dimension of 10 mm square as shown in FIG. 4A was used for joining the optical element material 15 and the stress-strain buffer plate 9. PbSn
Eutectic solder (38% / 62% by weight, melting point 18)
3 ° C.), and the thickness of the solder sheet 17 was set to 50 μm in consideration of the required volume of solder.

【0019】図1(a)、図3(b)及び図4(b)に
示すように、これらの構成部品をカーボン製治具(図示
せず)を用いて、それぞれ金属薄膜の加工された偏光子
のための光学素子用素材15、半田シート17、応力緩
衝板9、半田シート17、ファラデー回転子のための光
学素子用素材15、半田シート17、応力歪緩衝板9、
半田シート、検光子のための光学素子用素材15の順に
重ね合わせ、かつ、各構成部品の側面を揃え、20gの
荷重をのせた。前記カーボン製治具ごと電気炉内で20
0℃まで加熱した。電気炉内雰囲気は、半田がぬれ易い
ように還元雰囲気下(窒素95%,水素5%)にて、半
田付けによる接合をし、図1(b)に示すようなアイソ
レータウェハー11を作製した。
As shown in FIGS. 1 (a), 3 (b) and 4 (b), metal thin films were processed on these components using a carbon jig (not shown). Material 15 for optical element for polarizer, solder sheet 17, stress buffer plate 9, solder sheet 17, material 15 for optical element for Faraday rotator, solder sheet 17, stress strain buffer plate 9,
The solder sheet and the optical element material 15 for the analyzer were superposed in this order, and the side surfaces of each component were aligned, and a load of 20 g was applied. 20 in the electric furnace together with the carbon jig
Heated to 0 ° C. The atmosphere in the electric furnace was bonded by soldering in a reducing atmosphere (95% nitrogen, 5% hydrogen) so that the solder was easily wetted, and an isolator wafer 11 as shown in FIG. 1B was produced.

【0020】アイソレータウェハーは、切断機により、
前記図2(a)に示した金属薄膜間の切りしろ24に沿
って所定の形状に切断され、図1(c)に示すようなア
イソレータチップ12を得た。アイソレータチップ12
は、図1(d)に示すように、プラスチック製のマグネ
ット8に挿入し、アイソレータチップ12の光学面以外
の側面を有機接着剤により、マグネット8の内面に固定
し、光透過面に有機接着剤がない光アイソレータを得
た。
The isolator wafer is cut by a cutting machine.
The isolator chip 12 as shown in FIG. 1C was obtained by cutting the metal thin film along the cutting gap 24 shown in FIG. 2A into a predetermined shape. Isolator chip 12
Is inserted into a plastic magnet 8 as shown in FIG. 1D, the side surfaces other than the optical surface of the isolator chip 12 are fixed to the inner surface of the magnet 8 with an organic adhesive, and the light transmitting surface is organically bonded. A drug-free optical isolator was obtained.

【0021】[0021]

【比較例】上記実施例の効果を比較、確認するために、
以下に二つの比較例を示す。
Comparative Example In order to compare and confirm the effects of the above examples,
Two comparative examples are shown below.

【0022】(比較例1)図7に示すように、両面に金
属薄膜のパターンを形成したファラデー回転子用素材2
の両面に、それぞれ片面に金属薄膜のパターンを形成し
た偏光子用素材1、および検光子用素材3を重ね合わ
せ、かつ、それぞれの間に半田シート(図示せず)を挿
入し、応力歪緩衝板を用いずに、前記実施例と同様な方
法によって、比較例1の光アイソレータを作製した。
(Comparative Example 1) As shown in FIG. 7, a material 2 for a Faraday rotator having metal thin film patterns formed on both surfaces.
The polarizer material 1 and the analyzer material 3 each having a pattern of a metal thin film formed on one side thereof are superposed on both sides of the sheet, and a solder sheet (not shown) is inserted between them to absorb stress and strain. An optical isolator of Comparative Example 1 was manufactured by the same method as that of the above-described example without using a plate.

