JPH08233511A - Proximate distance measuring method for double tubes - Google Patents

Proximate distance measuring method for double tubes

Info

Publication number
JPH08233511A
JPH08233511A JP4066595A JP4066595A JPH08233511A JP H08233511 A JPH08233511 A JP H08233511A JP 4066595 A JP4066595 A JP 4066595A JP 4066595 A JP4066595 A JP 4066595A JP H08233511 A JPH08233511 A JP H08233511A
Authority
JP
Japan
Prior art keywords
magnetic flux
angle
graph
leakage magnetic
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4066595A
Other languages
Japanese (ja)
Other versions
JP3461609B2 (en
Inventor
Yasushi Yonemura
康 米村
Takashi Imaoka
隆司 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP04066595A priority Critical patent/JP3461609B2/en
Publication of JPH08233511A publication Critical patent/JPH08233511A/en
Application granted granted Critical
Publication of JP3461609B2 publication Critical patent/JP3461609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE: To estimate the most proximate distance of double tubes by applying a plurality of graphs for the relationship between an angle and the value of magnetic flux leakage prepared beforehand and to make it possible to suppress errors with less dispersion. CONSTITUTION: An electromagnet 12 is moved and mounted at points A-H of the inner wall of a conduit 10. The electromagnet 12 is energized for sequential magnetization. The values of the magnetic flux leakages at the respective points A-H of the inner wall are measured by a Gauss meter. Then, a graph of the curve connecting the values of the magnetic flux leakages is formed based on these magnetic flux leakage values. At the same time, the site of the maximum value of magnetic flux leakage is et at an angle 0. Then, the graph of the angle/(magnetic flux leakage value) based on the actual measurement is applied on the graph of the angle/(magnetic-flux leakage value) in the most proximate distance of a plurality of the different conduits 10 and sheath tubes 11, which are know beforehand so that the graphs are not intersected. Thus, the most proximate distance can be estimated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁性金属製の二重管
の最近接距離を漏洩磁束法に基づいて求める際、予め用
意された角度と漏洩磁束値との関係の複数のグラフを当
てはめることにより、二重管の最近接距離を推定するよ
うにした、二重管の近接距離測定方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention provides a plurality of graphs of the relationship between an angle and a leakage magnetic flux value prepared in advance when the closest distance of a double tube made of a ferromagnetic metal is determined based on the leakage magnetic flux method. The present invention relates to a method for measuring the close distance of a double pipe, which is adapted to estimate the closest distance of the double pipe.

【0002】[0002]

【従来の技術】近年、地中に敷設されるガス用導管は、
地表から掘削して埋設する開削工法だけでなく、地表を
掘ることができない箇所等、敷設環境の厳しいところで
は、掘進機等による非開削工法が適用されている。かか
る工法では、導管を、導管の内径に比較して大なる径の
鞘管内に内蔵させて敷設するという、二重管構造を採用
する場合がある。前記導管は、鞘管と断面において中心
を一致させた配置関係にあるのではなく、鞘管内におい
て、導管外壁の上面と鞘管とのスペースに、ケーブル用
管や、薬液等の注入用管を配設する関係上、導管の中心
を鞘管の中心より下方に偏心するように設定されてい
る。かかる配置関係は、図6に示すようにこれら導管
1、鞘管2は、鋼管であることから、導管内壁に所定箇
所(A〜H点)毎に、電磁石3を配置して導管1を磁化
し、その場での漏洩磁束値を測定し、それぞれの漏洩磁
束値データを、既知の近接距離と漏洩磁束との関係のグ
ラフを用いて、近接距離を導き出してきた(絶対値
法)。
2. Description of the Related Art In recent years, gas conduits laid underground are
Not only the excavation method of excavating from the surface of the earth and burying it, but also the places where the surface of the earth cannot be excavated, such as places where the installation environment is severe, the non-excavation method of using a machine is applied. In such a construction method, there is a case where a double pipe structure is adopted in which the conduit is built and laid inside a sheath pipe having a diameter larger than the inner diameter of the conduit. The conduit is not in a positional relationship in which the center is coincident with the sheath pipe in the cross section, but in the sheath pipe, a cable pipe or a pipe for injecting a drug solution or the like is provided in the space between the upper surface of the conduit outer wall and the sheath pipe. Due to the arrangement, the center of the conduit is set to be eccentric below the center of the sheath tube. Since the conduit 1 and the sheath pipe 2 are steel pipes as shown in FIG. 6, the electromagnets 3 are arranged at predetermined positions (points A to H) on the inner wall of the conduit to magnetize the conduit 1. Then, the leakage magnetic flux value on the spot was measured, and the proximity distance was derived from each leakage magnetic flux value data by using the graph of the relationship between the known proximity distance and the leakage magnetic flux (absolute value method).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
ような近接距離と漏洩磁束との関係のグラフは、測定条
件(管の肉厚、電磁石3の使用状態等)によって変動す
るため、異なる測定条件下においてはそのグラフでは誤
差が生じてしまう。従って、導管1と鞘管2との最近接
距離dを求めるために、例えば導管1に対応する円を図
示して、この円の、磁化を行なった箇所に対応した円周
上の点から、求められた近接距離に応じてプロットし
て、そのプロット点を結んで鞘管2に対応した円を描い
ても、この円は実際の鞘管2とは寸法、すなわち直径に
誤差がでてきてしまい、最近接距離dは、不正確なもの
とならざるを得なかった。本発明は、このような課題を
解決するためになされたものであって、強磁性金属製の
二重管の最近接距離を漏洩磁束法に基づいて求める際、
予め用意された角度と漏洩磁束値との関係の複数のグラ
フを当てはめることにより、二重管の最近接距離を推定
するようにし、測定条件によって変動する漏洩磁束値か
らくる弊害を排除した、二重管の近接距離測定方法を提
供することを目的とする。
However, since the graph of the relationship between the close distance and the leakage magnetic flux as described above varies depending on the measurement conditions (the wall thickness of the tube, the usage state of the electromagnet 3, etc.), the different measurement conditions. Below, there is an error in that graph. Therefore, in order to obtain the closest distance d between the conduit 1 and the sheath tube 2, for example, a circle corresponding to the conduit 1 is illustrated, and from the point on the circumference of this circle corresponding to the magnetized position, Even if a plot is made according to the obtained proximity distance and a circle corresponding to the sheath tube 2 is drawn by connecting the plotted points, this circle has an error in the dimension, that is, the diameter, from the actual sheath tube 2. Therefore, the closest distance d must be inaccurate. The present invention has been made in order to solve such problems, when determining the closest distance of the double tube made of ferromagnetic metal based on the leakage flux method,
By fitting a plurality of graphs of the relationship between the angle and the leakage flux value prepared in advance, the closest distance of the double pipe was estimated, and the harmful effects resulting from the leakage flux value that fluctuates depending on the measurement conditions were eliminated. An object of the present invention is to provide a method for measuring a close distance of a heavy pipe.

【0004】[0004]

【課題を解決するための手段】前記した課題を解決する
ために、本発明は、強磁性金属製の外管と、外管内に内
蔵した内管とによって構成した二重管において、内管内
壁周囲等角度毎に磁化を行なって、それぞれ漏洩磁束値
を測定し、これら漏洩磁束値に基づいて、漏洩磁束値同
士を結んだ曲線グラフを作成すると共に、最大漏洩磁束
値を基点とし、予め知られた複数の異なった内管と外管
との最近接距離時における角度−漏洩磁束値のグラフ
に、前記実測に基づく角度−漏洩磁束値のグラフを当て
はめることで、最近接距離の推定を行なうことを特徴と
する。
In order to solve the above-mentioned problems, the present invention provides a double tube constituted by an outer tube made of a ferromagnetic metal and an inner tube contained in the outer tube, and an inner wall of the inner tube. Magnetize the magnetic flux at each equal angle around the circumference, measure the leakage magnetic flux values, and create a curve graph connecting the leakage magnetic flux values based on these leakage magnetic flux values. The nearest distance is estimated by applying the angle-leakage magnetic flux value graph based on the actual measurement to the graph of the angle-leakage magnetic flux value at the time of the closest distance between the plurality of different inner and outer tubes. It is characterized by

【0005】[0005]

【作用】本発明によれば、最大漏洩磁束値を計測できな
い場合や、漏洩磁束値の変動があっても、内管と外管と
の最近接距離を推定することができ、実際の測定は、任
意の位置、すなわち等角度毎に漏洩磁束値を測定するだ
けでよい。
According to the present invention, the closest distance between the inner pipe and the outer pipe can be estimated even when the maximum leakage magnetic flux value cannot be measured or the leakage magnetic flux value varies, and the actual measurement can be performed. , It suffices to measure the leakage magnetic flux value at any position, that is, every equal angle.

【0006】[0006]

【実施例】次に、本発明にかかる二重管の近接距離測定
方法を実施するための装置の一例を図示し、以下詳細に
説明する。図1に二重管の模式的な断面図を示す。この
二重管は、例えば地中に敷設されるガス用の導管10、
導管10の内径に比較して大なる径の鞘管11を示して
いる。前記導管10の内壁には、電磁石12が一定間隔
ごとのA〜H点、8か所に図示しない移動支持機構によ
って移動可能に装着されている。すなわち、かかる導管
10および鞘管11は、鋼管であり、前記電磁石12に
よって磁化されるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an example of an apparatus for carrying out the method for measuring the close distance of a double pipe according to the present invention is shown in the drawings, and will be described in detail below. FIG. 1 shows a schematic cross-sectional view of the double pipe. This double pipe is, for example, a gas conduit 10 laid in the ground,
A sheath tube 11 having a larger diameter than the inner diameter of the conduit 10 is shown. On the inner wall of the conduit 10, electromagnets 12 are movably mounted at eight points A to H at regular intervals by a movement support mechanism (not shown). That is, the conduit 10 and the sheath pipe 11 are steel pipes and are magnetized by the electromagnet 12.

【0007】以上のような導管10および鞘管11にお
いて、図2に示すように、導管10と鞘管11との最近
接距離dの位置を基点として、45°毎(A〜H点、8
か所)における漏洩磁束値を求めておき、それぞれの地
点における漏洩磁束値を線で結んで作成したグラフが備
えてある。この場合、図3に示すように、最近接距離d
=10mm、20mm、30mm、40mmにおける角
度−漏洩磁束値のグラフが周知のデータとして提供され
ている。
In the conduit 10 and the sheath pipe 11 as described above, as shown in FIG. 2, the position of the closest distance d between the conduit 10 and the sheath pipe 11 is used as a base point for every 45 ° (points A to H, 8).
There is a graph prepared by obtaining the leakage magnetic flux value at each location) and connecting the leakage magnetic flux values at each location with a line. In this case, as shown in FIG. 3, the closest distance d
= 10 mm, 20 mm, 30 mm, 40 mm angle-flux magnetic flux value graphs are provided as known data.

【0008】次に、以上のような導管10および鞘管1
1において、最近接距離を推定する手順について説明す
る。導管10内壁A〜H点に電磁石12を移動支持機構
によって移動装着すると共に、順次磁化するべく電磁石
12に通電する。そして、それぞれ内壁A〜H点におけ
る漏洩磁束値を、ガウスメータ(図示省略)によって測
定する。次いで、これら漏洩磁束値に基づいて、図4に
示すように、漏洩磁束値同士を結んだ曲線グラフを作成
すると共に、最大漏洩磁束値の箇所を角度0に設定し、
予め知られた複数の異なった導管10と鞘管11との最
近接距離dにおける角度−漏洩磁束値のグラフに、前記
実測に基づく角度−漏洩磁束値のグラフを交わらないよ
うに当てはめることで(図5参照)、最近接距離の推定
を行なうことができる。例えば、図5では、点線で示す
実測に基づく角度−漏洩磁束値のグラフは、最近接距離
d=10mmと、d=20mmとにおけるグラフ間に交
わらないように当てはめることができるので、この測定
における導管10および鞘管11間の最近接距離は、1
0mm〜20mmにあると推定することができる。
Next, the conduit 10 and the sheath tube 1 as described above.
1, the procedure for estimating the closest distance will be described. The electromagnet 12 is movably mounted on the inner wall points A to H of the conduit 10 by the moving and supporting mechanism, and the electromagnet 12 is energized to sequentially magnetize. Then, the leakage magnetic flux values at the inner wall points A to H are measured by a Gauss meter (not shown). Next, based on these leakage magnetic flux values, as shown in FIG. 4, a curve graph connecting the leakage magnetic flux values is created, and the location of the maximum leakage magnetic flux value is set to an angle 0,
By fitting the graph of the angle-leakage magnetic flux value at the closest distance d between the plurality of different conduits 10 and the sheath pipe 11 known in advance so as not to intersect the graph of the angle-leakage magnetic flux value based on the actual measurement ( (See FIG. 5), the closest distance can be estimated. For example, in FIG. 5, the graph of the angle-leakage magnetic flux value based on the actual measurement shown by the dotted line can be fitted so as not to intersect between the graphs at the closest distance d = 10 mm and d = 20 mm. The closest distance between the conduit 10 and the sheath tube 11 is 1
It can be estimated to be between 0 mm and 20 mm.

【0009】[0009]

【発明の効果】以上、本発明によれば、強磁性金属製の
二重管の最近接距離を漏洩磁束法に基づいて求める際、
予め用意された角度と漏洩磁束値との関係の複数のグラ
フを当てはめることにより、二重管の最近接距離を推定
することができ、実際の測定は、任意の位置、すなわち
等角度毎に漏洩磁束値を測定するだけでよい。また、等
角度毎の漏洩磁束値によって形成した、連続的なグラフ
を利用しているので、バラツキが少なく、エラーを抑制
することができる。
As described above, according to the present invention, when the closest distance of a double tube made of a ferromagnetic metal is determined based on the leakage flux method,
By fitting multiple graphs of the relationship between the angle and the leakage flux value prepared in advance, the closest distance of the double pipe can be estimated, and the actual measurement is that leakage occurs at any position, that is, at each equal angle. Only the magnetic flux value needs to be measured. Further, since a continuous graph formed by the leakage magnetic flux values for each equal angle is used, there is little variation and errors can be suppressed.

【0010】[0010]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる二重管の近接距離測定方法を実
施する際における、実際の測定箇所と最近接位置とを示
した、二重管の模式的な断面説明図である。
FIG. 1 is a schematic cross-sectional explanatory view of a double pipe showing an actual measurement point and a closest position when a method of measuring a short distance of a double pipe according to the present invention is carried out.

【図2】本発明にかかる二重管の近接距離測定方法を適
用して、最近接距離を求めるにあたり、予め、角度−漏
洩磁束値のグラフを作成する際の二重管の模式的な説明
図である。
FIG. 2 is a schematic illustration of a double tube when a graph of angle-leakage magnetic flux value is created in advance when the closest distance is calculated by applying the method for measuring the short distance of the double tube according to the present invention. It is a figure.

【図3】図2に示す二重管に基づいて、異なる最近接距
離における、角度−漏洩磁束値のグラフである。
FIG. 3 is a graph of angle-flux magnetic flux values at different closest distances based on the double tube shown in FIG.

【図4】図1に示す、実際の測定箇所と最近接位置とを
示した二重管に基づいて作成した、実測にかかる角度−
漏洩磁束値のグラフである。
FIG. 4 is an angle for actual measurement, which is created based on the double pipe shown in FIG. 1 that shows the actual measurement point and the closest position.
It is a graph of a leakage magnetic flux value.

【図5】図4に示すグラフを図3に示すグラフに重ね合
わせたところを示す説明図である。
5 is an explanatory diagram showing a state in which the graph shown in FIG. 4 is superimposed on the graph shown in FIG.

【図6】実際の漏洩磁束値測定箇所と、最近接位置とを
示した二重管の模式的な断面説明図である。
FIG. 6 is a schematic cross-sectional explanatory view of a double pipe showing an actual leakage magnetic flux value measurement position and a closest position.

【符号の説明】[Explanation of symbols]

10 導管 11 鞘管 12 電磁石 10 conduit 11 sheath tube 12 electromagnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 強磁性金属製の外管と、外管内に内蔵
した内管とによって構成した二重管において、内管内壁
周囲等角度毎に磁化を行なって、それぞれ漏洩磁束値を
測定し、これら漏洩磁束値に基づいて、漏洩磁束値同士
を結んだ曲線グラフを作成すると共に、最大漏洩磁束値
を基点とし、予め知られた複数の異なった内管と外管と
の最近接距離時における角度−漏洩磁束値のグラフに、
前記実測に基づく角度−漏洩磁束値のグラフを当てはめ
ることで、最近接距離の推定を行なうことを特徴とする
二重管の近接距離測定方法。
1. In a double tube composed of an outer tube made of a ferromagnetic metal and an inner tube built into the outer tube, magnetization is performed at an equal angle around the inner wall of the inner tube, and the leakage magnetic flux value is measured. , Based on these leakage magnetic flux values, create a curve graph connecting the leakage magnetic flux values together, and use the maximum leakage magnetic flux value as the base point, and when the closest distance between a plurality of different inner and outer tubes known in advance. In the graph of angle-flux magnetic flux value at
A method for measuring the proximity distance of a double pipe, wherein the closest distance is estimated by applying a graph of angle-leakage magnetic flux value based on the actual measurement.
JP04066595A 1995-02-28 1995-02-28 How to measure the proximity distance of a double pipe Expired - Fee Related JP3461609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04066595A JP3461609B2 (en) 1995-02-28 1995-02-28 How to measure the proximity distance of a double pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04066595A JP3461609B2 (en) 1995-02-28 1995-02-28 How to measure the proximity distance of a double pipe

Publications (2)

Publication Number Publication Date
JPH08233511A true JPH08233511A (en) 1996-09-13
JP3461609B2 JP3461609B2 (en) 2003-10-27

Family

ID=12586835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04066595A Expired - Fee Related JP3461609B2 (en) 1995-02-28 1995-02-28 How to measure the proximity distance of a double pipe

Country Status (1)

Country Link
JP (1) JP3461609B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591885A (en) * 2013-10-24 2014-02-19 西安交通大学 Online nondestructive testing method of eccentricity of double-layer metal sleeve structure bent portions
CN117213807A (en) * 2023-11-09 2023-12-12 西安光衡光电科技有限公司 Double-tube angle measuring device and angle measuring method of beam splitting prism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591885A (en) * 2013-10-24 2014-02-19 西安交通大学 Online nondestructive testing method of eccentricity of double-layer metal sleeve structure bent portions
CN103591885B (en) * 2013-10-24 2016-02-24 西安交通大学 A kind of online lossless detection method of double-level-metal sleeve structure sweep bias
CN117213807A (en) * 2023-11-09 2023-12-12 西安光衡光电科技有限公司 Double-tube angle measuring device and angle measuring method of beam splitting prism
CN117213807B (en) * 2023-11-09 2024-02-23 西安光衡光电科技有限公司 Double-tube angle measuring device and angle measuring method of beam splitting prism

Also Published As

Publication number Publication date
JP3461609B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
Wang et al. The inertial technology based 3-dimensional information measurement system for underground pipeline
KR20130060867A (en) Information acquisition method and device for underground utilities
JPH01481A (en) Paint film damage detection method
JPH08233511A (en) Proximate distance measuring method for double tubes
EA002668B1 (en) Method and device for detecting irregularities in the thickness of the walls inaccessible metal pipes
JP3547023B2 (en) How to measure the proximity distance of a double pipe
JP3461608B2 (en) How to measure the proximity distance of a double pipe
US9638667B2 (en) Detection of coating defects on buried pipelines using magnetic field variations within the pipeline
JP3521157B2 (en) How to measure the proximity distance of a double pipe
CN212658833U (en) Pipeline detection device
CN112835109A (en) Pipeline weak magnetic positioning method for detector in long-distance pipeline
CN210978732U (en) Non-metal tube with magnetic tracking detection source
CN115640490B (en) Underground metal pipeline positioning calculation method
JP2001009590A (en) Aligning method for metallic pipe
JPS642227B2 (en)
JPH04131497A (en) Method of construction of sewer
JPS6145915A (en) Method for measuring depth of underground pipe
JPS642226B2 (en)
JP2573913B2 (en) Method and apparatus for measuring attitude of tip conductor and buried pipe
JP2017043937A (en) Displacement measurement method
CN116428951A (en) Non-excavation geophysical prospecting method for heat supply direct-buried pipeline welded junction position
JPH06288958A (en) Method for detecting corroded part of cast-iron pipe buried in ground
JPH0516550B2 (en)
JPH1172480A (en) Method for locating damage of anticorrosion coating of embedded metal pipe and apparatus therefor
JPS63305208A (en) Method for searching route shape of embedded pipeline

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees