JPH08233866A - Photomagnetic field sensor - Google Patents

Photomagnetic field sensor

Info

Publication number
JPH08233866A
JPH08233866A JP7038658A JP3865895A JPH08233866A JP H08233866 A JPH08233866 A JP H08233866A JP 7038658 A JP7038658 A JP 7038658A JP 3865895 A JP3865895 A JP 3865895A JP H08233866 A JPH08233866 A JP H08233866A
Authority
JP
Japan
Prior art keywords
magnetic field
magneto
optical
angle
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7038658A
Other languages
Japanese (ja)
Inventor
Yosuke Asahara
陽介 浅原
Hiroshi Mori
宏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7038658A priority Critical patent/JPH08233866A/en
Publication of JPH08233866A publication Critical patent/JPH08233866A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To measure a magnetic field in the state that the relationship between the magnitude of the field and the output is linear and a phase angle is small by so providing that the relative main axis angle between polarizers and the Faraday rotary angle of a magneto-optic element satisfy a specific formula. CONSTITUTION: Specific formulae I and II are θ <= arccot (βhotanϕ) and θ>= arccot (αhotanϕ), where ho = rated magnetic field/(saturated magnetic field of magneto-optic element), β is an amount decided from according to an error and applied magnetic field/rated magnetic field. The a is represented by α= (2-C<2> +(4-7C<2> /2)<1/2> ]/2C<2> }<1/2> (C is a modulation factor). It is so set as to satisfy the formulae I and II. Then, the Faraday rotary angle θ is regulated by regulating the thickness of a magneto-optic element 6, and the relative main axis angles θ of two polarizers 14, 15 are regulated by regulating the quarrying angle of polarizing glass for forming the polarizers 14, 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気光学素子のファラデ
ー効果を利用して磁界強度を測定する光磁界センサに関
し、特に、電力を供給する送電線及び配電線並びに受変
電設備(以下「キュービクル」という)やGIS(GAS
INSULATED SWITCH GEAR)などの電線の周囲に発生する磁
界の強度を測定することによって電流の大きさを検知す
る光磁界センサ及び一般的な交流磁界を測定する光磁界
センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical magnetic field sensor for measuring magnetic field strength by utilizing the Faraday effect of a magneto-optical element, and more particularly to a power transmission line and a distribution line for supplying electric power and a power receiving and transforming facility (hereinafter referred to as "cubicle"). ) And GIS (GAS
INSULATED SWITCH GEAR) and the like, the present invention relates to an optical magnetic field sensor that detects the magnitude of a current by measuring the strength of a magnetic field generated around an electric wire and a general optical magnetic field sensor that measures an alternating magnetic field.

【0002】[0002]

【従来の技術】発電所から消費地までの電力輸送経路で
ある送電線や配電線に流れる電流の大きさを測定し、異
常を発見する電流センサや、キュービクルやGIS内で
使用されている電流センサは、これまでトランス型のも
のが用いられてきた。しかし、このトランス型の電流セ
ンサは大型であること、重量が大きいこと、絶縁性が悪
いことなどの問題点を有していた。
2. Description of the Related Art Current sensors used in cubicles and GIS to detect anomalies by measuring the magnitude of current flowing through power transmission lines or distribution lines, which are electric power transmission routes from power plants to consumption areas. The sensor of the transformer type has been used so far. However, this transformer-type current sensor has problems such as large size, heavy weight, and poor insulation.

【0003】光磁界センサの原理は、電流により導体
(例えば、送電線)の周囲に発生する磁界を磁気光学材
料が有するファラデー効果を用いて測定し、測定された
磁界から電流値を求めるという点にある。光磁界センサ
の利点は、高耐圧、高絶縁性、非接触、小型軽量、高圧
側に電源や電気回路が不要であることなどである。
The principle of the optical magnetic field sensor is that a magnetic field generated around a conductor (for example, a transmission line) by an electric current is measured by using the Faraday effect of a magneto-optical material, and a current value is obtained from the measured magnetic field. It is in. The advantages of the optical magnetic field sensor are high withstand voltage, high insulation, non-contact, small size and light weight, and no need for a power source or electric circuit on the high voltage side.

【0004】これまで用いられてきた電流測定用光磁界
センサの基本構成を図1に示す。発光ダイオードその他
の光源1から出射した光は光ファイバ2を通り、レンズ
3及び第一偏光ビームスプリッタ(以下「PBS」と呼
ぶ)4を通過し、直線偏光となる。さらに、半波長板5
を通過し、磁気光学素子6に入射する。光はこの磁気光
学素子6を通過するときに被測定磁界(以下単に「磁
界」と呼ぶ)の強さに応じて旋光を受ける。さらに、光
は第二PBS7を通過することにより、磁界の強さに応
じた強度となり、レンズ8において光ファイバ9に集光
される。
FIG. 1 shows the basic structure of a current measuring optical magnetic field sensor that has been used so far. Light emitted from a light emitting diode or other light source 1 passes through an optical fiber 2, a lens 3 and a first polarization beam splitter (hereinafter referred to as “PBS”) 4, and becomes linearly polarized light. Furthermore, half-wave plate 5
And enters the magneto-optical element 6. When the light passes through the magneto-optical element 6, it receives optical rotation according to the strength of the magnetic field to be measured (hereinafter simply referred to as “magnetic field”). Further, the light passes through the second PBS 7 and has an intensity according to the strength of the magnetic field, and is condensed on the optical fiber 9 by the lens 8.

【0005】従来の光磁界センサにおいて、半波長板5
を用いるのは、偏光面を45度回転させ、第一PBS4
と第二PBS7との相対主軸角を45度とするためであ
る。また、磁界と磁気光学素子6を通過する光の進路と
は平行である。なお、半波長板5と磁気光学素子6とは
それらの配置を入れ換えても特性はほとんど変わらな
い。
In the conventional optical magnetic field sensor, the half-wave plate 5 is used.
Is used because the plane of polarization is rotated by 45 degrees and the first PBS4
This is because the relative principal axis angle between the second PBS 7 and the second PBS 7 is 45 degrees. Further, the magnetic field and the path of the light passing through the magneto-optical element 6 are parallel to each other. The characteristics of the half-wave plate 5 and the magneto-optical element 6 are hardly changed even if the arrangements thereof are exchanged.

【0006】光ファイバ9に集光された光は光ファイバ
9により光検出器10に導かれ、光電変換される。その
後、信号処理回路11により交流成分と直流成分とに分
けられ、割り算器により、交流電圧成分/直流電圧成分
が出力される。このようにして計算された実効値をもっ
て被測定磁界を表す。交流電圧成分/直流電圧成分を求
めるのは、光源の出射光強度の変動及び光ファイバの揺
れ等による光量の変動を消去して所望の磁界を検出する
ことを可能にするためである。
The light focused on the optical fiber 9 is guided to the photodetector 10 by the optical fiber 9 and photoelectrically converted. After that, the signal processing circuit 11 separates the AC component and the DC component, and the divider outputs the AC voltage component / DC voltage component. The measured magnetic field is represented by the effective value calculated in this way. The AC voltage component / DC voltage component is obtained in order to detect the desired magnetic field by eliminating the fluctuation of the light intensity emitted from the light source and the fluctuation of the light amount due to the fluctuation of the optical fiber.

【0007】このような光磁界センサに用いられる磁気
光学材料としては、鉛ガラス、ZnSe、BGO、BS
Oなどの常磁性材料、及び反磁性材料がある。しかし、
最近では、送電線及び配電線の電流計測、GIS、キュ
ービクル内の計器用変流器にも光磁界センサを用いるこ
とが進められてきている。このような光磁界センサに
は、高感度、小型、低価格であることが要求されるた
め、磁気光学素子に、量産性が高く、磁気感度の高い磁
性ガーネット、さらには、Bi置換の磁性ガーネットを
用いた光磁界センサの開発が行われるようになってい
る。
Magneto-optical materials used for such an optical magnetic field sensor include lead glass, ZnSe, BGO and BS.
There are paramagnetic materials such as O, and diamagnetic materials. But,
Recently, it has been promoted to use the optical magnetic field sensor for current measurement of power transmission lines and distribution lines, GIS, current transformers for measuring instruments in cubicles. Since such an optical magnetic field sensor is required to have high sensitivity, small size, and low price, a magnetic garnet having high mass productivity and high magnetic sensitivity, and further, a Bi-substituted magnetic garnet for a magneto-optical element are required. The development of optical magnetic field sensors using the is becoming popular.

【0008】磁気光学素子としてRIG(Bi:Rare E
arth Iron Garnet) 等の垂直磁化で多磁区構造を示す強
磁性材料を使用する場合、この磁気光学素子を透過した
光は回折現象を起こし、0次光、1次光、−−、n次光
と次数に応じて広がっていく(但し、磁界が0のときは
奇数次光のみ)。これは磁区が位相格子となるためであ
る。これらの回折光を全て取り込んだ場合は、磁界とセ
ンサからの出力との間の直線性は良好である(例えば、
特開平5−126924号公報)。しかし、全ての回折
光を取り込むことはレンズの選択、レンズと光学部品の
精密な配置を適切に行って初めて実現可能となるもので
あるため、このような光磁界センサは量産性が低くなら
ざるを得ない。
As a magneto-optical element, RIG (Bi: Rare E
When a ferromagnetic material exhibiting a multi-domain structure with perpendicular magnetization such as arth iron garnet) is used, the light transmitted through this magneto-optical element causes a diffraction phenomenon, and 0th-order light, 1st-order light, ---, n-order light And spreads according to the order (however, when the magnetic field is 0, only odd-order light). This is because the magnetic domain serves as a phase grating. If all these diffracted light is captured, the linearity between the magnetic field and the output from the sensor is good (eg
JP-A-5-126924). However, since all diffracted light can be captured only after proper selection of lenses and precise placement of lenses and optical components, mass productivity of such optical magnetic field sensors must be low. I don't get.

【0009】一方、全ての回折光を取り込まないなら
ば、光磁界センサを作製するときのアライメントは容易
になり、安価な光磁界センサを実現することができる
が、磁界と信号処理回路からの出力との間の関係は直線
関係から外れ、交流大電流を測定するための光磁界セン
サに求められる1PS級の比誤差を満足させることはで
きなくなる。ここで、1PS級の比誤差とは、JEC
(電気規格調査会標準規格)が定める任意磁界に対する
センサ出力の直線性を示すものであって、次式(4)に
よって定義される。 R=(Kn −K)/K (4) 上式(4)において、 R=比誤差、 Kn =(定格磁界H0 を印加したときのセンサ出力)/
(定格磁界H0 )、 K=(任意磁界を印加したときのセンサ出力)/(任意
磁界)、である。 定格磁界H0 は光磁界センサの使用目的に応じて異な
る。比誤差R=0%であるときに、磁界の大きさとセン
サ出力との間に完全な直線関係が成立する。
On the other hand, if not all the diffracted light is taken in, the alignment at the time of manufacturing the optical magnetic field sensor becomes easy, and an inexpensive optical magnetic field sensor can be realized, but the output from the magnetic field and the signal processing circuit can be realized. The relationship between and becomes out of the linear relationship, and it becomes impossible to satisfy the 1PS class ratio error required for the optical magnetic field sensor for measuring a large alternating current. Here, the 1PS class specific error is JEC
The linearity of the sensor output with respect to an arbitrary magnetic field defined by (Electrical Standards Committee Standard) is defined by the following equation (4). R = (K n −K) / K (4) In the above formula (4), R = ratio error, K n = (sensor output when rated magnetic field H 0 is applied) /
(Rated magnetic field H 0 ), K = (sensor output when an arbitrary magnetic field is applied) / (arbitrary magnetic field), The rated magnetic field H 0 varies depending on the purpose of use of the optical magnetic field sensor. When the ratio error R = 0%, a perfect linear relationship is established between the magnitude of the magnetic field and the sensor output.

【0010】ここで、JECが定める1PS級とは、比
誤差Rが、(1)定格磁界H0 において±1%以下、
(2)0.2H0 の磁界において±1.5%以下、
(3)0.05H0 の磁界において±3.0%以下、の
各範囲内に収まる規格を指す。上述したように、光磁界
センサの磁気光学素子に垂直磁化で多磁区構造を示す強
磁性材料を使用する場合、高感度という特徴を有する一
方、磁界と信号処理回路からの出力との間の直線関係が
良好であるものは量産性が低く、量産性に優れたものは
直線関係が悪くなるというジレンマがある。
Here, the 1PS class defined by JEC means that the ratio error R is (1) ± 1% or less at the rated magnetic field H 0 ,
(2) ± 1.5% or less in a magnetic field of 0.2H 0 ,
(3) A standard within a range of ± 3.0% or less in a magnetic field of 0.05 H 0 . As described above, when a ferromagnetic material exhibiting a multi-domain structure with perpendicular magnetization is used for the magneto-optical element of an optical magnetic field sensor, it has the characteristic of high sensitivity, while it has a straight line between the magnetic field and the output from the signal processing circuit. There is a dilemma that a good relationship has a low mass productivity, and a good relationship has a bad linear relationship.

【0011】[0011]

【発明が解決しようとする課題】以上のように、磁気光
学素子に垂直磁化で多磁区構造を示す強磁性材料を使用
した光磁界センサは高感度である一方、光磁界センサの
主特性である磁界と信号処理回路からの出力との間の直
線関係を改良しようとすると光学部品間のアライメント
が難しくなり、量産性が低下する。一方、アライメント
の容易な構成では、磁界と出力との間の直線関係が悪く
なり、さらには、位相角も大きくなるなどの種々の問題
を生じる。また、信号処理回路に平方根演算器又は平方
根演算回路を導入することによって、磁界と信号処理回
路からの出力との間の直線関係を改善することも考えら
れるが、磁界と信号処理回路からの出力との間の直線関
係を良好なものにするためには、高精度な平方根演算器
又は平方根演算回路を用いる必要があり、光磁界センサ
が高価になるという欠点がある。
As described above, the optical magnetic field sensor using a ferromagnetic material exhibiting a multi-domain structure with perpendicular magnetization in the magneto-optical element has high sensitivity, but is a main characteristic of the optical magnetic field sensor. If an attempt is made to improve the linear relationship between the magnetic field and the output from the signal processing circuit, alignment between the optical components becomes difficult and mass productivity deteriorates. On the other hand, in the configuration in which the alignment is easy, various problems occur such that the linear relationship between the magnetic field and the output is deteriorated and the phase angle is increased. It is also possible to improve the linear relationship between the magnetic field and the output from the signal processing circuit by introducing a square root calculator or a square root calculation circuit into the signal processing circuit. In order to obtain a good linear relationship between and, it is necessary to use a highly accurate square root arithmetic unit or square root arithmetic circuit, which has the disadvantage that the optical magnetic field sensor becomes expensive.

【0012】本発明はこのような問題に鑑みてなされた
ものであり、高感度かつ高精度な測定、すなわち、磁界
の大きさと出力との間の直線関係が良好であり、位相角
も小さい状態における測定を可能にし、加えて、量産性
に優れ、低価格を実現した光磁界センサを提供すること
を目的とする。
The present invention has been made in view of the above problems, and is a highly sensitive and highly accurate measurement, that is, the linear relationship between the magnitude of the magnetic field and the output is good and the phase angle is small. It is an object of the present invention to provide an optical magnetic field sensor that enables low-cost measurement in addition to excellent mass productivity.

【0013】[0013]

【課題を解決するための手段】この目的を達成するた
め、本発明に係る光磁界センサは、第一偏光子と、第二
偏光子と、該第一偏光子と該第二偏光子との間に位置す
る磁気光学素子とを有する光磁界センサにおいて、前記
第一及び第二偏光子間における相対主軸角φ(φ>0)
と前記磁気光学素子のファラデ回転角θ(θ>0)とが
二つの不等式(1)及び(2)を満足する範囲にあるこ
とを特徴とする。 θ≦arccot(βh0 tanφ) (1) θ≧arccot(αh0 tanφ) (2) 上式(1)及び(2)において、h0 =H0 /HS (H
0 は定格磁界、HS は前記磁気光学素子の飽和磁界を表
す)
In order to achieve this object, an optical magnetic field sensor according to the present invention comprises a first polarizer, a second polarizer, a first polarizer and a second polarizer. In a magneto-optical sensor having a magneto-optical element located between them, a relative principal axis angle φ (φ> 0) between the first and second polarizers.
And Farade rotation angle θ (θ> 0) of the magneto-optical element are in a range that satisfies the two inequalities (1) and (2). θ ≦ arccot (βh 0 tanφ) (1) θ ≧ arccot (αh 0 tanφ) (2) In the above equations (1) and (2), h 0 = H 0 / H S (H
0 is the rated magnetic field, H S is the saturation magnetic field of the magneto-optical element)

【0014】上式(1)において、βは式(3)に示す
uの3次方程式の解のうち、正である解の平方根を表
す。すなわち、β=u1/2 である。 64(η2 −1)u3 +〔64(η2 −r2)+4(η2 2 −1)〕u2 +〔16(η2 −r4)+4r42 −1)〕u+r22 −r2)=0 (3) 上式(3)において、 η=1+R(Rは比誤差を表す) r=h1 /h01 =H1 /HS (H1 は印加磁界を表す) 上式(2)において、 α={〔2−C2 +(4−7C2 /2)1/2 〕/2
2 1/2 (Cは変調度を表す)
In the above equation (1), β represents the square root of the positive solution of the solutions of the cubic equation of u shown in equation (3). That is, β = u 1/2 . 64 (η 2 -1) u 3 + [64 (η 2 −r 2 ) +4 (η 2 r 2 −1)] u 2 + [16 (η 2 −r 4 ) + 4r 42 −1)] u + r 2 (η 2 -r 2) = 0 (3) above formula (3), η = 1 + R (R represents the ratio error) r = h 1 / h 0 h 1 = H 1 / H S (H 1 in representing the applied magnetic field) where (2), alpha = {[2-C 2 + (4-7C 2 /2) 1/2 ] / 2
C 2 } 1/2 (C represents the degree of modulation)

【0015】[0015]

【作用】磁界と信号処理回路からの出力との間の関係に
ついては、磁気光学素子への入力をIi 、光検出器から
の出力をIo とすると、Io は次式(5)から求められ
る。但し、Iinは磁気光学材料への入力光量を光検出器
に直接入力したときに光検出器から得られる電流値の絶
対値を示すものとする。 Io =Iin〔 cosθ cosφ+(H1/Hs )sin θ sinφ sin (ωt ) ]2 (5) ここで、θは磁気光学材料のファラデー回転角、φは二
つの偏光子間の相対主軸角、HS は飽和磁界、H1 は外
部印加磁界、ωは交流磁界の周波数(電流の周波数)、
tは時間である。
The relationship between the output from the [action] field and the signal processing circuit, an input to the magneto-optical element I i, and the output from the photodetector and I o, from I o is the following formula (5) Desired. However, I in indicates the absolute value of the current value obtained from the photodetector when the amount of light input to the magneto-optical material is directly input to the photodetector. I o = I in [cos θ cos φ + (H 1 / H s ) sin θ sin φ sin (ωt)] 2 (5) where θ is the Faraday rotation angle of the magneto-optical material and φ is the relative principal axis between the two polarizers. Angle, H S is the saturation magnetic field, H 1 is the externally applied magnetic field, ω is the frequency of the AC magnetic field (frequency of current),
t is time.

【0016】出力IO は信号処理回路において直流成分
DCと交流成分IACとに分離され、各々次式(6)及び
(7)により表される。 IDC=Iin [cos2 θcos2φ+(H1 2 / 2Hs 2 )sin2θ sin2 φ] (6) IAC=Iin [H0sin2θsin2φ sinωt −( H1 2/2H s 2 )sin2θsin2φcos(2ωt )] (7) また、信号処理回路内の割り算器により、 I1 =IAC/IDC (8) が求められる。I1 の実効値Cは次式(9)により表さ
れる。 C=VAC/VDC (9)
The output I O is separated into a DC component I DC and an AC component I AC in the signal processing circuit, which are expressed by the following equations (6) and (7), respectively. I DC = I in [cos 2 θcos 2 φ + (H 1 2 / 2H s 2) sin 2 θ sin 2 φ] (6) I AC = I in [H 0 sin2θsin2φ sinωt - (H 1 2 / 2H s 2) sin 2 θsin 2 φcos (2ωt) ] and (7), the divider in the signal processing circuit, I 1 = I AC / I DC (8) is obtained. The effective value C of I 1 is expressed by the following equation (9). C = VAC / VDC (9)

【0017】ここで、VACはIACの実効値、VDCはIDC
の実効値を表し、次式(10)及び(11)により表さ
れる。 VDC=Iin〔cos2θcos2φ+(H1 2/2HS 2 )sin2θsin2φ] (10) VAC=Iin〔(H1 2/8HS 2)sin22θsin22φ +( H1 4/8HS 4 )sin2θsin2φ)〕1/2 (11) 式(9)のCは変調度と呼ばれ、センサの感度に相当す
る。この場合、式(9)、(10)、(11)から明ら
かであるように、Cは外部印加磁界と直線的関係にはな
らず、また、被測定値(H sinωt)が0になる位相とI1
=0になる位相とはずれていることがわかる(以後、こ
の位相のずれを「位相角」と呼ぶ)。
Here, V AC is the effective value of I AC , and V DC is I DC
It is expressed by the following equations (10) and (11). V DC = I in [cos 2 θcos 2 φ + (H 1 2 / 2H S 2) sin 2 θsin 2 φ] (10) V AC = I in [(H 1 2 / 8H S 2 ) sin 2 2θsin 2 2φ + C of (H 1 4 / 8H S 4 ) sin 2 θsin 2 φ) ] 1/2 (11) (9) is called the modulation degree corresponding to the sensitivity of the sensor. In this case, as is clear from equations (9), (10), and (11), C does not have a linear relationship with the externally applied magnetic field, and the phase where the measured value (H sin ωt) becomes 0 And I 1
It can be seen that the phase is out of phase with = 0 (hereinafter, this phase shift is referred to as "phase angle").

【0018】式(10)及び(11)において、 x = sinθ sinφ、y = cosθ cosφ (12) h0=H0/HS , h1=H1/HS , η=1+R (13) と置くと、式(4)、(9)、(10)、(11)から
次式(14)が導かれる。 η=(y2+h1 2x2/2)(2x2y2+h0 2x4/8)1/2/(y2+h0 2x2/2)(2x2y2+h1 2x4/8)1/2 (14) ここで、t =y/h0x, r=h1/h0 (15) と置くと、式(14)は次式(16)に変形できる。 η=(2t2+ r2)(16t2+1)1/2/(2t2+1)(16t2+r2)1/2 (16) u=t2とすると式(16)は次式(3)で表される。 64(η2-1 )u3+〔64(η2-r2)+ 4(η2r2-1 ) u2 + 16(η2-r4)+4r2 (η2-1 ) u+r2(η2-r2)=0 (3) u=t2であることからuは正であり、tの解をβとする
とβ=u1/2 であり、βは式(15)から以下のように
表される。 β=y/h0
In equations (10) and (11), x = sin θ sin φ, y = cos θ cos φ (12) h 0 = H 0 / H S , h 1 = H 1 / H S, η = 1 + R (13) When placed, the following equation (14) is derived from the equations (4), (9), (10) and (11). η = (y 2 + h 1 2 x 2/2) (2x 2 y 2 + h 0 2 x 4/8) 1/2 / (y 2 + h 0 2 x 2/2) (2x 2 y 2 + h 1 2 x 4/8) 1/2 ( 14) where, t = y / h 0 x , putting a r = h 1 / h 0 ( 15), equation (14) can be transformed to the following equation (16) . η = (2t 2 + r 2 ) (16t 2 +1) 1/2 / (2t 2 +1) (16t 2 + r 2 ) 1/2 (16) If u = t 2 , then equation (16) becomes It is expressed by equation (3). 64 (η 2 -1) u 3 + [64 (η 2 -r 2 ) + 4 (η 2 r 2 -1) u 2 + 16 (η 2 -r 4 ) + 4r 22 -1) u + r 22 −r 2 ) = 0 (3) Since u = t 2 , u is positive, and β is u = 1/2 when the solution of t is β. It is expressed as. β = y / h 0 x

【0019】従って、θはβ、h0 、φを用いて次式
(17)のように表すことができる。 θ=arccot(βh0 tanφ) (17) 以上のように、磁気光学素子の飽和磁界HS 、光磁界セ
ンサを使用する定格磁界H0 、印加磁界H1 及び要求さ
れる比誤差Rが決まれば、式(17)からθとφの関係
を示す曲線群を求めることができる。
Therefore, θ can be expressed by the following equation (17) using β, h 0 and φ. θ = arccot (βh 0 tanφ) (17) As described above, the saturation magnetic field H S of the magneto-optical element, the rated magnetic field H 0 using the optical magnetic field sensor, the applied magnetic field H 1 and the required ratio error R are determined. , (17), it is possible to obtain a group of curves showing the relationship between θ and φ.

【0020】JECが定める比誤差1PS級の範囲20
を図2に示す。また、磁気光学素子にファラデー回転角
θ=45°の材料を使用した場合におけるφ=20°、
30°、40°としたときの比誤差の印加磁界依存性の
計算結果を図3に示す。図2から明らかであるように、
比誤差1PS級を満足するには定格磁界H0 の20%に
おける比誤差が−1.5%以内であれば、他の磁界では
十分に1PS級を満足することがわかる。
Range 20 of 1PS class ratio error defined by JEC
Is shown in FIG. Further, φ = 20 ° when a material having a Faraday rotation angle θ = 45 ° is used for the magneto-optical element,
FIG. 3 shows the calculation result of the applied magnetic field dependency of the ratio error when the angle is 30 ° and 40 °. As is clear from FIG.
In order to satisfy the specific error of 1 PS class, it can be seen that if the relative error at 20% of the rated magnetic field H 0 is within -1.5%, the 1 PS class is sufficiently satisfied with other magnetic fields.

【0021】従って、r=h1/h0=0.2 の場合に、(比
誤差Rの絶対値)≦0.015 を満たすためには、式(1
7)から次の不等式(1)を満たせば良いことがわか
る。 θ≦arccot(βh0 tanφ)、0<θ、0<φ (1) 次に、変調度Cは、W=( y/h1x)2 とすると、式
(6)、(7)、(9)から次式(18)で表すことが
できる。 C2W2+(C2-2)W 2 +(C2/4− 1/8)=0 (18) 従って、W>0 を満たす根は次式(19)により表され
る。 W=( y/h1x)=〔2-C2+(4-7C2/2 )1/2 〕/2C2 (19) ここで、新たにパラメータα={〔2 - C2+( 4 - 7C2
/ 2)1/2 〕/2C21/2を導入すると、 αh1x-y =0 となり、θは次式(20)で表される。 θ=arccot(αh0 tanφ) (20)
Therefore, in the case of r = h 1 / h 0 = 0.2, in order to satisfy (absolute value of the ratio error R) ≦ 0.015, the equation (1
It can be seen from 7) that the following inequality (1) should be satisfied. θ ≦ arccot (βh 0 tanφ), 0 <θ, 0 <φ (1) Next, assuming that the modulation degree C is W = (y / h 1 x) 2 , equations (6), (7), ( It can be expressed by the following equation (18) from 9). C 2 W 2 + (C 2 -2) W 2 + (C 2 / 4- 1/8) = 0 (18) Therefore, the roots satisfying W> 0 is expressed by the following equation (19). W = (y / h 1 x ) = [2C 2 + (4-7C 2/2 ) 1/2 ] / 2C 2 (19) where a new parameter alpha = {[2C 2 + ( 4-7C 2
Introducing / 2) 1/2 ] / 2C 2 } 1/2 , αh 1 xy = 0, and θ is represented by the following equation (20). θ = arccot (αh 0 tanφ) (20)

【0022】変調度Cは大きければ大きいほどセンサ出
力のS/N比を良くすることができ、高精度のセンサを
得ることができる。このため、定格磁界H0 における変
調度Cは1%以上が望まれている。定格磁界H0 におけ
る変調度Cを1%以上にするためには、次の不等式
(2)を満たせばよい。 θ≧arccot(αh0 tanφ) (2) ここで、C≧0.01である。
The larger the degree of modulation C, the better the S / N ratio of the sensor output, and the more accurate sensor can be obtained. Therefore, the modulation degree C in the rated magnetic field H 0 is desired to be 1% or more. In order to make the modulation degree C in the rated magnetic field H 0 1% or more, the following inequality (2) may be satisfied. θ ≧ arccot (αh 0 tanφ) (2) Here, C ≧ 0.01.

【0023】式(1)及び(2)からわかるように、こ
れらの関係は飽和磁界HS の値とは無関係であり、従っ
て、磁気光学素子が垂直磁化を有する強磁性体であれ
ば、材料によらず、式(1)及び(2)は一般的に成り
立つ。また、式(1)及び(2)を満たすθ、φの範囲
においては定格磁界H0 の20%における比誤差Rが
(Rの絶対値)≦1.5%、定格磁界H0 における変調
度CがC≧1%であるため、θとφとを調整することに
より、1PS級以上の精度(比誤差)及び1%以上の感
度(変調度)を実現することが可能である。
As can be seen from the equations (1) and (2), these relationships are independent of the value of the saturation magnetic field H S , and therefore, if the magneto-optical element is a ferromagnetic material having perpendicular magnetization, the material is Equations (1) and (2) generally hold. Further, in the range of θ and φ satisfying the expressions (1) and (2), the ratio error R at 20% of the rated magnetic field H 0 is (absolute value of R) ≦ 1.5%, and the modulation factor at the rated magnetic field H 0 is Since C is C ≧ 1%, it is possible to realize an accuracy (ratio error) of 1 PS class or higher and a sensitivity (modulation degree) of 1% or higher by adjusting θ and φ.

【0024】[0024]

【実施例】【Example】

(実施例1)本磁気光学素子に磁性ガーネット((YbTbB
i)3Fe5O12) を使用する場合の定格磁界の20%におけ
る比誤差Rの絶対値が1.5%以下、定格磁界における
変調度Cが1%以上であることを満足するθとφの関係
を計算から求めた結果を図4に斜線で示す。ここで、磁
気光学材料の飽和磁界=1450〔Oe〕、定格磁界=
700〔Oe〕とした。図4中の実線24,25は各々
比誤差1.5%以下、変調度1%以上の境界線である。
本発明の一実施例に係る光磁界センサの概略的な構成を
図5に示す。光源1からの光は光ファイバ2を介してレ
ンズ3に至り、集光される。集光された光は全反射プリ
ズム12により直角に屈折する。次いで、順に第一偏光
子14、磁気光学素子6、第二偏光子15を通過し、再
び全反射プリズム13により直角に屈折する。その後、
光はレンズ8により光ファイバ10に集光され、光検出
器10に導かれ、光電変換されて電気信号となる。この
電気信号は信号処理回路11において処理される。
(Example 1) Magnetic garnet ((YbTbB
i) θ that satisfies that the absolute value of the ratio error R at 20% of the rated magnetic field when 3 Fe 5 O 12 ) is used is 1.5% or less and the modulation C in the rated magnetic field is 1% or more. The result of calculation of the relationship of φ is shown by the diagonal lines in FIG. Here, the saturation magnetic field of the magneto-optical material = 1450 [Oe], the rated magnetic field =
It was set to 700 [Oe]. Solid lines 24 and 25 in FIG. 4 are boundary lines having a relative error of 1.5% or less and a modulation degree of 1% or more.
FIG. 5 shows a schematic configuration of the optical magnetic field sensor according to the embodiment of the present invention. The light from the light source 1 reaches the lens 3 via the optical fiber 2 and is condensed. The condensed light is refracted at a right angle by the total reflection prism 12. Next, the light passes through the first polarizer 14, the magneto-optical element 6, and the second polarizer 15 in that order, and is refracted at right angles by the total reflection prism 13 again. afterwards,
The light is condensed on the optical fiber 10 by the lens 8, guided to the photodetector 10, and photoelectrically converted into an electric signal. This electric signal is processed in the signal processing circuit 11.

【0025】光源1には波長0.85μmの発光ダイオ
ードを、光ファイバ2及び9にはマルチモードファイバ
を、レンズ3及び8にはセルフオクレンズを、偏光子1
4及び15には偏光ガラスを、磁気光学素子6には(YbT
bBi)3Fe5O12 を、光検出器10にはSiフォトダイオード
を用いた。信号処理回路11は光検出器10からの出力
を直流成分と交流成分とに分離して、割り算器により交
流成分/直流成分を出力する回路として構成し、この出
力の実効値を測定した。ファラデー回転角θは磁気光学
素子6の厚みを調節することにより、また、二つの偏光
子14,15の相対主軸角φは偏光子14,15を構成
している偏光ガラスの切り出し角度を調節することによ
り、各々調整した。
The light source 1 is a light-emitting diode having a wavelength of 0.85 μm, the optical fibers 2 and 9 are multimode fibers, the lenses 3 and 8 are self-occurring lenses, and the polarizer 1
Polarizing glass is used for 4 and 15, and (YbT
bBi) 3 Fe 5 O 12 was used, and the photodetector 10 was a Si photodiode. The signal processing circuit 11 is configured as a circuit that separates the output from the photodetector 10 into a direct current component and an alternating current component, and outputs the alternating current component / direct current component by a divider, and measures the effective value of this output. The Faraday rotation angle θ adjusts the thickness of the magneto-optical element 6, and the relative principal axis angle φ of the two polarizers 14 and 15 adjusts the cut-out angle of the polarizing glass constituting the polarizers 14 and 15. Therefore, each was adjusted.

【0026】本光磁界センサのファラデー回転角θと二
つの偏光子の相対主軸角φとの関係は図4に示した斜線
部内とし、定格磁界H0 の20%の磁界における比誤差
Rは−1.5%と−0.5%とし、各々5台作製した。
この場合、定格磁界Ho (H o =700〔Oe 〕)にお
ける変調度は計算から各々25%,15%になる。図4
の斜線部内に比誤差R=−0.5%,変調度=15%の
曲線を点線21で示す。作製した光磁界センサ10台の
θとφとの関係は表1に示す。
The Faraday rotation angle θ of this optical magnetic field sensor
The relationship between the relative principal axis angle φ of the two polarizers is shown by the diagonal line in Fig. 4.
Within the section, rated magnetic field H0Error in the magnetic field of 20% of
R was set to -1.5% and -0.5%, and five units were manufactured.
In this case, the rated magnetic field Ho(H o= 700 [Oe])
The calculated modulation factors are 25% and 15%, respectively. Figure 4
Of the relative error R = -0.5% and the degree of modulation = 15% in the shaded area
The curve is shown by the dotted line 21. Of the 10 optical magnetic field sensors
Table 1 shows the relationship between θ and φ.

【0027】表1に示すθとφとの関係を満足する範囲
内において、図5に示した光磁界センサに50Hzの交
流実効磁界を0−700〔Oe〕の範囲で印加し、磁界
の大きさの変化による信号処理回路11からの出力電圧
の実効値を測定し、この出力電圧の実効値と交流磁界と
の関係から比誤差及び変調度を求めた。θとφの異なる
光磁界センサの比誤差及び変調度は表1に示すNo.1
及びNo.2の各グループ内で非常に良い一致性が見い
だされるため、その代表例としてNo.1からはθ=2
0°、φ=45°、No.2からはθ=20°、φ=3
0°における光磁界センサの実験値を図6及び図7に各
々黒丸、白丸で示す。また、上述した計算式から得た比
誤差の計算値を図6に実線22と点線23で示す。実線
は定格磁界H0 の20%の磁界における比誤差=−1.
5%の場合、点線は比誤差=−0.5%の場合である。
Within the range satisfying the relationship between θ and φ shown in Table 1, an AC effective magnetic field of 50 Hz is applied to the optical magnetic field sensor shown in FIG. 5 in the range of 0-700 [Oe], and the magnitude of the magnetic field is increased. The effective value of the output voltage from the signal processing circuit 11 due to the change of the height was measured, and the ratio error and the modulation factor were obtained from the relationship between the effective value of the output voltage and the AC magnetic field. Table 1 shows the ratio error and the modulation factor of the optical magnetic field sensors having different θ and φ. 1
And No. Since very good agreement is found in each group of No. 2, as a representative example, No. From 1 θ = 2
0 °, φ = 45 °, No. From 2, θ = 20 °, φ = 3
Experimental values of the optical magnetic field sensor at 0 ° are shown by black circles and white circles in FIGS. 6 and 7, respectively. Further, the calculated value of the ratio error obtained from the above-described calculation formula is shown by a solid line 22 and a dotted line 23 in FIG. The solid line indicates the ratio error at a magnetic field of 20% of the rated magnetic field H 0 = -1.
In the case of 5%, the dotted line is the case where the ratio error is −0.5%.

【0028】計算結果を示す実線及び点線と実験値とは
非常によく一致しており、このことは計算式が正しいこ
とを示している。また、図7から明らかであるように、
定格磁界における変調度は設計通り25%,15%以上
であった。次に、磁界の変化による位相角の変化を調べ
た結果を図8に示す。各光磁界センサにおいて0−70
0〔Oe〕の磁界の範囲で位相角はほとんど0°である
ことがわかった。
The solid line and the dotted line showing the calculation result and the experimental value are in very good agreement, which indicates that the calculation formula is correct. Also, as is clear from FIG.
The degree of modulation in the rated magnetic field was 25%, 15% or more as designed. Next, FIG. 8 shows the results of examining changes in the phase angle due to changes in the magnetic field. 0-70 in each optical magnetic field sensor
It was found that the phase angle was almost 0 ° in the range of the magnetic field of 0 [Oe].

【0029】従って、本発明に係る光磁界センサは比誤
差及び位相角が1PS級よりも高精度であり、定格磁界
における変調度≧1%という要求を十分に満足してい
る。以上に示したように、本実施例に係る光磁界センサ
では磁界の大きさと出力との間の関係が直線的であり、
位相角も小さく、高感度に磁界の測定を行うことができ
る。さらに、光学部品間のアライメントが容易であるた
め量産性に優れている。
Therefore, the optical magnetic field sensor according to the present invention is more accurate in the ratio error and phase angle than the 1PS class, and sufficiently satisfies the requirement that the degree of modulation in the rated magnetic field ≧ 1%. As described above, in the optical magnetic field sensor according to the present embodiment, the relationship between the magnitude of the magnetic field and the output is linear,
The phase angle is also small, and the magnetic field can be measured with high sensitivity. Further, since the alignment between the optical components is easy, the mass productivity is excellent.

【0030】[0030]

【発明の効果】本発明に係る光磁界センサは、広い磁界
の範囲において、磁界の大きさと信号処理回路からの出
力との間の関係を良好な直線的関係に維持することがで
き、さらに、位相角も小さいため、高感度かつ高精度な
磁界の測定を行うことを可能にする。さらに、量産性に
優れ、低価格化が可能である。また、本発明に係る光磁
界センサは磁気光学素子の材料に関係なく作製可能であ
る。
The optical magnetic field sensor according to the present invention can maintain a good linear relationship between the magnitude of the magnetic field and the output from the signal processing circuit in a wide magnetic field range. Since the phase angle is small, it is possible to measure the magnetic field with high sensitivity and high accuracy. Further, it is excellent in mass productivity and can be reduced in price. Further, the optical magnetic field sensor according to the present invention can be manufactured regardless of the material of the magneto-optical element.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の光磁界センサの基本構成を示す概略図で
ある。
FIG. 1 is a schematic diagram showing a basic configuration of a conventional optical magnetic field sensor.

【図2】JECが定める比誤差1PS級の範囲を示すグ
ラフである。
FIG. 2 is a graph showing a range of a ratio error of 1PS class defined by JEC.

【図3】種々の相対主軸角φにおける磁界と比誤差との
関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a magnetic field and a ratio error at various relative principal axis angles φ.

【図4】定格磁界=700〔Oe〕、磁気光学素子に(Y
bTbBi)3Fe5O12 を用いた場合のファラデー回転角θと相
対主軸角φの範囲を示すグラフである。
[Fig. 4] Rated magnetic field = 700 [Oe], for a magneto-optical element (Y
6 is a graph showing a range of a Faraday rotation angle θ and a relative principal axis angle φ when bTbBi) 3 Fe 5 O 12 is used.

【図5】本発明に係る光磁界センサの一実施例の基本構
成を示す概略図である。
FIG. 5 is a schematic diagram showing a basic configuration of an embodiment of an optical magnetic field sensor according to the present invention.

【図6】磁界と比誤差との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the magnetic field and the ratio error.

【図7】磁界と変調度との関係を示すグラフである。FIG. 7 is a graph showing the relationship between magnetic field and modulation factor.

【図8】磁界と位相角との関係を示すグラフである。FIG. 8 is a graph showing a relationship between a magnetic field and a phase angle.

【符号の説明】[Explanation of symbols]

1 光源 2,9 光ファイバ 3,8 レンズ 4,7 偏光子(PBS) 5 半波長板 6 磁気光学素子 10 光検出器 11 信号処理回路 12,13 全反射プリズム 14,15 偏光子 1 Light source 2,9 Optical fiber 3,8 Lens 4,7 Polarizer (PBS) 5 Half-wave plate 6 Magneto-optical element 10 Photodetector 11 Signal processing circuit 12,13 Total reflection prism 14,15 Polarizer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第一偏光子と、第二偏光子と、該第一偏
光子と該第二偏光子との間に位置する磁気光学素子とを
有する光磁界センサにおいて、前記第一及び第二偏光子
間における相対主軸角φ(φ>0)と前記磁気光学素子
のファラデ回転角θ(θ>0)とが二つの不等式(1)
及び(2)を満足する範囲にあることを特徴とする光磁
界センサ。 θ≦arccot(βh0 tanφ) (1) θ≧arccot(αh0 tanφ) (2) 上式(1)及び(2)において、h0 =H0 /HS (H
0 は定格磁界、HS は前記磁気光学素子の飽和磁界を表
す)上式(1)において、βは式(3)に示すuの3次
方程式の解のうち、正である解の平方根を表す。すなわ
ち、β=u1/2 である。 64(η2 −1)u3 +〔64(η2 −r2)+4(η2 2 −1)〕u2 +〔16(η2 −r4)+4r22 −1)〕u+r22 −r2)=0 (3) 上式(3)において、 η=1+R(Rは比誤差を表す) r=h1 /h01 =H1 /HS (H1 は印加磁界を表す) 上式(2)において、 α={〔2−C2 +(4−7C2 /2)1/2 〕/2
2 1/2 (Cは変調度を表す)
1. A magneto-optical sensor having a first polarizer, a second polarizer, and a magneto-optical element located between the first polarizer and the second polarizer, wherein There are two inequalities (1) between the relative principal axis angle φ (φ> 0) between the two polarizers and the Faraday rotation angle θ (θ> 0) of the magneto-optical element.
And an optical magnetic field sensor having a range satisfying (2). θ ≦ arccot (βh 0 tanφ) (1) θ ≧ arccot (αh 0 tanφ) (2) In the above equations (1) and (2), h 0 = H 0 / H S (H
(0 is the rated magnetic field, H S is the saturation magnetic field of the magneto-optical element) In the above equation (1), β is the square root of the solution of the cubic equation of u shown in equation (3), which is positive. Represent That is, β = u 1/2 . 64 (η 2 -1) u 3 + [64 (η 2 -r 2 ) + 4 (η 2 r 2 -1)] u 2 + [16 (η 2 -r 4 ) + 4r 22 -1)] u + r 2 (η 2 -r 2) = 0 (3) above formula (3), η = 1 + R (R represents the ratio error) r = h 1 / h 0 h 1 = H 1 / H S (H 1 in representing the applied magnetic field) where (2), alpha = {[2-C 2 + (4-7C 2 /2) 1/2 ] / 2
C 2 } 1/2 (C represents the degree of modulation)
JP7038658A 1995-02-27 1995-02-27 Photomagnetic field sensor Pending JPH08233866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7038658A JPH08233866A (en) 1995-02-27 1995-02-27 Photomagnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7038658A JPH08233866A (en) 1995-02-27 1995-02-27 Photomagnetic field sensor

Publications (1)

Publication Number Publication Date
JPH08233866A true JPH08233866A (en) 1996-09-13

Family

ID=12531367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7038658A Pending JPH08233866A (en) 1995-02-27 1995-02-27 Photomagnetic field sensor

Country Status (1)

Country Link
JP (1) JPH08233866A (en)

Similar Documents

Publication Publication Date Title
US5861741A (en) Magneto-optical element
KR970000907B1 (en) Magneto-optical element and magnetic field measurement apparatus
CA1206524A (en) Optical magnetic-field measuring apparatus
KR100310373B1 (en) Method and apparatus for measuring alternating current with temperature compensation
US5691837A (en) Magneto-optical element and optical magnetic field sensor using the same
JP2818301B2 (en) Method and apparatus for measuring current with two opposite optical signals utilizing Faraday effect
CA2243211A1 (en) Optical measuring method and device for measuring a magnetic alternating field with an expanded measuring range and good linearity
Didosyan et al. Magneto-optical current sensor by domain wall motion in orthoferrites
JPH09230013A (en) Photoelectric-magnetic field sensor probe and magneto-optical element
KR960015986B1 (en) Magnetic field measurement apparatus
JPH08233866A (en) Photomagnetic field sensor
EP0557090B1 (en) Optical magnetic field sensor
Ning et al. A Faraday current sensor using a novel multi-optical-loop sensing element
JP2705543B2 (en) Method for measuring magnetic field strength and optical magnetic field sensor using the same
Alasia et al. A novel all-fibre configuration for a flexible polarimetric current sensor
JPH08327712A (en) Optical magnetic-field sensor and method for measuring strength of magnetic field using this sensor
Rivera et al. Linear and quadratic magnetoelectric (ME) effects in copper chlorine boracite
JP3008721B2 (en) Magneto-optical element and magnetic field measuring device
JP2783012B2 (en) Magneto-optical film of optical magnetic field sensor
Didosyan et al. Electrical current sensors based on transparent magnets
JP2000338208A (en) Optical magnetic field sensor
JPH0720158A (en) Optical current transformer
JPH05126924A (en) Optical magnetic field sensor
JPH08327669A (en) Magnetooptical field sensor
JPH07209397A (en) Optical magnetic field sensor