【0023】(比較例2)図6に示すとおり、前述の従
来技術による偏光子側部分27と検光子側部分28から
構成される構造の光アイソレータを作製した。偏光子側
部分27は、第1端部ホルダ4と外部ホルダ6を予めY
AGレーザ溶接し、その内部に接合した偏光子1、内部
リング7、ファラデー回転子2、マグネット8から構成
される。一方、検光子側部分28は、第2端部ホルダ5
と検光子3(第2偏光子)から構成される。これら金属
製ホルダ内部には、半田接合を可能にするため、NiA
uめっき処理が施されている。また、ファラデー回転
子、偏光子、検光子の表面には、実施例同様、半田接合
を可能にするため、金属薄膜が成膜されている。これら
構成部品を、偏光子側部分、検光子側部分毎に個別に積
層し、積層した状態にて、前記実施例と同様に、電気炉
内で半田付け接合を行った。半田付け接合完了後、偏光
子側部分と検光子側部分を組み合わせ、2つの部分の偏
光軸(偏光方向)を所定の角度に合わせ、外部ホルダと
第2端部ホルダをYAGレーザ溶接をして、比較例2の
光アイソレータを得た。
(Comparative Example 2) As shown in FIG. 6, an optical isolator having a structure including a polarizer side portion 27 and an analyzer side portion 28 according to the above-mentioned conventional technique was manufactured. The polarizer-side portion 27 is configured such that the first end holder 4 and the outer holder 6 are arranged in advance.
It is composed of a polarizer 1, an inner ring 7, a Faraday rotator 2, and a magnet 8 which are welded by AG laser and bonded inside. On the other hand, the analyzer-side portion 28 has the second end holder 5
And an analyzer 3 (second polarizer). Inside these metal holders, NiA
u plating treatment is applied. In addition, a metal thin film is formed on the surfaces of the Faraday rotator, the polarizer, and the analyzer in order to enable soldering, as in the embodiment. These constituent parts were individually laminated for each of the polarizer side portion and the analyzer side portion, and in the laminated state, soldering was performed in the electric furnace in the same manner as in the above-described example. After soldering and joining is completed, the polarizer side part and the analyzer side part are combined, the polarization axes (polarization directions) of the two parts are aligned to a predetermined angle, and the external holder and the second end holder are YAG laser welded. An optical isolator of Comparative Example 2 was obtained.

【0024】実施例、比較例1及び比較例2にて、各5
0個作製した光アイソレータの順方向挿入損失及び逆方
向挿入損失評価を行った。以下に評価結果を表1に示
す。
In Example, Comparative Example 1 and Comparative Example 2, each 5
The forward insertion loss and the reverse insertion loss of zero optical isolator were evaluated. The evaluation results are shown in Table 1 below.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に明かなように、比較例1は、順方向
挿入損失、逆方向挿入損失ともに著しく劣っている。半
田接合による素材間の熱応力歪が緩和、吸収されること
なく、光学特性を低下させているものと考えられる。
As is apparent from Table 1, Comparative Example 1 is significantly inferior in both the forward insertion loss and the reverse insertion loss. It is considered that the optical characteristics are deteriorated without relaxing or absorbing the thermal stress strain between the materials due to the solder joining.

【0027】実施例と比較例2について、順方向挿入損
失および逆方向挿入損失は、ほぼ同水準である。これ
は、比較例2では光アイソレータ全数について、個別に
光学軸の調整を行うため、厳密な光学軸の調整が可能で
あることによると考えられる。本実施例の光アイソレー
タでは、1回の光学軸調整で同等の製品が複数得られて
いる。また、光学素子間の接合歪は、応力歪緩衝板によ
って緩和され、光アイソレータとして十分な特性を有す
ることが判った。さらに、光路への半田の流出がないこ
とが、外観検査の結果、判明した。これは、応力歪緩衝
板9,10のアパーチャ付近のめっき層を除去した効果
である。
The forward insertion loss and the reverse insertion loss of the example and the comparative example 2 are almost at the same level. It is considered that this is because in Comparative Example 2, the optical axis is individually adjusted for all the optical isolators, and thus the strict optical axis adjustment is possible. In the optical isolator of this embodiment, a plurality of equivalent products are obtained by performing the optical axis adjustment once. Further, it was found that the joint strain between the optical elements was relieved by the stress strain buffer plate, and the optical isolator had sufficient characteristics. Further, as a result of a visual inspection, it was found that solder did not flow into the optical path. This is the effect of removing the plating layer near the apertures of the stress-strain buffer plates 9 and 10.

【0028】実施例及び比較例2にて作製した光アイソ
レータを、各々10個採取し、ヒートサイクル試験を行
った。条件は、温度−20〜+70度、4.5時間/サ
イクル、サイクル数100サイクルとした。実施例、比
較例2における光アイソレータの試験前、試験終了後の
順方向挿入損失、逆方向挿入損失の変動量(10個の最
大値)を表2に示す。
Ten optical isolators produced in each of Example and Comparative Example 2 were sampled and subjected to a heat cycle test. The conditions were temperature −20 to + 70 ° C., 4.5 hours / cycle, and 100 cycles. Table 2 shows the amount of fluctuation (maximum value of 10) of the forward insertion loss and the backward insertion loss before and after the test of the optical isolator in Example and Comparative Example 2.

【0029】[0029]

【表2】 [Table 2]

【0030】表2から、実施例、比較例2共に、大幅な
特性劣化は認めらない。また、外観検査においても、光
学面のクラック等は認められなかった。実施例及び比較
例2にて作製した光アイソレータは、十分な信頼性を有
することが判った。
From Table 2, in both Example and Comparative Example 2, no significant deterioration in characteristics was observed. Also, in the appearance inspection, no cracks or the like on the optical surface were observed. It was found that the optical isolators produced in Example and Comparative Example 2 had sufficient reliability.

【0031】本実施例では、応力緩衝板としてCu板を
用いたが、Ti,Pt,Al23の板でも、また、これ
らを組み合わせた応力緩衝板でも、Cu板と同様の効果
が得られた。
In the present embodiment, the Cu plate was used as the stress buffer plate, but a Ti, Pt, Al 2 O 3 plate or a stress buffer plate in which these are combined has the same effect as the Cu plate. Was given.

【0032】また、本実施例では、アイソレータチップ
のホルダへの接合固定は、有機接着剤を用いて接着固定
したが、半田層を介してホルダにアイソレータチップを
接合固定することにより、より耐候性の良い光アイソレ
ータが得られた。この場合、半田はアイソレータチップ
の接合に用いた半田より低い融点の半田を用いた。ま
た、ホルダが非金属材料を使用した例においては、ホル
ダの接合面に金属薄膜を加工したものを用いた。
Further, in this embodiment, the isolator chip is bonded and fixed to the holder by using an organic adhesive, but the isolator chip is bonded and fixed to the holder via the solder layer to improve weather resistance. A good optical isolator was obtained. In this case, the solder used has a melting point lower than that of the solder used for joining the isolator chip. Further, in the case where the holder uses a non-metallic material, a holder in which a metal thin film is processed on the joint surface is used.

【0033】[0033]

【発明の効果】以上、説明したように、本発明によって
接合する光学素子間に生じる応力歪を緩和する手段をと
ることにより、光学素子部材相互の接合と、これから一
括して大量の光学素子を得ることが可能となった。この
ため、従来、作製する光アイソレータの全数について要
していた光学軸の調整の工程を省略することが可能とな
った。さらに、半田付け接合において課題であった半田
流出を解決し、透過光散乱の問題を解消した。その結
果、本発明は、一様な特性の光アイソレータを一括大量
に生産でき、かつ製造工程を大幅に短縮して低コストを
実現した。
As described above, by adopting the means for alleviating the stress strain generated between the optical elements to be bonded according to the present invention, the optical element members are bonded together and a large number of optical elements are collectively manufactured. It became possible to obtain. Therefore, it has become possible to omit the step of adjusting the optical axis, which has conventionally been required for the total number of optical isolators to be manufactured. Furthermore, we solved the problem of solder outflow, which was a problem in soldering, and solved the problem of transmitted light scattering. As a result, according to the present invention, it is possible to mass-produce the optical isolators having uniform characteristics all at once, and the manufacturing process is significantly shortened to realize the low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に示す光アイソレータの構造及
び製造手順を示す説明図。図1(a)は構成素材を示す
図。図1(b)はアイソレータウェハーの組立上がりを
示す図。図1(c)はアイソレータチップの切り出しを
示す図。図1(d)は組み立て上がった光アイソレータ
の断面図。
FIG. 1 is an explanatory diagram showing a structure and a manufacturing procedure of an optical isolator according to an embodiment of the present invention. FIG. 1A is a diagram showing constituent materials. FIG. 1B is a view showing an assembled state of the isolator wafer. FIG. 1C is a view showing a cutout of the isolator chip. FIG. 1D is a sectional view of the assembled optical isolator.

【図2】光学素子用素材の表面に成膜した金属薄膜を示
す斜視図。図2(a)は光学素子用素材全体を示す図。
図2(b)は金属薄膜部の断面図。
FIG. 2 is a perspective view showing a metal thin film formed on the surface of a material for an optical element. FIG. 2A is a diagram showing the entire optical element material.
FIG. 2B is a sectional view of the metal thin film portion.

【図3】本発明によって使用した応力緩衝板と、これを
組み付けた状態を示す図。図3(a)は応力歪緩衝板の
外観斜視図。図3(b)は光透過部の周辺の接合構造を
示す断面図。
FIG. 3 is a view showing a stress buffer plate used according to the present invention and a state in which the stress buffer plate is assembled. FIG. 3A is an external perspective view of the stress-strain buffer plate. FIG. 3B is a cross-sectional view showing the bonding structure around the light transmitting portion.

【図4】本発明によって使用した半田シートと、これを
組み付けた状態を示す図。図4(a)は半田シートの外
観図。図4(b)は接合構造を示す断面図。
FIG. 4 is a diagram showing a solder sheet used according to the present invention and a state in which the solder sheet is assembled. FIG. 4A is an external view of the solder sheet. FIG.4 (b) is sectional drawing which shows a joining structure.

【図5】光アイソレータの基本構成を示す説明図。FIG. 5 is an explanatory diagram showing a basic configuration of an optical isolator.

【図6】従来のメタル接着型光アイソレータの構成を説
明する分解断面図。図6(a)は偏光子側部分と検光子
側部分の組立前を示す図。図6(b)は組立上がりを示
す図。
FIG. 6 is an exploded cross-sectional view illustrating the configuration of a conventional metal-bonded optical isolator. FIG. 6A is a diagram showing a polarizer-side portion and an analyzer-side portion before assembling. FIG.6 (b) is a figure which shows assembly completion.

【図7】比較例2において作製した光アイソレータの構
造および製造手順を示す説明図。図7(a)は構成素材
を示す図。図7(b)はアイソレータウェハーの組み立
て上がりを示す図。図7(c)はアイソレータチップの
切り出しを示す図。図7(d)は組み立て上がった光ア
イソレータの断面図。
FIG. 7 is an explanatory view showing a structure and a manufacturing procedure of an optical isolator manufactured in Comparative Example 2. FIG. 7A is a diagram showing constituent materials. FIG. 7B is a view showing an assembled state of the isolator wafer. FIG.7 (c) is a figure which shows the cutting out of an isolator chip. FIG. 7D is a sectional view of the assembled optical isolator.

【符号の説明】[Explanation of symbols]

1 偏光子(用素材) 2 ファラデー回転子(用素材) 3 検光子(用素材) 4 第1部端部ホルダ 5 第2部端部ホルダ 6 外部ホルダ 7 内部ホルダ 8 マグネット 9,10 応力緩衝板(用素材) 11,31 アイソレータウェハー 12,32 アイソレータチップ 13 偏光軸 14 光学素子 15 光学素子用素材 16 半田 17 半田シート 18 アパーチャ 19 Ni,Auめっき部 20 半田流れ防止部 21 めっき層 22 金属薄膜 23 接着層 24 切りしろ 25 光透過面 26 接合層 27 偏光子側部分 28 検光子側部分 29 YAGレーザ溶接部 30 半田固定部 1 Polarizer (Material) 2 Faraday Rotor (Material) 3 Analyzer (Material) 4 First Part End Holder 5 Second Part End Holder 6 External Holder 7 Inner Holder 8 Magnet 9, 10 Stress Buffer Plate (Materials) 11,31 Isolator wafer 12,32 Isolator chip 13 Polarization axis 14 Optical element 15 Optical element material 16 Solder 17 Solder sheet 18 Aperture 19 Ni, Au plated portion 20 Solder flow prevention portion 21 Plating layer 22 Metal thin film 23 Adhesive layer 24 Cutting margin 25 Light transmitting surface 26 Bonding layer 27 Polarizer side part 28 Analyzer side part 29 YAG laser welding part 30 Solder fixing part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光学素子を半田付けによって接合固定す
るメタル接合型の光アイソレータにおいて、光学素子間
の接合部が両光学素子の表面に加工された金属薄膜層
と、この金属薄膜層に接する半田層と、前記半田層に接
する応力歪緩衝板から構成されていることを特徴とする
光アイソレータ。
1. In a metal-junction type optical isolator for bonding and fixing optical elements by soldering, a metal thin film layer in which a bonding portion between the optical elements is processed on the surfaces of both optical elements, and a solder contacting the metal thin film layer An optical isolator comprising a layer and a stress-strain buffer plate in contact with the solder layer.
【請求項2】 請求項1記載の光アイソレータにおい
て、前記応力歪緩衝板が、Cu,Ti,Pt,Al23
の少なくとも1種類以上からなることを特徴とする光ア
イソレータ。
2. The optical isolator according to claim 1, wherein the stress-strain buffer plate is made of Cu, Ti, Pt, Al 2 O 3.
An optical isolator comprising at least one type of
【請求項3】 請求項1記載の光アイソレータにおい
て、前記応力歪緩衝板表面のアパーチャ付近の半田ぬれ
性を低下せしめた半田流れ防止部を設けたことを特徴と
する光アイソレータ。
3. The optical isolator according to claim 1, further comprising a solder flow preventive portion for reducing solder wettability near an aperture on the surface of the stress-strain buffer plate.
【請求項4】 光学素子を半田付けによって固定するメ
タル接合型の光アイソレータの製造方法において、前記
光学素子を複数個取得し得る面積の光学素子用素材の少
なくとも一方の面に、金属薄膜を形成し、該光学素子用
素材の少なくとも一方の面に、半田シート、応力緩衝
板、半田シート、および前記光学用素材と同様に、一方
の面に金属薄膜を形成した他の光学素子用素材を順次重
ね合わせ、半田により接合し、この接合した接合体を、
所定の大きさになるように厚さ方向に切断し、アイソレ
ータチップを作製し、このアイソレータチップを用いて
光アイソレータを構築することを特徴とする光アイソレ
ータの製造方法。
4. A method of manufacturing a metal-junction type optical isolator for fixing an optical element by soldering, wherein a metal thin film is formed on at least one surface of an optical element material having an area capable of obtaining a plurality of the optical elements. Then, on at least one surface of the optical element material, a solder sheet, a stress buffer plate, a solder sheet, and another optical element material having a metal thin film formed on one surface in the same manner as the optical material are sequentially formed. Superimpose them, join them with solder, and join the joined pieces together.
A method for manufacturing an optical isolator, which comprises cutting an isolator chip to a predetermined size in the thickness direction to produce an isolator chip, and constructing an optical isolator using the isolator chip.
JP6675395A 1995-02-28 1995-02-28 Optical isolator and its production Pending JPH08234142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6675395A JPH08234142A (en) 1995-02-28 1995-02-28 Optical isolator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6675395A JPH08234142A (en) 1995-02-28 1995-02-28 Optical isolator and its production

Publications (1)

Publication Number Publication Date
JPH08234142A true JPH08234142A (en) 1996-09-13

Family

ID=13324969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6675395A Pending JPH08234142A (en) 1995-02-28 1995-02-28 Optical isolator and its production

Country Status (1)

Country Link
JP (1) JPH08234142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027756A1 (en) * 2001-09-27 2003-04-03 3M Innovative Properties Company Polarization rotators, articles containing polarization rotators, and methods for making and using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027756A1 (en) * 2001-09-27 2003-04-03 3M Innovative Properties Company Polarization rotators, articles containing polarization rotators, and methods for making and using the same

Similar Documents

Publication Publication Date Title
US6861272B2 (en) Optical device free from stress due to difference in thermal expansion coefficient between parts and process for fabrication thereof
JPH08234142A (en) Optical isolator and its production
KR100286956B1 (en) Optical element assembly for optical isolator and manufacturing method thereof
JP4395365B2 (en) Optical isolator
JP3439279B2 (en) Manufacturing method of optical isolator
JP3863597B2 (en) Optical component and manufacturing method thereof
JP3645700B2 (en) Optical isolator element and manufacturing method thereof
JP3993083B2 (en) Fiber collimator and manufacturing method thereof
JPH0335213A (en) Optical isolator and production therefor
JP3347198B2 (en) Fabrication method of optical isolator
JP3556010B2 (en) Optical isolator
JP2001356301A (en) Optical device
JPH08271835A (en) Optical isolator
JPH07175019A (en) Optical isolator and its production
JP4054668B2 (en) Metal holder, optical component composite, and manufacturing method thereof
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JPH0954284A (en) Production of optical isolator
JPH09246440A (en) Manufacture of package
JP4666931B2 (en) Optical isolator
JP2002014302A (en) Optical isolator and its manufacture method
JP2922626B2 (en) Optical isolator
JPH0961751A (en) Optical isolator
JPH05267783A (en) Optical semiconductor device
JPH11183841A (en) Element for optical isolator and its manufacture, and optical module
JPH08278469A (en) Optical isolator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329