JPH08233967A - Fuel assembly and initial loading reactor core - Google Patents

Fuel assembly and initial loading reactor core

Info

Publication number
JPH08233967A
JPH08233967A JP7039678A JP3967895A JPH08233967A JP H08233967 A JPH08233967 A JP H08233967A JP 7039678 A JP7039678 A JP 7039678A JP 3967895 A JP3967895 A JP 3967895A JP H08233967 A JPH08233967 A JP H08233967A
Authority
JP
Japan
Prior art keywords
fuel
enrichment
short
axial
fuel rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7039678A
Other languages
Japanese (ja)
Other versions
JP3303583B2 (en
Inventor
Hiroko Haraguchi
裕子 原口
Akihiro Yamanaka
章広 山中
Katsumasa Haikawa
勝正 配川
Mitsuya Nakamura
光也 中村
Tadao Aoyama
肇男 青山
Junichi Koyama
淳一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03967895A priority Critical patent/JP3303583B2/en
Publication of JPH08233967A publication Critical patent/JPH08233967A/en
Application granted granted Critical
Publication of JP3303583B2 publication Critical patent/JP3303583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE: To contrive the flatness of axial output distribution by specifically treating an area division or the like of a degree of enrichment of a short fuel rod and another degree of enrichment of a long fuel rod. CONSTITUTION: Average degrees in each axial traverse section indicate 1.10wt.% in the lower part, 1.28wt.% in the central part and 1.35wt.% in the upper part except for upper and lower end parts. A short fuel rod P is filled with fuel pellets in the lower part and the central part thereof. A degree of enrichment of the fuel rod P indicates 0.711wt.% and is made low as compared with the average degrees of the enrichment of the traverse section of the lower part and the central part. A long fuel rod 3 has a boundary of the degree of the enrichment at a position of 8/24 of the fuel effective length, the lower part indicates 0.711wt.% and the central part and the upper part are 1.4wt.%. As the constitution, axial enrichment distribution in the enrichment part of a lower degree of the enrichment is divided into three areas and becomes high as it goes upward. Flat axial output distribution can be obtained by simpler enrichment distribution by treating such a method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子炉の燃料集合体及び
初装荷炉心に係り、特に高燃焼度化対応の沸騰水型原子
炉に用いるのに好適な燃料集合体及び初装荷炉心に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel assembly and an initially loaded core of a nuclear reactor, and more particularly to a fuel assembly and an initially loaded core suitable for use in a boiling water reactor capable of increasing burnup.

【0002】[0002]

【従来の技術】一般に、沸騰水型原子炉では、最初の運
転時の炉心いわゆる初装荷炉心に装荷される燃料集合体
の平均濃縮度は同一で一種類であった。原子炉では1サ
イクル毎に全数の約1/3〜1/4の燃料集合体を取り
出して新燃料と交換するが、初装荷炉心用燃料集合体の
平均濃縮度は2〜3サイクル炉心内で燃焼が可能なよう
に設定されているため、初装荷炉心用燃料集合体を用い
る運転サイクル(以下、第1サイクルといい、それ以後
に部分的に燃料を交換し引続き運転するサイクルを第2
サイクル,第3サイクル等という)終了時の燃料交換で
は、まだ充分に燃焼の進んでいない、即ちウラン235
残留量の多い燃料集合体を炉心から取り出すことになり
不経済である。
2. Description of the Related Art Generally, in a boiling water reactor, the average enrichment of the fuel assemblies loaded in the so-called initially loaded core during the first operation is the same and of one kind. In the nuclear reactor, about 1/3 to 1/4 of the total number of fuel assemblies are taken out for each cycle and replaced with fresh fuel, but the average enrichment of the initially loaded core fuel assemblies is within 2 to 3 cycle cores. Since it is set to be combustible, the operation cycle using the initially loaded core fuel assembly (hereinafter referred to as the first cycle, the second cycle is the cycle in which fuel is partially exchanged and subsequently operated).
In the fuel exchange at the end of the cycle (third cycle, third cycle, etc.), combustion has not progressed sufficiently, that is, uranium 235
It is uneconomical to take out a large amount of residual fuel assemblies from the core.

【0003】第2サイクル以後の運転サイクルの初めに
装荷される新燃料集合体は取替燃料集合体と呼ばれ、第
1サイクル以後、数サイクルにわたり継続的に取替燃料
集合体を装荷した炉心は、炉内全体の燃料成分がほとん
ど一定の状態に達したサイクルで、その前のサイクル及
び次のサイクルとの熱特性が変わらず安定したサイクル
となる。これは平衡サイクルと呼ばれ、平衡サイクルと
なった炉心は平衡炉心と呼ばれている。
The new fuel assembly loaded at the beginning of the operation cycle after the second cycle is called a replacement fuel assembly, and the core loaded with the replacement fuel assembly continuously for several cycles after the first cycle. Is a cycle in which the fuel components in the entire furnace have reached a substantially constant state, and the thermal characteristics are the same as those of the previous cycle and the next cycle and are stable. This is called the equilibrium cycle, and the core that has become the equilibrium cycle is called the equilibrium core.

【0004】このような原子炉においては、第1サイク
ルから平衡サイクルへ移行する中間のサイクル(以下、
移行サイクルという)での熱特性及びサイクル増分燃焼
度が平衡サイクルのそれらと同程度あるいは、速やかに
それらに収束するのが好ましい。しかしながら、従来の
初装荷炉心のように燃料集合体の平均濃縮度が一種類の
場合には、平衡サイクルへの移行も長くかかり移行サイ
クルでの燃料取替体数の変動も大きく、必ずしも満足な
ものではなかった。
In such a nuclear reactor, an intermediate cycle (hereinafter,
It is preferable that the thermal characteristics and the cycle incremental burn-up in the transition cycle) converge to the same degree as those of the equilibrium cycle or rapidly. However, when the average enrichment of the fuel assembly is one type as in the conventional initially loaded core, the transition to the equilibrium cycle takes a long time, and the change in the number of refueling elements in the transition cycle is large, which is not always satisfactory. It wasn't something.

【0005】このため、沸騰水型原子炉において、平均
濃縮度の異なる多種類の燃料集合体を組み合わせて初装
荷炉心を構成し、1サイクル毎に平均濃縮度の低い燃料
集合体から取り出し、これを新燃料集合体と交換するこ
とにより、初装荷燃料集合体の平均取出燃焼度を増大さ
せると共に、次サイクルへの移行を速やかにする試みが
なされている。このような技術は、例えば特開昭57−84
86号公報に記載されている。
For this reason, in a boiling water reactor, various types of fuel assemblies having different average enrichments are combined to form an initially loaded core, which is taken out from a fuel assembly having a low average enrichment every cycle. It has been attempted to increase the average take-out burnup of the initially loaded fuel assembly and replace it with the new fuel assembly by swiftly shifting to the next cycle. Such a technique is disclosed, for example, in JP-A-57-84.
No. 86 publication.

【0006】一方、取替燃料に関しては、内部に燃料物
質が充填され軸方向長さの長い長尺燃料棒と軸方向長さ
の短い短尺燃料棒の2種類を用いると共に、燃料濃縮度
を増加させて燃焼度を高め燃料経済性の向上を図る燃料
集合体が、特開平3−273189号公報の図7に記載されて
いる。
On the other hand, as for the replacement fuel, two kinds of fuel rods, that is, a long fuel rod having a long axial length and a short fuel rod having a short axial length filled with a fuel substance are used, and the fuel enrichment is increased. FIG. 7 of Japanese Patent Laid-Open No. 3-273189 discloses a fuel assembly for increasing burnup and improving fuel economy.

【0007】従って、初装荷炉心においても特開平3−2
73189 号公報の図7に示されているような高燃焼度化に
対応した取替燃料の装荷を想定し、移行サイクルにおけ
る良好な炉心特性を確保しつつ、初装荷燃料集合体の平
均取出燃焼度を増大させることが可能となる初装荷炉心
が望まれる。
Therefore, even in the initially loaded core, Japanese Patent Laid-Open No. 3-2
Assuming the loading of replacement fuel corresponding to high burnup as shown in Fig. 7 of 73189 publication, while maintaining good core characteristics in the transition cycle, the average unloading combustion of the initially loaded fuel assembly It is desirable to have an initially loaded core that can increase the frequency.

【0008】また、初装荷炉心において、軸方向のガド
リニア分布を工夫することによって軸方向出力分布の平
坦化を図る技術が、特開昭63−121789号公報に記載され
ている。更に、特開平4−128688 号公報には、軸方向下
部の水ロッド断面積を軸方向上部よりも小さくし、その
代わりに天然ウランを充填した短尺燃料棒を配置して上
部領域と下部領域の減速材対燃料比(H/U比)の差を
小さくすることにより、燃料の高反応度化と運転時の出
力分布平坦化を図る技術が記載されている。
Further, Japanese Patent Laid-Open No. 63-121789 discloses a technique for flattening an axial power distribution by devising an axial gadolinia distribution in an initially loaded core. Further, in Japanese Unexamined Patent Publication No. 4-128688, the cross sectional area of the water rod at the lower portion in the axial direction is made smaller than that at the upper portion in the axial direction, and a short fuel rod filled with natural uranium is arranged in place of it to dispose the upper and lower regions. There is disclosed a technique for reducing the difference in the moderator-to-fuel ratio (H / U ratio) to make the fuel highly reactive and flatten the output distribution during operation.

【0009】[0009]

【発明が解決しようとする課題】特開昭63−121789号公
報に記載された従来技術では、ガドリニアは燃料の反応
度を低下させるので、最低濃縮度燃料にガドリニアを混
入した場合には、1サイクルの燃焼後の取出燃焼度が低
下するため経済的でない。
In the prior art disclosed in Japanese Patent Laid-Open No. 63-121789, since gadolinia reduces the reactivity of fuel, when gadolinia is mixed in the lowest enrichment fuel, It is uneconomical because the burnout of the fuel after combustion in the cycle is reduced.

【0010】また、特開平4−128688 号公報に記載され
た従来技術を用いても上部領域のH/U比は下部領域に
比べ小さく、軸方向出力分布を十分に平坦化することは
できない。軸方向出力分布を十分平坦化するために、更
に上部領域のH/U比を下部領域に近付けるには、短尺
燃料棒の本数増加が必要となる。この短尺燃料棒の本数
増加に伴い、燃料集合体1体当りのウラン装荷量は減少
するため、燃料経済性は不利となる。また、水ロッドは
上部と下部とで形状が異なるので、成形加工上の手間が
増加する。
Further, even if the conventional technique disclosed in Japanese Patent Laid-Open No. 4-128688 is used, the H / U ratio of the upper region is smaller than that of the lower region, and the output distribution in the axial direction cannot be sufficiently flattened. In order to further flatten the axial power distribution and bring the H / U ratio of the upper region closer to the lower region, it is necessary to increase the number of short fuel rods. As the number of short fuel rods increases, the amount of uranium loaded per fuel assembly decreases, resulting in a disadvantage in fuel economy. Further, since the shape of the water rod is different between the upper part and the lower part, the time and effort required for the molding process increase.

【0011】本発明の目的は、燃料成形加工上の手間を
増加させずに、運転サイクルの長期化と燃料の高燃焼度
化に対応でき、且つ軸方向出力分布を平坦化できる燃料
集合体及び初装荷炉心を提供することにある。
An object of the present invention is to provide a fuel assembly which can cope with a longer operating cycle and a higher burnup of fuel without increasing the time and effort required for forming a fuel, and can flatten the axial power distribution. It is to provide a core for initial loading.

【0012】[0012]

【課題を解決するための手段】上記目的は、内部に燃料
物質が充填された軸方向長さの長い長尺燃料棒と軸方向
長さの短い短尺燃料棒の2種類の異なる軸方向長さを有
する複数の燃料棒からなる燃料集合体において、前記短
尺燃料棒に充填される燃料の濃縮度は燃料集合体横断面
における平均濃縮度よりも低く、前記長尺燃料棒は濃縮
度が高い上部と上部より濃縮度が低い下部に領域分けさ
れ、上部と下部の境界を前記短尺燃料棒の燃料充填部上
端と異なる軸方向位置とすることにより達成される。
The above object is to provide two different axial lengths, a long fuel rod having a long axial length and a short fuel rod having a short axial length filled with a fuel substance. In a fuel assembly composed of a plurality of fuel rods having a plurality of fuel rods, the enrichment of the fuel with which the short fuel rods are filled is lower than the average enrichment in the cross section of the fuel assembly, and the long fuel rods have a high enrichment. And the lower part having a lower enrichment than the upper part, and the boundary between the upper part and the lower part is located at an axial position different from the upper end of the fuel filling portion of the short fuel rod.

【0013】また、平均濃縮度の異なる多種類の燃料集
合体を組合せて構成される初装荷炉心において、前記多
種類の燃料集合体のうち少なくとも1種類の燃料集合体
は、内部に燃料物質が充填された軸方向長さの長い長尺
燃料棒と軸方向長さの短い短尺燃料棒の2種類の異なる
軸方向長さを有する複数の燃料棒からなり、前記短尺燃
料棒に充填される燃料の濃縮度は燃料集合体横断面にお
ける平均濃縮度よりも低く、前記長尺燃料棒は濃縮度が
高い上部と該上部より濃縮度が低い下部に領域分けさ
れ、前記上部と下部の境界を前記短尺燃料棒の燃料充填
部上端と異なる軸方向位置とすることにより達成され
る。
Further, in an initially loaded core constructed by combining a plurality of types of fuel assemblies having different average enrichments, at least one type of fuel assemblies among the plurality of types of fuel assemblies has a fuel substance inside. The fuel filled in the short fuel rod is composed of a plurality of fuel rods having two different axial lengths: a long fuel rod having a long axial length and a short fuel rod having a short axial length. Is lower than the average enrichment in the cross section of the fuel assembly, the long fuel rod is divided into an upper part having a higher enrichment and a lower part having a lower enrichment than the upper part, and the boundary between the upper part and the lower part is This is achieved by setting the axial position different from the upper end of the fuel filling portion of the short fuel rod.

【0014】[0014]

【作用】軸方向出力分布の平坦化を図り、熱的特性を平
衡炉心にスムーズに(安定に)移行させるためには、初
装荷炉心において平衡炉心の燃料集合体平均の反応度特
性を模擬するだけでは不十分であり、燃料集合体軸方向
の反応度分布についても模擬する必要がある。
[Function] In order to make the axial power distribution flat and to transfer the thermal characteristics smoothly (stably) to the equilibrium core, the reactivity characteristics of the average fuel assembly of the equilibrium core are simulated in the initially loaded core. This is not enough, and it is necessary to simulate the reactivity distribution in the axial direction of the fuel assembly.

【0015】平衡炉心における取出直前燃料に対応する
初装荷炉心における最低濃縮度燃料の軸方向反応度分布
をより上方にシフトさせることにより、軸方向出力分布
の平坦化を図り、熱的特性をスムーズに移行させること
ができる。図9に平衡炉心取出直前燃料のサイクル初期
における核分裂性物質の軸方向分布例を示す。初装荷炉
心を構成する場合、最低濃縮度燃料の軸方向濃縮度分布
は図9に示した核分裂性物質の軸方向分布を模擬するこ
とが理想的であるが、燃料集合体内濃縮度分布が複雑に
なりすぎ、燃料成形加工上の手間が増加する。
By shifting the axial reactivity distribution of the lowest enrichment fuel in the initially loaded core corresponding to the fuel just before unloading in the equilibrium core to the upper side, the axial power distribution is flattened and the thermal characteristics are smoothed. Can be moved to. FIG. 9 shows an example of axial distribution of fissile material at the beginning of the cycle of fuel immediately before the equilibrium core extraction. When configuring an initially loaded core, it is ideal that the axial enrichment distribution of the lowest enrichment fuel simulates the axial distribution of fissile material shown in Fig. 9, but the enrichment distribution in the fuel assembly is complicated. Becomes too much, and the time and effort for the fuel forming process increase.

【0016】これに対して、短尺燃料棒を用いた燃料集
合体では、短尺燃料棒の濃縮度を下げることにより、短
尺燃料棒有効部よりも上方の燃料集合体横断面の平均濃
縮度は変えずに短尺燃料棒有効部よりも下部の燃料集合
体横断面の平均濃縮度を下げることができる。即ち、燃
料棒に充填するペレット濃縮度を一様にして燃料集合体
の軸方向に濃縮度の分布を付加することが可能であり、
燃料成形加工上の手間を少なくできる。
On the other hand, in the fuel assembly using the short fuel rods, the average enrichment of the cross section of the fuel assembly above the effective portion of the short fuel rods is changed by lowering the enrichment of the short fuel rods. Instead, the average enrichment of the cross section of the fuel assembly below the effective portion of the short fuel rod can be reduced. That is, it is possible to add a distribution of enrichment in the axial direction of the fuel assembly by making the enrichment of pellets filled in the fuel rod uniform.
The time and effort required for fuel molding can be reduced.

【0017】従って、本発明によれば、長尺燃料棒と短
尺燃料棒の2種類を用いた燃料集合体において、より単
純な燃料集合体内濃縮度分布で平衡炉心取出直前燃料の
サイクル初期における核分裂性物質の軸方向分布に近づ
けることができるので、燃料成形加工上の手間を増加さ
せずに軸方向出力分布の平坦化を図り、熱的特性を平衡
炉心にスムーズに移行させることができる。これに伴
い、運転サイクルの長期化と燃料の高燃焼度化に対応す
ることができる。
Therefore, according to the present invention, in a fuel assembly using two types of long fuel rods and short fuel rods, the fission in the early cycle of the fuel just before the equilibrium core extraction is performed with a simpler concentration distribution in the fuel assembly. Since it is possible to approach the axial distribution of the organic substance, the axial power distribution can be flattened and the thermal characteristics can be smoothly transferred to the equilibrium core without increasing the labor for fuel forming. Along with this, it is possible to cope with a longer operating cycle and higher burnup of fuel.

【0018】[0018]

【実施例】以下、図1〜図3及び図8を用いて、本発明
を沸騰水型原子炉に適用した第1の実施例を説明する。
図3は本発明による沸騰水型原子炉炉心の1/4横断面
を、図8は図3の炉心に用いる燃料集合体の一部縦断面
を、図1は本発明による低濃縮度燃料集合体の第1の実
施例の燃料棒構成を、図2は第1の実施例の低濃縮度燃
料集合体の横断面をそれぞれ示す。
EXAMPLE A first example in which the present invention is applied to a boiling water reactor will be described below with reference to FIGS. 1 to 3 and 8.
3 is a quarter cross section of a boiling water reactor core according to the present invention, FIG. 8 is a partial vertical cross section of a fuel assembly used in the core of FIG. 3, and FIG. 1 is a low enrichment fuel assembly according to the present invention. FIG. 2 shows the fuel rod configuration of the first embodiment of the body, and FIG. 2 shows the cross section of the low enrichment fuel assembly of the first embodiment.

【0019】図3に示す原子炉は1100MWe 級の沸騰水型
原子炉で、764体の燃料集合体と185本の制御棒か
ら構成される。図3で、1は高濃縮度燃料集合体、2は
中濃縮度燃料集合体、3は低濃縮度燃料集合体、5は制
御棒を示す。
The reactor shown in FIG. 3 is a boiling water reactor of 1100 MWe class, which is composed of 764 fuel assemblies and 185 control rods. In FIG. 3, 1 is a high enrichment fuel assembly, 2 is a medium enrichment fuel assembly, 3 is a low enrichment fuel assembly, and 5 is a control rod.

【0020】図8において、燃料集合体16は、四角筒
のチャンネルボックス12と、チャンネルボックス12
の内部に収納された燃料バンドルとからなる。燃料バン
ドルは、チャンネルボックス12の上部及び下部に設け
られた上部タイプレート18及び下部タイプレート19
と、チャンネルボックス12の内部で軸方向に間隔をお
いて設置された複数の燃料スペーサ20と、燃料スペー
サ20を貫通し上部タイプレート18と下部タイプレー
ト19に両端を固定された長尺燃料棒15及び水ロッド
13と、燃料スペーサ20を貫通し下部タイプレート1
9に下端を固定された短尺燃料棒23とで構成される。
In FIG. 8, the fuel assembly 16 includes a square tube channel box 12 and a channel box 12.
And a fuel bundle housed inside. The fuel bundle includes an upper tie plate 18 and a lower tie plate 19 provided on the upper and lower portions of the channel box 12.
And a plurality of fuel spacers 20 axially spaced inside the channel box 12, and a long fuel rod penetrating the fuel spacer 20 and fixed at both ends to an upper tie plate 18 and a lower tie plate 19. 15 and the water rod 13 and the fuel spacer 20 to penetrate the lower tie plate 1
9 and a short fuel rod 23 whose lower end is fixed.

【0021】低濃縮度燃料集合体は図1に示すような5
種類の燃料棒で構成され、燃料棒1〜4は長尺燃料棒、
燃料棒Pは短尺燃料棒である。短尺燃料棒の燃料有効長
(燃料が装荷されている長さ)は、長尺燃料棒の燃料有
効長の下端から1/24〜15/24の範囲となってい
る。また、図2のように、短尺燃料棒は9行9列の燃料
格子の最外周から2列目の列に所定間隔で8本配置され
ている。燃料棒3は燃料有効長の8/24の位置で上部
と下部に分かれており、上部の濃縮度は1.4wt%で、
下部の濃縮度0.711wt% よりも高くなっている。
また、低濃縮度燃料集合体は、ガドリニアを含む燃料棒
は使用していない。
A low-enrichment fuel assembly has a structure as shown in FIG.
Fuel rods 1-4 are long fuel rods,
The fuel rod P is a short fuel rod. The active fuel length of the short fuel rod (the length of the loaded fuel) is within the range of 1/24 to 15/24 from the lower end of the active fuel length of the long fuel rod. Further, as shown in FIG. 2, eight short fuel rods are arranged at a predetermined interval in the second column from the outermost periphery of the fuel grid of 9 rows and 9 columns. The fuel rod 3 is divided into an upper part and a lower part at the position of 8/24 of the active fuel length, and the enrichment of the upper part is 1.4 wt%.
It is higher than the concentration of 0.711 wt% at the bottom.
Also, the low enrichment fuel assembly does not use fuel rods containing gadolinia.

【0022】図1において、軸方向各横断面における平
均濃縮度は、天然ウラン領域である上下端部を除き、下
方より1.10wt%(下部),1.28wt%(中央
部),1.35wt%(上部)である。短尺燃料棒Pは、
下部と中央部に燃料ペレットが充填されている。短尺燃
料棒Pの濃縮度は0.711wt% であり、下部及び中
央部の横断面平均濃縮度に比べ低くしてある。長尺燃料
棒3は燃料有効長の8/24の位置に濃縮度の境界があ
り、下部が0.711wt% ,中央部及び上部が1.4
wt% にしてある。本構成により、低濃縮度燃料の濃
縮部における軸方向濃縮度分布は3領域にわかれ、上方
に行くほど濃縮度が高くなっていく。
In FIG. 1, the average enrichment in each axial cross section is 1.10 wt% (bottom), 1.28 wt% (center), 1.28 wt% (bottom) from the bottom, excluding the upper and lower ends of the natural uranium region. 35 wt% (upper part). The short fuel rod P is
Fuel pellets are filled in the lower part and the central part. The enrichment of the short fuel rods P is 0.711 wt%, which is lower than the average enrichment of the lower and central cross sections. The long fuel rod 3 has a boundary of enrichment at a position of 8/24 of the active fuel length, the lower part is 0.711 wt%, and the central part and the upper part are 1.4.
It is set to wt%. With this configuration, the axial enrichment distribution in the enrichment portion of the low enrichment fuel is divided into three regions, and the enrichment becomes higher as it goes upward.

【0023】この低濃縮度燃料を図3に示した初装荷炉
心に装荷した場合のサイクル初期における軸方向出力分
布を図4に実線で示す。短尺燃料棒の濃縮度を横断面平
均濃縮度よりも低くしていない比較例である破線に比
べ、軸方向のピーキングが小さく平坦となっている。短
尺燃料棒の濃縮度を横断面平均濃縮度よりも低くしてい
ない比較例の燃料棒濃縮度の分布を図5に示す。図5に
おいて、軸方向各横断面における平均濃縮度は、天然ウ
ラン領域である上下端部を除き、下方より1.17wt%
(下部),1.35wt%(中央部),1.35wt%
(上部)であり、下部と中央部の濃縮度差は、図1の場
合と同じであるが、中央部と上部の濃縮度差はなくなっ
ている。また、図1と図5の濃縮度分布の複雑さは同程
度である。
The solid line in FIG. 4 shows the axial power distribution at the beginning of the cycle when this low-enrichment fuel is loaded in the initially loaded core shown in FIG. The peaking in the axial direction is small and flat as compared with the broken line which is a comparative example in which the enrichment of the short fuel rod is not lower than the average enrichment of the cross section. FIG. 5 shows the distribution of the fuel rod enrichment of the comparative example in which the enrichment of the short fuel rod is not lower than the average enrichment of the cross section. In FIG. 5, the average enrichment in each axial cross section is 1.17 wt% from below except for the upper and lower ends of the natural uranium region.
(Bottom), 1.35 wt% (center), 1.35 wt%
The difference in enrichment between the lower part and the central part is the same as in the case of FIG. 1, but the difference in enrichment between the central part and the upper part is eliminated. Further, the complexity of the enrichment distributions in FIGS. 1 and 5 is about the same.

【0024】図6は、図5の濃縮度分布をもとに、図1
と同等の軸方向濃縮度分布を得ようとした比較例であ
り、長尺燃料棒3を中央部と上部とでさらに濃縮度を分
割している。図6において、軸方向各横断面における平
均濃縮度は、天然ウラン領域である上下端部を除き、下
方より1.17wt%(下部),1.35wt%(中央
部),1.42wt%(上部)であり、下部と中央部の濃
縮度差及び中央部と上部の濃縮度差は、図1の場合と同
じである。従って、図6に示す低濃縮度燃料を図3に示
した初装荷炉心に装荷した場合のサイクル初期における
軸方向出力分布は図4の実線にほぼ等しくなるが、長尺
燃料棒3内の濃縮度分布は図1に比べて複雑になり、燃
料成形加工上の手間が増加する。
FIG. 6 is based on the enrichment distribution of FIG.
This is a comparative example in which an axial enrichment distribution equivalent to the above is obtained, and the enrichment is further divided into a central portion and an upper portion of the long fuel rod 3. In FIG. 6, the average enrichment in each cross section in the axial direction is 1.17 wt% (bottom), 1.35 wt% (center), 1.42 wt% (from the bottom, excluding the upper and lower ends of the natural uranium region). The difference in enrichment between the lower part and the central part and the difference in enrichment between the central part and the upper part are the same as in the case of FIG. Therefore, when the low-enrichment fuel shown in FIG. 6 is loaded into the initially loaded core shown in FIG. 3, the axial power distribution in the initial stage of the cycle is almost equal to the solid line in FIG. The degree distribution is more complicated than that in FIG. 1, and the labor required for the fuel forming process increases.

【0025】以上より、図1に示すように短尺燃料棒の
濃縮度を燃料集合体横断面における平均濃縮度よりも低
くし、かつ短尺燃料棒の燃料有効部上端よりも下方の軸
方向位置において上部の濃縮度を下部よりも高くした長
尺燃料棒とを用いることにより、より単純な濃縮度分布
で平坦な軸方向出力分布を得ることが可能となる。
From the above, as shown in FIG. 1, the enrichment of the short fuel rod is made lower than the average enrichment in the cross section of the fuel assembly, and at the axial position below the upper end of the effective fuel portion of the short fuel rod. By using a long fuel rod in which the enrichment in the upper portion is higher than that in the lower portion, it becomes possible to obtain a flat axial power distribution with a simpler enrichment distribution.

【0026】次に、図7を用いて本発明による低濃縮度
燃料集合体の第2の実施例を説明する。本実施例では、
短尺燃料棒Pの燃料有効長は、長尺燃料棒の燃料有効長
の下端から1/24〜8/24の軸方向位置までであ
る。また、長尺燃料棒3は、下端から15/24の軸方
向位置において上下の濃縮度が分けられており、下部が
0.711wt%,中央部及び上部が1.4wt%にして
ある。軸方向各横断面における平均濃縮度は、天然ウラ
ン領域である上下端部を除き、下方より1.10wt%
(下部),1.14wt%(中央部),1.35wt%
(上部)であり、燃料濃縮部における軸方向濃縮度分布
は上方に行くに従い濃縮度が高くなっていく。
Next, a second embodiment of the low enrichment fuel assembly according to the present invention will be described with reference to FIG. In this embodiment,
The active fuel length of the short fuel rod P is from the lower end of the active fuel length of the long fuel rod to the axial position of 1/24 to 8/24. Further, the long fuel rods 3 are divided into upper and lower enrichments at axial positions of 15/24 from the lower end, and the lower portion has 0.711 wt% and the central portion and upper portion have 1.4 wt%. The average enrichment in each axial cross section is 1.10 wt% from below, excluding the upper and lower ends of the natural uranium region.
(Bottom), 1.14 wt% (center), 1.35 wt%
(Upper part), and the axial enrichment distribution in the fuel enrichment portion becomes higher as it goes upward.

【0027】従って、図7に示すように短尺燃料棒の濃
縮度を燃料集合体横断面における平均濃縮度よりも低く
し、かつ短尺燃料棒の有効部上端よりも上方の軸方向位
置において上部の濃縮度を下部よりも高くした長尺燃料
棒とを用いることにより、燃料の成形加工上の手間を少
なくできる、より単純な濃縮度分布で平坦な軸方向出力
分布を得ることが可能となる。
Therefore, as shown in FIG. 7, the enrichment of the short fuel rods is made lower than the average enrichment in the cross section of the fuel assembly, and at the upper axial position above the upper end of the effective portion of the short fuel rods. By using a long fuel rod having a higher enrichment than that of the lower portion, it is possible to obtain a flat axial power distribution with a simpler enrichment distribution, which can reduce the time and effort required for forming the fuel.

【0028】[0028]

【発明の効果】以上述べたように、本発明によれば、長
尺燃料棒と短尺燃料棒の2種類を用いた燃料集合体にお
いて、より単純な燃料集合体内濃縮度分布で平衡炉心取
出直前燃料のサイクル初期における核分裂性物質の軸方
向分布に近づけることができるので、燃料成形加工上の
手間を増加させずに軸方向出力分布の平坦化を図り、熱
的特性を平衡炉心にスムーズに移行させることができ
る。これに伴い、運転サイクルの長期化と燃料の高燃焼
度化に対応することができる。
As described above, according to the present invention, in a fuel assembly using two types of long fuel rods and short fuel rods, a simpler fuel assembly enrichment distribution immediately before equilibrium core extraction Since it is possible to approach the axial distribution of fissile material at the beginning of the fuel cycle, the axial power distribution is flattened without increasing the time and effort required for the fuel forming process, and the thermal characteristics are smoothly transferred to the equilibrium core. Can be made. Along with this, it is possible to cope with a longer operating cycle and higher burnup of fuel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による低濃縮度燃料集合体の第1の実施
例の燃料棒構成を示す図。
FIG. 1 is a diagram showing a fuel rod structure of a first embodiment of a low enrichment fuel assembly according to the present invention.

【図2】第1の実施例の低濃縮度燃料集合体の横断面
図。
FIG. 2 is a cross-sectional view of the low enrichment fuel assembly of the first embodiment.

【図3】本発明による沸騰水型原子炉炉心の1/4横断
面図。
FIG. 3 is a quarter cross-sectional view of a boiling water reactor core according to the present invention.

【図4】第1の実施例の低濃縮度燃料集合体を用いたサ
イクル初期における軸方向出力分布を示す図。
FIG. 4 is a diagram showing an axial power distribution at the beginning of a cycle using the low enrichment fuel assembly of the first embodiment.

【図5】低濃縮度燃料集合体の比較例の燃料棒構成を示
す図。
FIG. 5 is a view showing a fuel rod structure of a comparative example of a low enrichment fuel assembly.

【図6】低濃縮度燃料集合体の他の比較例の燃料棒構成
を示す図。
FIG. 6 is a view showing a fuel rod structure of another comparative example of the low enrichment fuel assembly.

【図7】本発明による低濃縮度燃料集合体の第2の実施
例の燃料棒構成を示す図。
FIG. 7 is a view showing a fuel rod structure of a second embodiment of the low enrichment fuel assembly according to the present invention.

【図8】図3の炉心に用いる燃料集合体の一部縦断面。8 is a partial vertical cross section of a fuel assembly used in the core of FIG.

【図9】平衡炉心取出直前燃料のサイクル初期における
核分裂性物質の軸方向分布例を示す図。
FIG. 9 is a diagram showing an example of axial distribution of fissile material at the beginning of the cycle of fuel immediately before equilibrium core removal.

【符号の説明】[Explanation of symbols]

1…高濃縮度燃料集合体、2…中濃縮度燃料集合体、3
…低濃縮度燃料集合体、5…制御棒、P…短尺燃料棒。
1 ... High enrichment fuel assembly, 2 ... Medium enrichment fuel assembly, 3
... low enrichment fuel assemblies, 5 ... control rods, P ... short fuel rods.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 光也 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 青山 肇男 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所エネルギー研究所内 (72)発明者 小山 淳一 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuya Nakamura 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Hajime Aoyama Seven, Mika-machi, Hitachi-shi, Ibaraki 2-1-1, Hitachi Energy Research Institute, Ltd. (72) Inventor Junichi Koyama, 7-2-1, Omika-cho, Hitachi City, Ibaraki Hitachi Energy Research Institute, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】内部に燃料物質が充填された軸方向長さの
長い長尺燃料棒と軸方向長さの短い短尺燃料棒の2種類
の異なる軸方向長さを有する複数の燃料棒からなる燃料
集合体において、 前記短尺燃料棒に充填される燃料の濃縮度は燃料集合体
横断面における平均濃縮度よりも低く、 前記長尺燃料棒は濃縮度が高い上部と該上部より濃縮度
が低い下部に領域分けされ、前記上部と下部の境界を前
記短尺燃料棒の燃料充填部上端と異なる軸方向位置とし
たことを特徴とする燃料集合体。
1. A plurality of fuel rods having two different axial lengths, a long fuel rod having a long axial length filled with a fuel substance and a short fuel rod having a short axial length. In the fuel assembly, the enrichment of the fuel with which the short fuel rods are filled is lower than the average enrichment in the cross section of the fuel assembly, and the long fuel rods have a higher enrichment and a lower enrichment than the upper portion. A fuel assembly, wherein the fuel assembly is divided into a lower portion, and a boundary between the upper portion and the lower portion is located at an axial position different from an upper end of a fuel filling portion of the short fuel rod.
【請求項2】請求項1において、前記複数の燃料棒は可
燃性毒物を含まないことを特徴とする燃料集合体。
2. The fuel assembly according to claim 1, wherein the plurality of fuel rods do not contain a burnable poison.
【請求項3】平均濃縮度の異なる多種類の燃料集合体を
組合せて構成される初装荷炉心において、 前記多種類の燃料集合体のうち少なくとも1種類の燃料
集合体は、内部に燃料物質が充填された軸方向長さの長
い長尺燃料棒と軸方向長さの短い短尺燃料棒の2種類の
異なる軸方向長さを有する複数の燃料棒からなり、 前記短尺燃料棒に充填される燃料の濃縮度は燃料集合体
横断面における平均濃縮度よりも低く、前記長尺燃料棒
は濃縮度が高い上部と該上部より濃縮度が低い下部に領
域分けされ、前記上部と下部の境界を前記短尺燃料棒の
燃料充填部上端と異なる軸方向位置としたことを特徴と
する初装荷炉心。
3. An initially loaded core comprising a combination of various types of fuel assemblies having different average enrichments, wherein at least one of the various types of fuel assemblies has a fuel substance inside. It is composed of a plurality of fuel rods having two different axial lengths, that is, a filled long fuel rod having a long axial length and a short fuel rod having a short axial length, and the fuel filled in the short fuel rod. Is lower than the average enrichment in the cross section of the fuel assembly, the long fuel rod is divided into an upper part having a higher enrichment and a lower part having a lower enrichment than the upper part, and the boundary between the upper part and the lower part is An initially loaded core, which is located at an axial position different from the upper end of the fuel filling portion of the short fuel rod.
【請求項4】請求項3において、前記複数の燃料棒は可
燃性毒物を含まないことを特徴とする初装荷炉心。
4. The initially loaded core according to claim 3, wherein the plurality of fuel rods do not contain burnable poisons.
【請求項5】平均濃縮度の異なる多種類の燃料集合体を
組合せて構成される初装荷炉心において、 前記多種類の燃料集合体のうち少なくとも最低濃縮度の
燃料集合体は、内部に燃料物質が充填された軸方向長さ
の長い長尺燃料棒と軸方向長さの短い短尺燃料棒の2種
類の異なる軸方向長さを有する複数の燃料棒からなり、 前記短尺燃料棒に充填される燃料の濃縮度は燃料集合体
横断面における平均濃縮度よりも低く、前記長尺燃料棒
は濃縮度が高い上部と該上部より濃縮度が低い下部に領
域分けされ、前記上部と下部の境界を前記短尺燃料棒の
燃料充填部上端と異なる軸方向位置としたことを特徴と
する初装荷炉心。
5. An initially loaded core comprising a combination of various types of fuel assemblies having different average enrichments, wherein at least the lowest enrichment of the various types of fuel assemblies has a fuel substance inside. And a plurality of fuel rods having two different axial lengths, that is, a long fuel rod having a long axial length and a short fuel rod having a short axial length. The enrichment of the fuel is lower than the average enrichment in the cross section of the fuel assembly, and the long fuel rod is divided into an upper part having a higher enrichment and a lower part having a lower enrichment than the upper part, and a boundary between the upper part and the lower part is An initially loaded core, which is located at an axial position different from the upper end of the fuel filling portion of the short fuel rod.
【請求項6】請求項5において、前記複数の燃料棒は可
燃性毒物を含まないことを特徴とする初装荷炉心。
6. The initially loaded core according to claim 5, wherein the plurality of fuel rods do not contain burnable poisons.
JP03967895A 1995-02-28 1995-02-28 Fuel assembly and first loaded core Expired - Fee Related JP3303583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03967895A JP3303583B2 (en) 1995-02-28 1995-02-28 Fuel assembly and first loaded core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03967895A JP3303583B2 (en) 1995-02-28 1995-02-28 Fuel assembly and first loaded core

Publications (2)

Publication Number Publication Date
JPH08233967A true JPH08233967A (en) 1996-09-13
JP3303583B2 JP3303583B2 (en) 2002-07-22

Family

ID=12559764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03967895A Expired - Fee Related JP3303583B2 (en) 1995-02-28 1995-02-28 Fuel assembly and first loaded core

Country Status (1)

Country Link
JP (1) JP3303583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253789A (en) * 1997-03-10 1998-09-25 Hitachi Ltd Fuel assembly and core

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2664401T3 (en) * 2015-02-20 2018-04-19 Westinghouse Electric Sweden Ab Boiling fuel reactor for a nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253789A (en) * 1997-03-10 1998-09-25 Hitachi Ltd Fuel assembly and core

Also Published As

Publication number Publication date
JP3303583B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
US5781604A (en) Initial core and fuel assembly
EP0315929B1 (en) Fuel assembly
US4631166A (en) High utilization fuel assembly
JP3563727B2 (en) Reactor core
JPH08233967A (en) Fuel assembly and initial loading reactor core
JPH04301792A (en) Core of atomic reactor
JPH07128473A (en) Core of reactor
JPH07244184A (en) Reactor core, its operation method and fuel assembly
JP3260600B2 (en) First loading core
JP3080663B2 (en) Operation method of the first loading core
JP2563287B2 (en) Fuel assembly for nuclear reactor
JP2000028771A (en) Fuel assembly
JP2627952B2 (en) Reactor core
JP3237922B2 (en) Fuel assemblies and cores for boiling water reactors
JP2002090487A (en) Reactor core and its operation method
JPH10221474A (en) Fuel assembly
JPH0555836B2 (en)
JPH0631766B2 (en) Initially loaded core of reactor
JP2004144762A (en) Reactor core for nuclear reactor
JP4368056B2 (en) Fuel assemblies for boiling water reactors
JP3990013B2 (en) Fuel assemblies and reactor cores
JPH0432355B2 (en)
JP3435874B2 (en) Fuel assemblies and reactor cores
JPH0972982A (en) Changeable fuel assembly pair for boiling water type nuclear reactor
JP2001056388A (en) Mox fuel assembly

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees