JPH08233397A - Air-conditioning device - Google Patents

Air-conditioning device

Info

Publication number
JPH08233397A
JPH08233397A JP7040899A JP4089995A JPH08233397A JP H08233397 A JPH08233397 A JP H08233397A JP 7040899 A JP7040899 A JP 7040899A JP 4089995 A JP4089995 A JP 4089995A JP H08233397 A JPH08233397 A JP H08233397A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
unit side
indoor unit
outdoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7040899A
Other languages
Japanese (ja)
Inventor
Masatsugu Arimura
正嗣 有村
Seiji Inoue
清治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP7040899A priority Critical patent/JPH08233397A/en
Publication of JPH08233397A publication Critical patent/JPH08233397A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Abstract

PURPOSE: To perform effective utilization of energy of the drive source of a compressor even when a radiation amount of a condenser is increased to an excessive value compared with a heat absorbing amount of a vaporizer by a method wherein a heat feed part on the indoor machine side and a heat feed part on the outdoor machine side are provided and heat is fed to a refrigerant from the heat feed part on the outdoor machine side. CONSTITUTION: Since, during heating operation, three-way valve A allows the flow of cooling water to a direction 2, a flow rate q1 of cooling water is fed through a cooling water line 4e to a double pipe heat-exchanger 11 and a quantity ΔQ is exerted on a refrigerant flowing therethrough. In which case, the refrigerant is heated by a quantity of ΔQ and all is vaporized for gasification and further, overheating thereof is effected. In this case, the refrigerant flows through a double pipe heat-exchanger 11 to a four-way valve 5. The refrigerant flows through a four-way valve 5 to a suction line 3b side and guided to an accumulator 6. Gas and liquid of the refrigerant are separated by the accumulator 6 and a gas phase refrigerant is sucked to a compressor 2. This constitution with a compressor left driven, cooling or heating operation is practicable and energy of the drive source of the compressor is effectively utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外部から冷媒に熱を供
給可能な熱供給部を備える空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner provided with a heat supply section capable of supplying heat to a refrigerant from the outside.

【0002】[0002]

【従来の技術】空気調和装置は、冷媒を循環させる冷媒
回路に少なくとも圧縮機、四方弁等の切換部、室内熱交
換器(以下、室内機と称す)、膨張弁及び室外熱交換器
(以下、室外機と称す)を設けて構成されるが、暖房運
転時には、冷媒は圧縮機から切換部、凝縮器として機能
する室内機、膨張弁及び蒸発器として機能する室外機の
順に冷媒回路を循環する。又、冷房運転時においては、
冷媒は圧縮機から切換部、凝縮器として機能する室外
機、膨張弁及び蒸発器として機能する室内機の順に冷媒
回路を循環する。
2. Description of the Related Art An air conditioner has at least a switching unit such as a compressor, a four-way valve, an indoor heat exchanger (hereinafter referred to as an indoor unit), an expansion valve and an outdoor heat exchanger in a refrigerant circuit for circulating a refrigerant. , The outdoor unit) is provided, but during heating operation, the refrigerant circulates through the refrigerant circuit in the order of the compressor, the switching unit, the indoor unit that functions as a condenser, the expansion valve, and the outdoor unit that functions as an evaporator. To do. Also, during cooling operation,
The refrigerant circulates through the refrigerant circuit in the order of the compressor, the switching unit, the outdoor unit functioning as a condenser, the expansion valve and the indoor unit functioning as an evaporator.

【0003】ところで、暖房運転時に室内機における放
熱量が十分でないために暖房能力が不足する場合、外気
温度が低いために室外機で吸熱が殆どできない場合に
は、冷媒が気化しないまま圧縮機に吸い込まれることと
なり、圧縮機の故障の原因となる。このため、圧縮機の
駆動を停止すると冷媒の循環による暖房が不可能とな
る。斯かる場合、その不足分を補助ヒータの発熱量で補
う方法(即ち、冷媒を介することなく補助ヒータで直接
室内を暖める方法)が提案されている(特開平5−25
6496号公報参照)。
By the way, when the heating capacity is insufficient due to insufficient heat radiation in the indoor unit during the heating operation, and when the outdoor unit can hardly absorb heat due to the low outside air temperature, the refrigerant remains in the compressor without being vaporized. It will be sucked in and cause a malfunction of the compressor. Therefore, when the driving of the compressor is stopped, heating by circulating the refrigerant becomes impossible. In such a case, there has been proposed a method of compensating for the shortage with the heat value of the auxiliary heater (that is, a method of directly warming the room with the auxiliary heater without passing through a refrigerant) (Japanese Patent Laid-Open No. 5-25).
6496 publication).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記方
法によれば、たとえ補助ヒータによって暖房が可能とな
っても、圧縮機を駆動する動力源の利用が不可能とな
り、エネルギーの有効利用の視点からは有利であるとは
言えない。
However, according to the above method, even if the auxiliary heater enables heating, the power source for driving the compressor cannot be used, and from the viewpoint of effective use of energy. Is not an advantage.

【0005】尚、冷房運転時においても、室外機での放
熱量が過大であり、そのために室内機での吸熱量が十分
でない場合には、同様に圧縮機の駆動源の有効利用が不
可能となる。
Even during the cooling operation, if the amount of heat dissipated in the outdoor unit is too large and therefore the amount of heat absorbed in the indoor unit is not sufficient, the drive source of the compressor cannot be effectively utilized as well. Becomes

【0006】本発明は上記問題に鑑みてなされたもの
で、その目的とする処は、冷房運転又は暖房運転におい
て蒸発器の吸熱量に比して凝縮器の放熱量が過大となる
場合であっても、圧縮機をそのまま駆動してその駆動源
のエネルギーの有効利用を図ることができる空気調和装
置を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is that the heat radiation amount of the condenser is excessively large in comparison with the heat absorption amount of the evaporator in the cooling operation or the heating operation. However, it is still another object of the present invention to provide an air conditioner that can drive a compressor as it is and effectively utilize the energy of the drive source.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1記載の発明は、吸込ラインから圧縮機を経
て吐出ラインに至る圧縮機側冷媒回路と、吸込ライン端
部と吐出ライン端部に連結された切換部と、切換部から
室内機を経て膨張弁に至る室内機側冷媒回路と、切換部
から室外機を経て膨張弁に至る室外機側冷媒回路を含ん
で構成され、前記切換部によって暖房状態においては吐
出ラインと室内機側冷媒回路とを連結するとともに吸込
ラインと室外機側冷媒回路とを連結し、冷房状態におい
ては吐出ラインと室外機側冷媒回路とを連結するととも
に吸込ラインと室内機側冷媒回路とを連結する空気調和
装置において、外部から冷媒に熱を供給可能な室内機側
熱供給部、室外機側熱供給部を前記室内機側冷媒回路、
室外機側冷媒回路にそれぞれ設け、暖房状態において室
外機側熱供給部から冷媒に熱を供給可能とし又は/及び
冷房状態において室内機側熱供給部から冷媒に熱を供給
可能としたことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is directed to a compressor-side refrigerant circuit from a suction line to a compressor to a discharge line, a suction line end and a discharge line end. A switching unit connected to the unit, an indoor unit side refrigerant circuit from the switching unit to the expansion valve via the indoor unit, and an outdoor unit side refrigerant circuit from the switching unit to the expansion valve via the outdoor unit, The switching unit connects the discharge line and the indoor unit side refrigerant circuit in the heating state and the suction line and the outdoor unit side refrigerant circuit in the heating state, and connects the discharge line and the outdoor unit side refrigerant circuit in the cooling state. In the air conditioner that connects the suction line and the indoor unit side refrigerant circuit, the indoor unit side heat supply unit capable of supplying heat to the refrigerant from the outside, the outdoor unit side heat supply unit the indoor unit side refrigerant circuit,
Each of them is provided in the outdoor unit side refrigerant circuit, and heat can be supplied to the refrigerant from the outdoor unit side heat supply unit in the heating state, and / or heat can be supplied to the refrigerant from the indoor unit side heat supply unit in the cooling state. And

【0008】請求項2記載の発明は、請求項1記載の発
明において、前記室内機側熱供給部と室外機側熱供給部
から冷媒に熱を供給可能とするとともに、暖房状態にお
いて室外機側熱供給部から冷媒への熱供給量を室内機側
熱供給部から冷媒への熱供給量よりも大きくしたことを
特徴とする。
According to a second aspect of the present invention, in the first aspect of the invention, heat can be supplied to the refrigerant from the indoor unit side heat supply section and the outdoor unit side heat supply section, and at the same time, in the heating state, the outdoor unit side. The heat supply amount from the heat supply unit to the refrigerant is set to be larger than the heat supply amount from the indoor unit side heat supply unit to the refrigerant.

【0009】請求項3記載の発明は、請求項1又は2記
載の発明において、前記室内機側熱供給部と室外機側熱
供給部から冷媒に熱を供給可能とするとともに、冷房状
態において室内機側熱供給部から冷媒への熱供給量を室
外機側熱供給部から冷媒への熱供給量よりも大きくした
ことを特徴とする。
According to a third aspect of the present invention, in the invention according to the first or second aspect, heat can be supplied to the refrigerant from the indoor unit side heat supply section and the outdoor unit side heat supply section, and in the cooling state, the indoor The heat supply amount from the machine-side heat supply unit to the refrigerant is set to be larger than the heat supply amount from the outdoor unit-side heat supply unit to the refrigerant.

【0010】請求項4記載の発明は、請求項1,2又は
3記載の発明において、前記室内機側熱供給部を室内機
内又は室内機と切換部との間に配置したことを特徴とす
る。
The invention according to a fourth aspect is characterized in that, in the invention according to the first, second or third aspect, the indoor unit side heat supply section is arranged inside the indoor unit or between the indoor unit and the switching section. .

【0011】請求項5記載の発明は、請求項1〜3又は
4記載の発明において、前記室外機側熱供給部を室外機
内又は室外機と切換部との間に配置したことを特徴とす
る。
A fifth aspect of the present invention is characterized in that, in the first to third or fourth aspects of the invention, the outdoor unit side heat supply unit is arranged in the outdoor unit or between the outdoor unit and the switching unit. .

【0012】[0012]

【作用】請求項1記載の発明によれば、冷房運転及び暖
房運転の何れにおいても、蒸発器として機能する室内機
又は室外機での吸熱量の不足分は熱供給部において外部
から与えられる熱によって補われるため、冷媒は圧縮機
に吸引される以前にその全てが完全に蒸発して気化し、
従って、液相冷媒が圧縮機に吸引されることがなく、圧
縮機を駆動したまま冷房又は暖房運転が可能となり、圧
縮機の駆動源のエネルギーを有効に利用することができ
る。
According to the invention as set forth in claim 1, in both the cooling operation and the heating operation, the shortage of the heat absorption amount in the indoor unit or the outdoor unit functioning as the evaporator is given from the outside in the heat supply unit. Because it is supplemented by, the refrigerant is completely evaporated and vaporized before it is sucked into the compressor,
Therefore, the liquid-phase refrigerant is not sucked into the compressor, the cooling or heating operation can be performed while the compressor is driven, and the energy of the drive source of the compressor can be effectively used.

【0013】請求項2記載の発明によれば、暖房状態に
おいて室外機側熱供給部から冷媒への熱供給量を室内機
側熱供給部から冷媒への熱供給量よりも大きくしたた
め、外気温度が低く、そのために室外機における冷媒の
吸熱量が十分でない場合であっても、冷媒は圧縮機に吸
引される以前にその全てが完全に蒸発して気化し、液相
冷媒の圧縮機への吸引が確実に防がれる。
According to the second aspect of the invention, the amount of heat supplied from the outdoor unit side heat supply unit to the refrigerant in the heating state is made larger than the amount of heat supply from the indoor unit side heat supply unit to the refrigerant. Is low, therefore even if the heat absorption amount of the refrigerant in the outdoor unit is not sufficient, all of the refrigerant is completely evaporated and vaporized before being sucked by the compressor, and the liquid phase refrigerant to the compressor Suction is reliably prevented.

【0014】請求項3記載の発明によれば、冷房状態に
おいて室内機側熱供給部から冷媒への熱供給量を室外機
側熱供給部から冷媒への熱供給量よりも大きくしたた
め、室外機での放熱量が過大であり、そのために室内機
での吸熱量が十分でない場合であっても、その不足分の
熱量は室内機側熱供給部において冷媒に付与されるた
め、冷媒は圧縮機に吸引される以前にその全てが完全に
蒸発して気化し、液相冷媒の圧縮機への吸引が確実に防
がれる。
According to the third aspect of the present invention, the amount of heat supplied from the indoor unit side heat supply unit to the refrigerant in the cooling state is made larger than the amount of heat supply from the outdoor unit side heat supply unit to the refrigerant. Even if the amount of heat dissipation in the indoor unit is excessive and the amount of heat absorbed in the indoor unit is not sufficient, the insufficient amount of heat is given to the refrigerant in the indoor unit side heat supply unit, so the refrigerant is compressed. All of them are completely evaporated and vaporized before being sucked into, and the suction of the liquid phase refrigerant to the compressor is surely prevented.

【0015】請求項4記載の発明によれば、室内機側熱
供給部は膨張弁の下流側に設けられるため、膨張弁を通
過して低温低圧となった冷媒に室内機側熱供給部から熱
が与えられることとなり、冷媒への熱の供給効率が高め
られる。
According to the fourth aspect of the invention, since the indoor unit side heat supply section is provided on the downstream side of the expansion valve, the indoor unit side heat supply section supplies the low temperature and low pressure refrigerant passing through the expansion valve. Since heat is given, the efficiency of supplying heat to the refrigerant is increased.

【0016】請求項5記載の発明によれば、室外機側熱
供給部は膨張弁の下流側に設けられるため、膨張弁を通
過して低温低圧となった冷媒に室外機側熱供給部から熱
が与えられることとなり、冷媒への熱の供給効率が高め
られる。
According to the fifth aspect of the invention, since the outdoor unit side heat supply section is provided on the downstream side of the expansion valve, the outdoor unit side heat supply section supplies the low temperature and low pressure refrigerant passing through the expansion valve. Since heat is given, the efficiency of supplying heat to the refrigerant is increased.

【0017】[0017]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0018】<第1実施例>図1は本発明の第1実施例
に係るエンジン駆動式空気調和装置の基本構成を示す回
路図、図2は冷却水回路に設けられるリニア三方弁の特
性図、図3は冷媒の状態変化を示すモリエル線図であ
る。
<First Embodiment> FIG. 1 is a circuit diagram showing the basic construction of an engine-driven air conditioner according to a first embodiment of the present invention, and FIG. 2 is a characteristic diagram of a linear three-way valve provided in a cooling water circuit. FIG. 3 is a Mollier diagram showing changes in the state of the refrigerant.

【0019】図1において、1は水冷エンジン、2はエ
ンジン1によって駆動される圧縮機であって、本空気調
和装置は圧縮機2を含んで閉ループを構成する冷媒回路
3とエンジン1を冷却する冷却水を循環させる冷媒水回
路4を含んで構成されている。
In FIG. 1, 1 is a water-cooled engine, 2 is a compressor driven by the engine 1, and this air conditioner cools the engine 1 and the refrigerant circuit 3 that includes the compressor 2 and forms a closed loop. A coolant water circuit 4 for circulating cooling water is included.

【0020】上記冷媒回路3は圧縮機2によってフロン
等の冷媒を循環させる回路であって、これは、圧縮機2
の吐出側から四方弁5に至る吐出ライン3aと四方弁5
からアキュームレータ6を経て圧縮機2に至る吸込ライ
ン3bとで構成される圧縮機側冷媒回路3Aと、四方弁
5から室内機7を経て膨張弁8に至る室内機側冷媒回路
3Bと、四方弁5から室外機9を経て前記膨張弁8に至
る室外機側冷媒回路3Cを含んで構成されている。
The refrigerant circuit 3 is a circuit for circulating a refrigerant such as CFC by the compressor 2, which is the compressor 2
Discharge line 3a from the discharge side to the four-way valve 5 and the four-way valve 5
To the compressor 2 via the accumulator 6 to the compressor 2, a compressor side refrigerant circuit 3A, an indoor unit side refrigerant circuit 3B from the four-way valve 5 to the indoor unit 7 to the expansion valve 8, and a four-way valve The outdoor unit side refrigerant circuit 3C from 5 to the expansion valve 8 via the outdoor unit 9 is included.

【0021】而して、本実施例においては、前記室内機
側冷媒回路3Bの四方弁5と室内機7の間には室内機側
熱供給部を構成する二重管熱交換器10が設けられ、
又、前記室外機側冷媒回路3Cの四方弁5と室外機9と
の間には室外機側熱供給部を構成する二重管熱交換器1
1が設けられている。尚、図1に示すように、室内には
室温センサ12と2つの冷媒温度センサ13,14が設
けられ、室外には外気温センサ15が設けられている。
Thus, in this embodiment, a double-tube heat exchanger 10 constituting an indoor unit side heat supply section is provided between the four-way valve 5 of the indoor unit side refrigerant circuit 3B and the indoor unit 7. The
Further, a double-tube heat exchanger 1 constituting an outdoor unit side heat supply section is provided between the outdoor unit 9 and the four-way valve 5 of the outdoor unit side refrigerant circuit 3C.
1 is provided. As shown in FIG. 1, a room temperature sensor 12 and two refrigerant temperature sensors 13 and 14 are provided indoors, and an outside air temperature sensor 15 is provided outdoors.

【0022】一方、前記冷却水回路4はエンジン1を冷
却する冷却水を冷却水ポンプ16によって循環させる回
路であって、これは、冷却水ポンプ16の吐出側から排
気ガス熱交換器17を通ってエンジン1の冷却水入口に
至る冷却水ライン4aと、エンジン1の冷却水ジャケッ
ト1aを通って前記二重管熱交換器10に至る冷却水ラ
イン4b及び二重管熱交換器10から前記冷却水ポンプ
16に至る冷却水ライン4cを含んで構成されている。
そして、冷却水ライン4bの途中には図2に示す特性を
有するリニア三方弁18が設けられており、該リニア三
方弁18から分岐して前記冷却水ライン4cに接続され
る冷却水ライン4dの途中にはラジエータ19が設けら
れている。又、前記冷却水ライン4bの前記リニア三方
弁18の下流側には三方弁Aが設けられており、該三方
弁Aに接続された冷却水ライン4eは前記二重管熱交換
器11に接続されており、該二重管熱交換器11から導
出する冷却水ライン4fは冷却水ライン4cに接続され
ている。
On the other hand, the cooling water circuit 4 is a circuit in which the cooling water for cooling the engine 1 is circulated by a cooling water pump 16, which passes from the discharge side of the cooling water pump 16 through the exhaust gas heat exchanger 17. The cooling water line 4a reaching the cooling water inlet of the engine 1, the cooling water line 4b reaching the double pipe heat exchanger 10 through the cooling water jacket 1a of the engine 1 and the cooling from the double pipe heat exchanger 10. The cooling water line 4c reaching the water pump 16 is included.
A linear three-way valve 18 having the characteristics shown in FIG. 2 is provided in the middle of the cooling water line 4b, and a cooling water line 4d branched from the linear three-way valve 18 and connected to the cooling water line 4c is provided. A radiator 19 is provided on the way. A three-way valve A is provided downstream of the linear three-way valve 18 in the cooling water line 4b, and the cooling water line 4e connected to the three-way valve A is connected to the double pipe heat exchanger 11. The cooling water line 4f led out from the double pipe heat exchanger 11 is connected to the cooling water line 4c.

【0023】尚、エンジン1にはサーモスタット100
及び冷却水ポンプ101があり、エンジン1が始動直後
の冷機状態にあるとき、サーモスタット100は冷却水
温が低いことを検知し、冷却水ジャケット1aと冷却水
ライン4bとの連通状態から冷却水ジャケット1aと冷
却水ライン4gとの連通状態に切り換える。これにより
冷却水ジャケット1aと排気ガス熱交換器17の間のみ
で冷却水を循環させ、エンジン1の暖機運転を可能とし
ている。このとき、冷却水ポンプ16は停止させる。
又、冷却水ポンプ16及び101の吐出方向を共に逆に
しても良い。この場合のサーモスタット100はシリン
ダ壁温を感知して冷却水ライン4bと4aの連通状態
と、冷却水ライン4bと4gとの間の連通状態とを相互
に切り換える。
The engine 1 has a thermostat 100.
When the engine 1 is in the cold state immediately after starting, the thermostat 100 detects that the temperature of the cooling water is low, and the cooling water jacket 1a and the cooling water line 4b are connected to each other. To the communication state with the cooling water line 4g. As a result, the cooling water is circulated only between the cooling water jacket 1a and the exhaust gas heat exchanger 17, and the engine 1 can be warmed up. At this time, the cooling water pump 16 is stopped.
Further, the discharge directions of the cooling water pumps 16 and 101 may be reversed. In this case, the thermostat 100 senses the cylinder wall temperature and switches between the communication state between the cooling water lines 4b and 4a and the communication state between the cooling water lines 4b and 4g.

【0024】次に、本実施例に係る空気調和装置の暖房
運転時の作用を図3に示すモリエル線図を参照しながら
説明する。
Next, the operation of the air conditioner according to this embodiment during the heating operation will be described with reference to the Mollier diagram shown in FIG.

【0025】エンジン1によって圧縮機2が駆動される
と、図3のaで示される状態(圧力P1 、エンタルピi
1 )の気相冷媒は吸込ライン3bから圧縮機2に吸引さ
れて圧縮され、図3のbで示される状態(圧力P2 、エ
ンタルピi2 )の高温高圧冷媒となる。尚、このときの
圧縮機2の所要動力(エンジン1の出力)ALは(i2
−i1 )で表される。
When the compressor 2 is driven by the engine 1, the state shown by a in FIG. 3 (pressure P 1 , enthalpy i
The gas-phase refrigerant of 1 ) is sucked into the compressor 2 through the suction line 3b and compressed, and becomes a high-temperature high-pressure refrigerant in a state (pressure P 2 , enthalpy i 2 ) shown in b of FIG. The required power of the compressor 2 (output of the engine 1) AL at this time is (i 2
-I 1 ).

【0026】而して、上記高温高圧の気相冷媒は吐出ラ
イン3aを通って四方弁5に至るが、暖房運転時におい
ては、図1に破線にて示すように四方弁5のポートaと
b及びポートcとdがそれぞれ連通しており、従って、
高温高圧の気相冷媒は室内機側冷媒回路3Bへと流れ、
凝縮器として機能する室内機7に導かれる。
Thus, the high-temperature and high-pressure gas-phase refrigerant reaches the four-way valve 5 through the discharge line 3a, but during heating operation, as shown by the broken line in FIG. b and ports c and d are in communication with each other, therefore
The high temperature and high pressure vapor phase refrigerant flows to the indoor unit side refrigerant circuit 3B,
It is guided to the indoor unit 7 that functions as a condenser.

【0027】上述のように室内機7に導かれた高温高圧
の気相冷媒は室内の空気に凝縮熱Q2 を放出して液化
し、過冷却(サブクール)されて図3に示すcの状態
(圧力P2 、エンタルピi3 )の液相冷媒となり、この
ときの放熱量Q2 (=i2 −i3)によって室内の暖房
が行われる。
As described above, the high-temperature and high-pressure gas-phase refrigerant introduced into the indoor unit 7 releases the condensation heat Q 2 to the indoor air to be liquefied and supercooled (subcooled) to be in the state c shown in FIG. It becomes a liquid-phase refrigerant of (pressure P 2 , enthalpy i 3 ), and the amount of heat radiation Q 2 (= i 2 −i 3 ) at this time heats the room.

【0028】而して、室内機7において液化した高圧の
液相冷媒は前記膨張弁8によって減圧されて図3にdに
て示す状態(圧力P1 、エンタルピi3 )となってその
一部が気化し、蒸発器として機能する室外機9に導かれ
る。
Thus, the high-pressure liquid-phase refrigerant liquefied in the indoor unit 7 is decompressed by the expansion valve 8 and becomes a state (pressure P 1 , enthalpy i 3 ) shown in FIG. Is vaporized and guided to the outdoor unit 9 that functions as an evaporator.

【0029】ここで、本実施例においては、外気温度が
低いために室外機9においては冷媒は外気からQ1 の蒸
発熱を奪ってその一部が気化するのみであり、冷媒は図
5にeにて示す状態(圧力P1 、エンタルピi4 )とな
り、二重管熱交換器11に導かれる。尚、このときの蒸
発熱量Q1 は(i4 −i3 )で表される。
Here, in this embodiment, since the outside air temperature is low, the refrigerant in the outdoor unit 9 takes away the heat of vaporization of Q 1 from the outside air and only a part thereof is vaporized. The state indicated by e (pressure P 1 , enthalpy i 4 ) is introduced to the double-tube heat exchanger 11. The amount of heat of evaporation Q 1 at this time is represented by (i 4 −i 3 ).

【0030】一方、冷却水ポンプ16の駆動によって冷
却水回路4内を循環する冷却水は、冷却水ポンプ16か
ら吐出されて冷却水ライン4aを流れ、その途中で排気
ガス熱交換器17においてエンジン1から排出される排
気ガスの熱を回収して加熱された後、エンジン1の冷却
水ジャケット1aを通って該エンジン1を冷却する。そ
して、エンジン1の冷却に供された冷却水は冷却水ライ
ン4bを流れて三方弁18に至るが、三方弁18は前記
二重管熱交換器10又は11の後述する熱負荷に対して
図2に示す特性を示し、三方弁18の上流の冷却水量q
は二重管熱交換器10又は11の熱負荷に応じてq1
(二重管熱交換器10又は11へ流れる冷却水量)とq
2 (ラジエータ19に流れる冷却水量)に分配され、二
重管熱交換器10又は11を流れる流量q1 の冷却水は
そこを流れる冷媒を加熱する一方冷媒により冷却され、
ラジエータ19を流れる流量q2 の冷却水は大気中に放
熱して冷却水ポンプ16に戻り、以後、同様に冷却水回
路4を循環する。
On the other hand, the cooling water circulating in the cooling water circuit 4 by the driving of the cooling water pump 16 is discharged from the cooling water pump 16 and flows through the cooling water line 4a, and in the middle of the process, in the exhaust gas heat exchanger 17, the engine After collecting and heating the heat of the exhaust gas discharged from the engine 1, the engine 1 is cooled through the cooling water jacket 1a of the engine 1. Then, the cooling water used for cooling the engine 1 flows through the cooling water line 4b and reaches the three-way valve 18. The three-way valve 18 corresponds to the heat load of the double pipe heat exchanger 10 or 11 described later. 2 shows the characteristics shown in FIG. 2, and the cooling water amount q upstream of the three-way valve 18
Is q 1 depending on the heat load of the double-tube heat exchanger 10 or 11.
(Amount of cooling water flowing to the double-tube heat exchanger 10 or 11) and q
2 (the amount of cooling water flowing through the radiator 19), the cooling water having a flow rate q 1 flowing through the double-tube heat exchanger 10 or 11 heats the refrigerant flowing therethrough while being cooled by the refrigerant,
The cooling water having a flow rate q 2 flowing through the radiator 19 radiates heat to the atmosphere, returns to the cooling water pump 16, and thereafter circulates in the cooling water circuit 4 similarly.

【0031】ここで、前記三方弁Aは冷却水の流れ方向
を図1に示す,の方向に切り換えるものであって、
冷房運転時と暖房運転時において冷却水の流れ方向,
を表1に示すようにそれぞれ切り換える。
The three-way valve A switches the flow direction of the cooling water to the direction shown in FIG.
Flow direction of cooling water during cooling operation and heating operation,
Are switched as shown in Table 1.

【0032】[0032]

【表1】 而して、表1に示すように暖房運転時においては三方弁
Aは冷却水の方向の流れを許容するため、流量q1
冷却水は冷却水ライン4eを通って二重管熱交換器11
に送られ、そこを流れる冷媒に熱量ΔQ1 を与える。す
ると、冷媒は熱量ΔQ1 によって加熱されてその全てが
蒸発して気化し、更に過熱(スーパーヒート)されて図
3のaにて示す状態(圧力P1 、エンタルピi1 )に復
帰する。尚、このとき、二重管熱交換器10において冷
却水から冷媒に与えられる熱量ΔQ1 は(i1 −i4
にて表される(図3参照)。
[Table 1] Thus, as shown in Table 1, the three-way valve A allows the flow of cooling water in the direction of the heating operation, so that the cooling water having the flow rate q 1 passes through the cooling water line 4e and the double pipe heat exchanger. 11
To the refrigerant flowing therethrough and giving a heat quantity ΔQ 1 . Then, the refrigerant is heated by the heat quantity ΔQ 1 , all of it is evaporated and vaporized, and further superheated (superheat) to return to the state (pressure P 1 , enthalpy i 1 ) shown in a of FIG. At this time, the heat quantity ΔQ 1 given to the refrigerant from the cooling water in the double-tube heat exchanger 10 is (i 1 −i 4 ).
(See FIG. 3).

【0033】その後、冷媒は二重管熱交換器11から四
方弁5に至るが、前述のように暖房運転時には四方弁5
のポートcとdとが連通しているため、冷媒は四方弁5
を通って吸込ライン3b側へ流れ、アキュームレータ6
に導かれる。そして、アキュームレータ6においては、
冷媒の気液が分離され、気相冷媒は圧縮機2に吸引さ
れ、以後、以上説明したと同様の作用を繰り返して室内
の暖房に供せられる。
After that, the refrigerant reaches the four-way valve 5 from the double-pipe heat exchanger 11, but as described above, the four-way valve 5 is operated during the heating operation.
Because the ports c and d of the
Flow toward the suction line 3b through the accumulator 6
Be led to. And in the accumulator 6,
The gas-liquid of the refrigerant is separated, the gas-phase refrigerant is sucked into the compressor 2, and thereafter, the same operation as described above is repeated to be used for heating the room.

【0034】以上の暖房運転において、外気温度が低い
ために室外機9における冷媒の外気からの吸熱量Q1
小さいため、この吸熱量Q1 のみでは室外機9において
冷媒の全てが気化しない場合であっても、冷媒は二重管
熱交換器11において熱量ΔQ1 を付与されるためにそ
の全てが蒸発して気化する。このとき、二重管熱交換器
11においては、膨張弁8を通過して低温低圧となった
冷媒に冷却水から熱量ΔQ1 が付与されるため、該熱量
ΔQ1 の冷媒への供給効率が高められる。
In the above heating operation, since the heat absorption amount Q 1 of the refrigerant in the outdoor unit 9 from the outside air is small due to the low outside air temperature, when only the heat absorption amount Q 1 does not vaporize all the refrigerant in the outdoor unit 9. However, since the refrigerant is given a heat quantity ΔQ 1 in the double-tube heat exchanger 11, all of the refrigerant evaporates and vaporizes. At this time, in the double-pipe heat exchanger 11, since the heat quantity ΔQ 1 is applied from the cooling water to the refrigerant that has passed through the expansion valve 8 and has become the low temperature and low pressure, the efficiency of supply of the heat quantity ΔQ 1 to the refrigerant is improved. To be enhanced.

【0035】従って、本実施例においては、外気温度が
低く、そのために室外機9における冷媒の吸熱量Q1
十分でない場合であっても、液相冷媒の圧縮機2への吸
引が防がれるため、圧縮機2をそのまま駆動して暖房運
転を行うことができ、エンジン1のエネルギーを有効に
利用することができ、室内を直接暖める補助ヒータ等は
不要となる。
Therefore, in this embodiment, even if the outside air temperature is low and therefore the heat absorption amount Q 1 of the refrigerant in the outdoor unit 9 is not sufficient, the suction of the liquid phase refrigerant to the compressor 2 is prevented. Therefore, the compressor 2 can be driven as it is to perform the heating operation, the energy of the engine 1 can be effectively used, and an auxiliary heater or the like for directly heating the room is not required.

【0036】次に、本空気調和装置の冷房運転時の作用
を図3に示すモリエル線図を参照しながら説明する。
Next, the operation of the present air conditioner during the cooling operation will be described with reference to the Mollier diagram shown in FIG.

【0037】エンジン1によって圧縮機2が駆動される
と、図3にaにて示す状態(圧力P1 、エンタルピi
1 )の気相冷媒は圧縮機2によって圧縮されて図3にb
にて示す状態(圧力P2 、エンタルピi2 )の高温高圧
冷媒となり、吐出ライン3aを通って四方弁5に至る。
冷房運転においては、図1に実線にて示すように四方弁
5のポートaとc、ポートbとdがそれぞれ連通してお
り、従って、高温高圧の気相冷媒は室外機側冷媒回路3
Cへと流れる。ここで、冷房運転においては、表1に示
すように三方弁Aは冷却水の方向の流れのみを許容す
るため、二重管熱交換器11には冷却水は供給されず、
従って、四方弁5を通過した冷媒はそのまま凝縮器とし
て機能する室外機9に導かれる。
When the compressor 2 is driven by the engine 1, the state indicated by a in FIG. 3 (pressure P 1 , enthalpy i
The gas-phase refrigerant of 1 ) is compressed by the compressor 2 to be b in FIG.
The high-temperature high-pressure refrigerant in the state (pressure P 2 , enthalpy i 2 ) indicated by ( 3 ) reaches the four-way valve 5 through the discharge line 3 a.
In the cooling operation, the ports a and c of the four-way valve 5 and the ports b and d of the four-way valve 5 are in communication with each other, as shown by the solid line in FIG.
It flows to C. Here, in the cooling operation, as shown in Table 1, since the three-way valve A allows only the flow in the direction of the cooling water, the cooling water is not supplied to the double pipe heat exchanger 11,
Therefore, the refrigerant that has passed through the four-way valve 5 is guided as it is to the outdoor unit 9 that functions as a condenser.

【0038】室外機9に導かれた高温高圧の気相冷媒は
外気に凝縮熱Q2 を放出して液化し、過冷却されて図3
に示すcの状態(圧力P2 、エンタルピi3 )の液相冷
媒となる。尚、このときの凝縮熱Q2 は(i2 −i3
で表される。
The high-temperature and high-pressure gas-phase refrigerant introduced to the outdoor unit 9 releases the condensation heat Q 2 to the outside air, is liquefied, and is supercooled.
It becomes a liquid-phase refrigerant in the state of c (pressure P 2 , enthalpy i 3 ) shown in FIG. The condensation heat Q 2 at this time is (i 2 −i 3 ).
It is represented by.

【0039】そして、室外機9において液化した高圧の
液相冷媒は膨張弁8を通過することによって減圧され、
図3にdにて示す状態(圧力P1 、エンタルピi3 )と
なってその一部が気化した後、蒸発器として機能する室
内機7に至り、ここで室内の空気から蒸発熱Q1 を奪っ
てその一部が気化し、図3にeにて示す状態(圧力P
1 、エンタルピi4 )となる。
The high-pressure liquid-phase refrigerant liquefied in the outdoor unit 9 is depressurized by passing through the expansion valve 8,
After becoming a state (pressure P 1 and enthalpy i 3 ) shown in FIG. 3 by a part of which vaporizes, the indoor unit 7 functioning as an evaporator is reached, where the heat of evaporation Q 1 is removed from the indoor air. Part of that is taken and vaporized, and the state shown by e in FIG. 3 (pressure P
1 and enthalpy i 4 ).

【0040】ところで、冷房運転時においては、表1に
示すように三方弁Aは冷却水の方向の流れを許容する
ため、室内機7を通過した冷媒は二重管熱交換器10に
至り、そこを流れる冷却水から熱量ΔQ1 (=i1 −i
4 )を付与されてその全てが蒸発して気化し、更に過熱
されて図3に示すaの状態(圧力P1 、エンタルピi
1 )に復帰する。このとき、二重管熱交換器10におい
ては、膨張弁8を通過して低温低圧となった冷媒に冷却
水から熱量ΔQ1 が付与されるため、該熱量ΔQ1 の冷
媒への供給効率が高められる。
By the way, during the cooling operation, as shown in Table 1, the three-way valve A allows the flow of the cooling water in the direction of the cooling water. Therefore, the refrigerant passing through the indoor unit 7 reaches the double pipe heat exchanger 10, The amount of heat from the cooling water flowing there ΔQ 1 (= i 1 −i
4 ) is applied, all of it evaporates and vaporizes, and is further heated to the state of a shown in FIG. 3 (pressure P 1 , enthalpy i).
Return to 1 ). At this time, in the double-pipe heat exchanger 10, the heat quantity ΔQ 1 is applied from the cooling water to the refrigerant that has passed through the expansion valve 8 and has become low temperature and low pressure, so that the supply efficiency of the heat quantity ΔQ 1 to the refrigerant is improved. To be enhanced.

【0041】そして、二重管熱交換器10を通過した冷
媒は四方弁5に至るが、前述のように冷房運転時には四
方弁5のポートbとdとが連通しているため、冷媒は四
方弁5を通って吸込ライン3b側へ流れ、アキュームレ
ータ6に導かれる。そして、アキュームレータ6におい
ては、冷媒の気液が分離され、気相冷媒は圧縮機2に吸
引され、以後、以上説明したと同様の作用を繰り返して
室内の冷房に供される。
The refrigerant passing through the double-tube heat exchanger 10 reaches the four-way valve 5, but since the ports b and d of the four-way valve 5 communicate with each other during the cooling operation as described above, the refrigerant is four-way. It flows through the valve 5 to the suction line 3b side and is guided to the accumulator 6. Then, in the accumulator 6, the gas-liquid of the refrigerant is separated, the gas-phase refrigerant is sucked into the compressor 2, and thereafter, the same operation as described above is repeated to be used for indoor cooling.

【0042】而して、冷房運転時において室外機9での
放熱量Q2 が過大であり、そのために室内機7での吸熱
量Q1 が十分でない場合、その不足分の熱量ΔQ1 は二
重管熱交換器10において冷却水によって付与されて冷
媒は完全に気化するため、液相冷媒の圧縮機2への吸引
が防がれる。従って、冷房運転においても圧縮機2をそ
のまま駆動することができ、エンジン1のエネルギーの
有効利用を図ることができる。
When the heat radiation amount Q 2 in the outdoor unit 9 is excessive during the cooling operation and the heat absorption amount Q 1 in the indoor unit 7 is not sufficient for that reason, the heat amount ΔQ 1 for the shortage is two. Since the refrigerant is completely vaporized by being given by the cooling water in the heavy-tube heat exchanger 10, suction of the liquid-phase refrigerant to the compressor 2 is prevented. Therefore, even in the cooling operation, the compressor 2 can be driven as it is, and the energy of the engine 1 can be effectively used.

【0043】尚、本実施例では、暖房運転時には二重管
熱交換器10への冷却水の供給量を0とし、冷房運転時
には二重管熱交換器11への冷却水の供給量を0とした
が、三方弁Aの代わりにリニア三方弁を設置し、暖房運
転時には二重管熱交換器10への冷却水の供給量を制限
して他方の二重管熱交換器11での冷媒への熱供給量を
二重管熱交換器10でのそれに比して大きくし、冷房運
転時には二重管熱交換器11への冷却水の供給量を制限
して他方の二重管熱交換器10での冷媒への熱供給量を
二重管熱交換器11でのそれに比して大きくするように
しても良い。
In this embodiment, the cooling water supply amount to the double-tube heat exchanger 10 is set to 0 during the heating operation, and the cooling water supply amount to the double-tube heat exchanger 11 is set to 0 during the cooling operation. However, a linear three-way valve is installed in place of the three-way valve A, and the supply amount of cooling water to the double-tube heat exchanger 10 is limited during the heating operation to restrict the refrigerant in the other double-tube heat exchanger 11. The heat supply amount to the double-tube heat exchanger 10 is made larger than that in the double-tube heat exchanger 10, and the supply amount of cooling water to the double-tube heat exchanger 11 is limited during the cooling operation to limit the other double-tube heat exchange. The heat supply amount to the refrigerant in the vessel 10 may be made larger than that in the double-tube heat exchanger 11.

【0044】又、本実施例では二重管熱交換器10,1
1を室内機側冷媒回路3Bの四方弁5と室内機7との
間、室外機側冷媒回路3Cの四方弁5と室外機9との間
にそれぞれ設けたが、これらを室内機7、室外機9内に
それぞれ設けても良い。
Further, in this embodiment, the double tube heat exchangers 10 and 1 are
1 is provided between the four-way valve 5 of the indoor unit side refrigerant circuit 3B and the indoor unit 7 and between the four-way valve 5 of the outdoor unit side refrigerant circuit 3C and the outdoor unit 9, respectively. You may provide in each inside the machine 9.

【0045】以上の冷房運転において、室外機9での放
熱量が過大であり、そのために室内機7での吸熱量が十
分である場合、その不足分の熱量(膨張弁8を通過した
冷媒が完全に気化するに必要な熱量)ΔQ1 は二重管熱
交換器10において冷却水によって付与されるため、液
相冷媒の圧縮機2への吸引が防がれる。従って、冷房運
転においても圧縮機2をそのまま駆動することができ、
エンジン1のエネルギーの有効利用を図ることができ
る。
In the above cooling operation, when the amount of heat radiated in the outdoor unit 9 is excessive and therefore the amount of heat absorbed in the indoor unit 7 is sufficient, the insufficient amount of heat (the refrigerant passing through the expansion valve 8 is Since the heat quantity necessary for complete vaporization ΔQ 1 is given by the cooling water in the double-tube heat exchanger 10, the suction of the liquid-phase refrigerant to the compressor 2 is prevented. Therefore, even in the cooling operation, the compressor 2 can be driven as it is,
The energy of the engine 1 can be effectively used.

【0046】又、この場合、膨張弁8の上流側である高
圧側の圧力が過度に低下するため、膨張弁8を通過する
冷媒量が過度に減少し、低圧側である室内機7による吸
熱が不能となる問題も発生する可能性もあるが、二重管
熱交換器10により冷媒に熱を与えることができるた
め、圧縮機2の吸込口でのエンタルピが増加し、結果的
に高圧側での圧力低下を防ぐことができ、冷媒の循環量
の低下を防ぐことができる。
Further, in this case, the pressure on the high pressure side, which is the upstream side of the expansion valve 8, excessively decreases, so that the amount of the refrigerant passing through the expansion valve 8 excessively decreases, and the heat absorption by the indoor unit 7 on the low pressure side occurs. However, since the double-tube heat exchanger 10 can apply heat to the refrigerant, the enthalpy at the suction port of the compressor 2 increases, and as a result, the high pressure side It is possible to prevent a decrease in pressure at the temperature, and to prevent a decrease in the circulation amount of the refrigerant.

【0047】尚、図3における凝縮熱Q2 は暖房状態に
おける室内機7或は冷房状態における室外機9において
のみ冷媒から放出されるもののみでなく、圧縮機2の吐
出口から膨張弁8に至る高圧側冷媒管路において放出さ
れる全ての熱量を含むものである。同様に、蒸発熱Q1
は暖房状態における室外機9或は冷房状態における室内
機7においてのみ冷媒に吸収されるもののみでなく、膨
張弁8から圧縮機2の吸込口に至る低圧側冷媒回路おい
て冷媒に吸収される熱量を含むものである。但し、二重
管熱交換器10,11や、該2つの機器の配置される位
置に代わって配置され、アキュームレータ内に貯留され
る液相冷媒中においてエンジン冷却水を配管するように
してエンジン冷却水を利用して冷媒加熱するもの、或は
電気ヒータ等の補助冷媒加熱ヒータにより冷媒に吸収さ
れる熱量には含まれない。そして、上記熱負荷はΔQ1
として与えられ、ΔQ1 =Q2 −Q1 −ALとなる。
The condensation heat Q 2 in FIG. 3 is not only released from the refrigerant only in the indoor unit 7 in the heating state or the outdoor unit 9 in the cooling state, but also from the discharge port of the compressor 2 to the expansion valve 8. It includes all the amount of heat released in the high pressure side refrigerant pipe. Similarly, the heat of vaporization Q 1
Is not only absorbed by the refrigerant only in the outdoor unit 9 in the heating state or the indoor unit 7 in the cooling state, but is also absorbed by the refrigerant in the low pressure side refrigerant circuit from the expansion valve 8 to the suction port of the compressor 2. It includes the amount of heat. However, the engine cooling water is piped in the liquid-phase refrigerant stored in the accumulator instead of the positions where the double-tube heat exchangers 10 and 11 and the two devices are arranged. It is not included in the amount of heat absorbed by the refrigerant by the heater for heating the refrigerant using water or the auxiliary refrigerant heater such as an electric heater. The heat load is ΔQ 1
And ΔQ 1 = Q 2 −Q 1 −AL.

【0048】即ち、蒸発熱Q1 に対して凝縮熱Q2
過大になるか、凝縮熱Q2 に対して蒸発熱Q1 が過小
となる場合に、熱負荷が大きくなり、補助冷媒加熱ヒー
タによる冷媒の加熱が必要になる。
[0048] That is, whether the condensation heat Q 2 becomes excessive relative to the heat of evaporation Q 1, if the heat of evaporation Q 1 is made too small relative to the condensing heat Q 2, the thermal load is increased, the auxiliary coolant heater It is necessary to heat the refrigerant by.

【0049】例えば、の場合として、室外機9の数よ
り多数の室内機7を配置している場合の冷房状態におい
て、運転する室内機7の数を絞るときがある。この場合
には、室外機9の放熱能力が室内機7の吸熱能力より可
成り大きくなってしまう。このため、図9に示すように
冷暖切換スイッチ102からの冷房情報に基づき、三方
弁A駆動アクチュエータ109に表1に基づく駆動命令
を制御装置200から出力させるとともに、室内機運転
スイッチ103から室内機7の運転台数に基づき、運転
台数が所定値以下、且つ、運転台数が少ない程、熱負荷
が大きいとしてリニア三方弁18駆動アクチュエータ1
08を駆動し、二重管熱交換器10への温水循環量を増
加させるようにする。
For example, in the case of, there may be a case where the number of indoor units 7 to be operated is reduced in the cooling state when the number of indoor units 7 is greater than the number of outdoor units 9. In this case, the heat dissipation capacity of the outdoor unit 9 becomes considerably larger than the heat absorption capacity of the indoor unit 7. Therefore, as shown in FIG. 9, based on the cooling information from the cooling / heating changeover switch 102, the three-way valve A drive actuator 109 is caused to output a drive command based on Table 1 from the control device 200, and the indoor unit operation switch 103 is operated from the indoor unit operation switch 103. 7, the linear three-way valve 18 drive actuator 1 assumes that the thermal load is larger as the number of operating vehicles is less than a predetermined value and the number of operating vehicles is smaller.
08 is driven to increase the circulating amount of hot water to the double tube heat exchanger 10.

【0050】又、の場合として冷房中外気温センサー
15からの外気温情報に基づき、外気温度が所定温度以
下の場合、所定温度より低ければ低い程凝縮熱Q2 が大
きくなるため、熱負荷が大きくなるとして、同様に二重
管熱交換器10への温水循環量を増加させるようにして
も良い。
Further, in the case of, based on the outside air temperature information from the outside air temperature sensor 15 during cooling, when the outside air temperature is lower than the predetermined temperature, the lower the temperature is, the higher the condensation heat Q 2 is, so that the heat load is large. However, similarly, the circulation amount of hot water to the double-tube heat exchanger 10 may be increased.

【0051】又、の場合として、暖房中室内温設定ス
イッチ104の設定温度と室内温センサ12によって検
出された室内温度の差が大きい程、室内機7のファン1
12の回転数を増加させるとともに、熱負荷が大きいと
して、同様に二重管熱交換器11への温水循環量を増加
させるようにしても良い。
In the above case, the larger the difference between the set temperature of the indoor temperature setting switch 104 during heating and the indoor temperature detected by the indoor temperature sensor 12, the larger the fan 1 of the indoor unit 7.
It is also possible to increase the number of revolutions of 12 and increase the amount of hot water circulating to the double-tube heat exchanger 11 on the assumption that the heat load is large.

【0052】又、の場合として、冷房中外気温センサ
15からの外気温情報に基づき、外気温度が所定温度以
下の場合、所定温度より低ければ低い程凝縮熱Q2 が小
さくなり、場合によってはQ2 が負となってしまうた
め、室外機9のファン113を停止する一方、同様に二
重管熱交換器11への温水循環量を増加させるようにし
ても良い。
Further, in the case of, based on the outside air temperature information from the cooling outside air temperature sensor 15, when the outside air temperature is below a predetermined temperature, the condensation heat Q 2 becomes smaller as the temperature is lower than the predetermined temperature, and in some cases Q Since 2 becomes negative, the fan 113 of the outdoor unit 9 may be stopped and the hot water circulation amount to the double-tube heat exchanger 11 may be similarly increased.

【0053】又、高圧側の配管が低圧側の配管に比べて
長い場合、冷房時にはQ2 が過大となるため、この場
合、空気調和装置の設置者が配管レイアウト補正スイッ
チ105を操作するようにし、制御装置200はこのス
イッチ105の情報と冷房運転情報に基づき、これによ
る熱負荷の増大を二重管熱交換器10への温水循環量を
増加させることにより補正できるようにしても良い。
When the high-pressure side pipe is longer than the low-pressure side pipe, Q 2 becomes excessive during cooling. In this case, the installer of the air conditioner operates the pipe layout correction switch 105. The control device 200 may correct the increase in heat load due to the information of the switch 105 and the cooling operation information by increasing the circulating amount of hot water to the double-tube heat exchanger 10.

【0054】又、膨張弁8を境として上流側となる高圧
側圧力センサ106の高圧側圧力値のみ、或は該圧力値
と膨張弁8を境として低圧側となる低圧側圧力センサ1
07の低圧側圧力値との差圧に基づき、高圧側圧力値が
低くなる程或は差圧が小さくなる程、膨張弁8の開度を
大きくするか、冷房時に二重管熱交換器10への温水循
環量又は暖房時には二重管熱交換器11への温水循環量
を増加させるか、或は膨張弁8の開度と循環量の双方を
増加させるようにしても良い。
Further, only the high pressure side pressure value of the high pressure side pressure sensor 106 on the upstream side of the expansion valve 8 or the low pressure side pressure sensor 1 on the low pressure side of the expansion valve 8 as a boundary.
Based on the pressure difference from the low pressure side pressure value of 07, the opening degree of the expansion valve 8 is increased as the high pressure side pressure value becomes lower or the differential pressure becomes smaller, or the double pipe heat exchanger 10 is cooled during cooling. It is also possible to increase the circulating amount of hot water to the double pipe heat exchanger 11 during heating or to increase both the opening degree of the expansion valve 8 and the circulating amount.

【0055】尚、四方弁5を境として圧縮機2側に両圧
力センサ106を配置している(図1参照)。但し、四
方弁5を境にして膨張弁8側に両圧力センサ106,1
07を配置し、且つ、膨張弁8を境として室内機7側の
冷媒回路と室外機9の冷媒回路の双方にそれぞれ圧力セ
ンサ106,107を配置する場合には、冷暖切換スイ
ッチ102の情報に基づき、暖房中は室内機7の冷媒回
路に配置される圧力センサを高圧側且つ室外機9側の冷
媒回路に配置している圧力センサを低圧側になる、且つ
冷房中は逆となると制御装置200により判断させる。
Both pressure sensors 106 are arranged on the compressor 2 side with the four-way valve 5 as a boundary (see FIG. 1). However, both pressure sensors 106, 1 are arranged on the side of the expansion valve 8 with the four-way valve 5 as a boundary.
When the pressure sensors 106 and 107 are arranged in both the refrigerant circuit on the indoor unit 7 side and the refrigerant circuit on the outdoor unit 9 with the expansion valve 8 as the boundary, the information of the cooling / heating changeover switch 102 is set to the information. Based on the above, the control device is configured such that the pressure sensor arranged in the refrigerant circuit of the indoor unit 7 is on the high pressure side during heating and the pressure sensor arranged on the refrigerant circuit on the outdoor unit 9 side is on the low pressure side, and is reversed during cooling. Determined by 200.

【0056】<第2実施例>次に、本発明の第2実施例
を図4及び図5に基づいて説明する。尚、図4は第2実
施例に係るエンジン駆動式空気調和装置の基本構成を示
す回路図、図5は冷媒の状態変化を示すモリエル線図で
あり、図4においては図1に示したと同一要素には同一
符号を付しており、以下、それらについての説明は省略
する。
<Second Embodiment> Next, a second embodiment of the present invention will be described with reference to FIGS. 4 is a circuit diagram showing the basic configuration of the engine-driven air conditioner according to the second embodiment, and FIG. 5 is a Mollier diagram showing changes in the state of the refrigerant. In FIG. 4, the same as shown in FIG. The same reference numerals are given to the elements, and description thereof will be omitted below.

【0057】本実施例においては、図4に示すように、
室内機側熱供給部である二重管熱交換器10を室内機側
冷媒回路3Bの室内機7と膨張弁8の間に設け、室外機
側熱供給部である二重管熱交換器11を室外機側冷媒回
路3Bの室外機9と膨張弁8の間に設けたている。
In this embodiment, as shown in FIG.
The double-tube heat exchanger 10 which is the indoor unit side heat supply unit is provided between the indoor unit 7 and the expansion valve 8 of the indoor unit side refrigerant circuit 3B, and the double-tube heat exchanger 11 which is the outdoor unit side heat supply unit. Is provided between the outdoor unit 9 of the outdoor unit side refrigerant circuit 3B and the expansion valve 8.

【0058】而して、本実施例によれば、暖房運転時及
び冷房運転時において膨張弁8を通過した冷媒は、図5
に示すように、先ず、暖房運転時に二重管熱交換器1
1、冷房運転時に二重管熱交換器10において冷却水か
ら熱量ΔQ1 (=i4 −i3 )を与えられてeにて示す
状態(圧力P1 、エンタルピi4 )となり、その後、蒸
発器として機能する室外機9(暖房運転時)又は室内機
7(冷房運転時)において外気或は室内空気から熱量Q
1 (=i1 −i4 )を奪ってその全てが蒸発して気化
し、更に過熱されて図5にaにて示す状態(圧力P1
エンタルピi1 )に復帰する。
Thus, according to the present embodiment, the refrigerant that has passed through the expansion valve 8 during the heating operation and the cooling operation is as shown in FIG.
First, as shown in FIG.
1. During the cooling operation, the heat quantity ΔQ 1 (= i 4 −i 3 ) is given from the cooling water in the double-tube heat exchanger 10 to be in the state indicated by e (pressure P 1 , enthalpy i 4 ), and then evaporation In the outdoor unit 9 (during heating operation) or the indoor unit 7 (during cooling operation) that functions as a heater, the heat quantity Q from the outside air or indoor air
1 (= i 1 −i 4 ) is taken away, all of it evaporates and vaporizes, and is further heated to the state shown by a in FIG. 5 (pressure P 1 ,
Return to enthalpy i 1 ).

【0059】<第3実施例>次に、本発明の第3実施例
を図6に基づいて説明する。尚、図6は第3実施例に係
るエンジン駆動式空気調和装置の基本構成を示す回路図
であり、本図においては図1に示したと同一要素には同
一符号を付しており、以下、それらについての説明は省
略する。
<Third Embodiment> Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 6 is a circuit diagram showing the basic configuration of the engine-driven air conditioner according to the third embodiment. In this figure, the same elements as those shown in FIG. A description thereof will be omitted.

【0060】本実施例においては、図6に示すように、
室内機側熱供給部である二重管熱交換器10を室内機側
冷媒回路3Bの四方弁5と室内機7との間に設け、室外
機側熱供給部である二重管熱交換器11を室外機側冷媒
回路3Bの室外機9と膨張弁8の間に設けたものであ
る。
In this embodiment, as shown in FIG.
The double-tube heat exchanger 10, which is an indoor unit side heat supply unit, is provided between the four-way valve 5 of the indoor unit-side refrigerant circuit 3B and the indoor unit 7, and the double-tube heat exchanger is an outdoor unit side heat supply unit. 11 is provided between the outdoor unit 9 of the outdoor unit side refrigerant circuit 3B and the expansion valve 8.

【0061】而して、本実施例によれば、膨張弁8を通
過した冷媒は、暖房運転時には図5に示すように先ず二
重管熱交換器11において冷却水から熱量ΔQ1 (=i
4 −i3 )を与えられてeにて示す状態(圧力P1 、エ
ンタルピi4 )となり、その後、蒸発器として機能する
室外機9において外気等から熱量Q1 (=i1 −i4
を奪ってその全てが蒸発して気化し、更に過熱されて図
5にaにて示す状態(圧力P1 、エンタルピi1 )に復
帰する。
Thus, according to the present embodiment, the refrigerant passing through the expansion valve 8 is first heated in the double pipe heat exchanger 11 from the cooling water in the heating operation ΔQ 1 (= i) as shown in FIG.
4− i 3 ) is applied and the state indicated by e (pressure P 1 , enthalpy i 4 ) is reached, and thereafter, in the outdoor unit 9 functioning as an evaporator, the heat quantity Q 1 (= i 1 −i 4 ) from the outside air or the like.
, And all of them are vaporized and vaporized, and further heated to return to the state (pressure P 1 , enthalpy i 1 ) shown by a in FIG.

【0062】一方、冷房運転時には、膨張弁8を通過し
た冷媒は、図2に示すように先ず室内機7において熱量
1 (=i4 −i3 )を奪ってその一部が気化してeに
て示す状態(圧力P1 、エンタルピi4 )となり、その
後、二重管熱交換器10において冷却水から熱量ΔQ1
(=i1 −i4 )を与えられてその全てが蒸発して気化
し、更に過熱されて図5にaにて示す状態(圧力P1
エンタルピi1 )に復帰する。
On the other hand, during the cooling operation, the refrigerant having passed through the expansion valve 8 first robs the heat quantity Q 1 (= i 4 −i 3 ) in the indoor unit 7 and a part thereof is vaporized. The state indicated by e (pressure P 1 , enthalpy i 4 ) is reached, and thereafter, the amount of heat ΔQ 1 from the cooling water in the double-tube heat exchanger 10 is increased.
(= I 1 −i 4 ), all of them are vaporized and vaporized, and further heated to a state (pressure P 1 ,
Return to enthalpy i 1 ).

【0063】即ち、本実施例によれば、暖房運転時には
図5に示すサイクルが実施され、冷房運転時には図2に
示すサイクルが実施される。
That is, according to this embodiment, the cycle shown in FIG. 5 is executed during the heating operation, and the cycle shown in FIG. 2 is executed during the cooling operation.

【0064】<第4実施例>次に、本発明の第4実施例
を図7に基づいて説明する。尚、図7は第4実施例に係
るエンジン駆動式空気調和装置の基本構成を示す回路図
であり、本図においては図1に示したと同一要素には同
一符号を付しており、以下、それらについての説明は省
略する。
<Fourth Embodiment> Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a circuit diagram showing the basic structure of the engine-driven air conditioner according to the fourth embodiment. In this figure, the same elements as those shown in FIG. 1 are designated by the same reference numerals. A description thereof will be omitted.

【0065】本実施例においては、図7に示すように、
室内機側熱供給部である二重管熱交換器10を室内機側
冷媒回路3Bの室内機7と膨張弁8との間に設け、室外
機側熱供給部である二重管熱交換器11を室外機側冷媒
回路3Bの四方弁5と室外機9との間に設けたものであ
る。
In this embodiment, as shown in FIG.
The double-tube heat exchanger 10 which is the indoor unit side heat supply unit is provided between the indoor unit 7 and the expansion valve 8 of the indoor unit side refrigerant circuit 3B, and the double unit heat exchanger which is the outdoor unit side heat supply unit. 11 is provided between the four-way valve 5 of the outdoor unit side refrigerant circuit 3B and the outdoor unit 9.

【0066】而して、本実施例によれば、膨張弁8を通
過した冷媒は、暖房運転時には図2に示すように先ず室
外機9において熱量Q1 (=i4 −i3 )を奪ってその
一部が気化してeにて示す状態(圧力P1 、エンタルピ
4 )となり、その後、二重管熱交換器11において冷
却水から熱量ΔQ1 (=i1 −i4 )を与えられてその
全てが蒸発して気化し、更に過熱されて図5にaにて示
す状態(圧力P1 、エンタルピi1 )に復帰する。
Thus, according to this embodiment, the refrigerant having passed through the expansion valve 8 first robs the heat quantity Q 1 (= i 4 −i 3 ) in the outdoor unit 9 as shown in FIG. 2 during the heating operation. Then, a part of it is vaporized to a state indicated by e (pressure P 1 , enthalpy i 4 ), and thereafter, the heat quantity ΔQ 1 (= i 1 −i 4 ) is given from the cooling water in the double tube heat exchanger 11. All of them are evaporated and vaporized, and further heated to return to the state (pressure P 1 , enthalpy i 1 ) shown by a in FIG.

【0067】一方、冷房運転時には、膨張弁8を通過し
た冷媒は、図5に示すように先ず二重管熱交換器10に
おいて冷却水から熱量ΔQ1 (=i4 −i3 )を与えら
れてその一部が気化してeにて示す状態(圧力P1 、エ
ンタルピi4 )となり、その後、室内機7において熱量
1 (=i1 −i4 )を奪ってその全てが蒸発して気化
し、更に過熱されて図5にaにて示す状態(圧力P1
エンタルピi1 )に復帰する。
On the other hand, during the cooling operation, the refrigerant passing through the expansion valve 8 is first given a heat quantity ΔQ 1 (= i 4 −i 3 ) from the cooling water in the double tube heat exchanger 10 as shown in FIG. Then, a part of it is vaporized to a state indicated by e (pressure P 1 , enthalpy i 4 ), and thereafter, the heat quantity Q 1 (= i 1 −i 4 ) is taken in the indoor unit 7 and all of it is evaporated. The state shown by a in FIG. 5 after vaporization and further heating (pressure P 1 ,
Return to enthalpy i 1 ).

【0068】即ち、本実施例によれば、第3実施例とは
逆に、暖房運転時には図2に示すサイクルが実施され、
冷房運転時には図5に示すサイクルが実施される。
That is, according to this embodiment, contrary to the third embodiment, the cycle shown in FIG. 2 is executed during the heating operation,
During the cooling operation, the cycle shown in FIG. 5 is executed.

【0069】<第5実施例>次に、本発明の第5実施例
を図8に基づいて説明する。尚、図8は第5実施例に係
るエンジン駆動式空気調和装置の基本構成を示す回路図
であり、本図においては図1に示したと同一要素には同
一符号を付しており、以下、それらについての説明は省
略する。
<Fifth Embodiment> Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a circuit diagram showing the basic structure of the engine-driven air conditioner according to the fifth embodiment. In this figure, the same elements as those shown in FIG. A description thereof will be omitted.

【0070】本実施例においては、図8に示すように、
室内機側熱供給部を構成するタンク20を室内機側冷媒
回路3Bの四方弁5と室内機7との間に設け、室外機側
熱供給部を構成するタンク21を室外機側冷媒回路3C
の四方弁5と室外機9との間に設けている。
In this embodiment, as shown in FIG.
The tank 20 that constitutes the indoor unit side heat supply unit is provided between the four-way valve 5 of the indoor unit side refrigerant circuit 3B and the indoor unit 7, and the tank 21 that constitutes the outdoor unit side heat supply unit is the outdoor unit side refrigerant circuit 3C.
It is provided between the four-way valve 5 and the outdoor unit 9.

【0071】而して、本実施例においては、暖房運転時
には、三方弁Aは表1に示すように冷却水の方向の流
れを許容するため、冷却水はタンク21に供給され、従
って、タンク21はアキュームレータとして機能し、そ
こに貯留される液相冷媒に熱量ΔQ1 を付与する。
Thus, in this embodiment, during the heating operation, the three-way valve A permits the flow of the cooling water in the direction shown in Table 1, so that the cooling water is supplied to the tank 21. 21 functions as an accumulator, and imparts a heat quantity ΔQ 1 to the liquid-phase refrigerant stored therein.

【0072】又、冷房運転時には、三方弁Aは表1に示
すように冷却水の方向の流れを許容するため、冷却水
はタンク20に供給され、従って、タンク20はアキュ
ームレータとして機能して、そこに貯留される液相冷媒
に熱量ΔQ1 を付与する。
Further, during the cooling operation, the three-way valve A permits the flow of the cooling water in the direction shown in Table 1, so that the cooling water is supplied to the tank 20. Therefore, the tank 20 functions as an accumulator. A heat quantity ΔQ 1 is applied to the liquid-phase refrigerant stored therein.

【0073】従って、本実施例においては、暖房及び冷
房運転時において図2に示すサイクルが実施され、第1
実施例と同様の作用効果が得られる。
Therefore, in this embodiment, the cycle shown in FIG. 2 is executed during the heating and cooling operations, and the first
The same operation and effect as the embodiment can be obtained.

【0074】図4、図6、図7及び図8に示す各実施例
においても、前述のようにセンサ群或はスイッチ群の情
報に基づき熱負荷の大小を制御装置200が判断し、各
アクチュエータを駆動し、冷暖の別により三方弁Aを切
り換え、熱負荷の大小に応じて二重管熱交換器10又は
11、或はタンク20又は21への温水の循環量を増減
する、或は電気ヒータ115(図9参照)への供給電力
量を増減する。
Also in each of the embodiments shown in FIGS. 4, 6, 7 and 8, the controller 200 determines the magnitude of the heat load based on the information of the sensor group or the switch group as described above, and each actuator Is driven to switch the three-way valve A depending on whether it is cold or warm, and the circulating amount of hot water to the double-tube heat exchanger 10 or 11 or the tank 20 or 21 is increased or decreased according to the magnitude of the heat load, or electricity is supplied. The amount of electric power supplied to the heater 115 (see FIG. 9) is increased or decreased.

【0075】尚、四方弁5の代わりに図10に示すよう
に2つの三方弁E,Fを配置し、暖房時には三方弁E側
はの連通を開、の連通を閉とし、三方弁F側はの
連通を閉、の連通を開とし、冷房時には全く逆とする
ように制御しても良い。
Note that, instead of the four-way valve 5, two three-way valves E and F are arranged as shown in FIG. 10. During heating, the three-way valve E side opens the communication and the communication closes the side, and the three-way valve F side. The communication may be closed, the communication may be opened, and the control may be reversed when cooling.

【0076】[0076]

【発明の効果】以上の説明で明らかなように、請求項1
記載の発明によれば、冷房運転及び暖房運転の何れにお
いても、蒸発器として機能する室内機又は室外機での吸
熱量の不足分は熱供給部において外部から与えられる熱
によって補われるため、冷媒は圧縮機に吸引される以前
にその全てが完全に蒸発して気化し、従って、液相冷媒
が圧縮機に吸引されることがなく、圧縮機を駆動したま
ま冷房又は暖房運転が可能となり、圧縮機の駆動源のエ
ネルギーを有効に利用することができるという効果が得
られる。
As is apparent from the above description, claim 1
According to the described invention, in both the cooling operation and the heating operation, the shortage of the heat absorption amount in the indoor unit or the outdoor unit functioning as an evaporator is compensated for by the heat given from the outside in the heat supply unit, so that the refrigerant Is completely evaporated and vaporized before being sucked into the compressor, so that the liquid-phase refrigerant is not sucked into the compressor, and cooling or heating operation can be performed with the compressor being driven, The effect that the energy of the drive source of the compressor can be effectively used is obtained.

【0077】請求項2記載の発明によれば、暖房状態に
おいて室外機側熱供給部から冷媒への熱供給量を室内機
側熱供給部から冷媒への熱供給量よりも大きくしたた
め、外気温度が低く、そのために室外機における冷媒の
吸熱量が十分でない場合であっても、冷媒は圧縮機に吸
引される以前にその全てが完全に蒸発して気化し、液相
冷媒の圧縮機への吸引が確実に防がれるという効果が得
られる。
According to the second aspect of the invention, since the heat supply amount from the outdoor unit side heat supply unit to the refrigerant is made larger than the heat supply amount from the indoor unit side heat supply unit in the heating state, the outside air temperature Is low, therefore even if the heat absorption amount of the refrigerant in the outdoor unit is not sufficient, all of the refrigerant is completely evaporated and vaporized before being sucked by the compressor, and the liquid phase refrigerant to the compressor The effect that suction can be reliably prevented is obtained.

【0078】請求項3記載の発明によれば、冷房状態に
おいて室内機側熱供給部から冷媒への熱供給量を室外機
側熱供給部から冷媒への熱供給量よりも大きくしたた
め、室外機での放熱量が過大であり、そのために室内機
での吸熱量が十分でない場合であっても、その不足分の
熱量は室内機側熱供給部において冷媒に付与されるた
め、冷媒は圧縮機に吸引される以前にその全てが完全に
蒸発して気化し、液相冷媒の圧縮機への吸引が確実に防
がれるという効果が得られる。
According to the third aspect of the present invention, the amount of heat supplied from the indoor unit side heat supply unit to the refrigerant in the cooling state is made larger than the amount of heat supply from the outdoor unit side heat supply unit to the refrigerant. Even if the amount of heat dissipation in the indoor unit is excessive and the amount of heat absorbed in the indoor unit is not sufficient, the insufficient amount of heat is given to the refrigerant in the indoor unit side heat supply unit, so the refrigerant is compressed. All of them are completely vaporized and vaporized before being sucked into the compressor, so that suction of the liquid-phase refrigerant to the compressor can be reliably prevented.

【0079】請求項4記載の発明によれば、室内機側熱
供給部は膨張弁の下流側に設けられるため、膨張弁を通
過して低温低圧となった冷媒に室内機側熱供給部から熱
が与えられることとなり、冷媒への熱の供給効率が高め
られるという効果が得られる。
According to the fourth aspect of the invention, since the indoor unit side heat supply section is provided on the downstream side of the expansion valve, the indoor unit side heat supply section supplies the low temperature low pressure refrigerant passing through the expansion valve. Since heat is applied, the effect of increasing the efficiency of heat supply to the refrigerant can be obtained.

【0080】請求項5記載の発明によれば、室外機側熱
供給部は膨張弁の下流側に設けられるため、膨張弁を通
過して低温低圧となった冷媒に室外機側熱供給部から熱
が与えられることとなり、冷媒への熱の供給効率が高め
られるという効果が得られる。
According to the fifth aspect of the invention, since the outdoor unit side heat supply section is provided on the downstream side of the expansion valve, the outdoor unit side heat supply section supplies the low temperature and low pressure refrigerant passing through the expansion valve. Since heat is applied, the effect of increasing the efficiency of heat supply to the refrigerant can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るエンジン駆動式空気
調和装置の基本構成を示す回路図である。
FIG. 1 is a circuit diagram showing a basic configuration of an engine-driven air conditioner according to a first embodiment of the present invention.

【図2】本発明の第1実施例に係るエンジン駆動式空気
調和装置の冷却水回路に設けられるリニア三方弁の特性
図である。
FIG. 2 is a characteristic diagram of a linear three-way valve provided in the cooling water circuit of the engine-driven air conditioner according to the first embodiment of the present invention.

【図3】本発明の第1実施例に係るエンジン駆動式空気
調和装置における冷媒の状態変化を示すモリエル線図で
ある。
FIG. 3 is a Mollier diagram showing changes in the state of the refrigerant in the engine-driven air conditioner according to the first example of the present invention.

【図4】本発明の第2実施例に係るエンジン駆動式空気
調和装置の基本構成を示す回路図である。
FIG. 4 is a circuit diagram showing a basic configuration of an engine-driven air conditioner according to a second embodiment of the present invention.

【図5】本発明の第2実施例に係るエンジン駆動式空気
調和装置における冷媒の状態変化を示すモリエル線図で
ある。
FIG. 5 is a Mollier diagram showing changes in the state of the refrigerant in the engine-driven air conditioner according to the second embodiment of the present invention.

【図6】本発明の第3実施例に係るエンジン駆動式空気
調和装置の基本構成を示す回路図である。
FIG. 6 is a circuit diagram showing a basic configuration of an engine-driven air conditioner according to a third embodiment of the present invention.

【図7】本発明の第4実施例に係るエンジン駆動式空気
調和装置の基本構成を示す回路図である。
FIG. 7 is a circuit diagram showing a basic configuration of an engine-driven air conditioner according to a fourth embodiment of the present invention.

【図8】本発明の第5実施例に係るエンジン駆動式空気
調和装置の基本構成を示す回路図である。
FIG. 8 is a circuit diagram showing a basic configuration of an engine-driven air conditioner according to a fifth embodiment of the present invention.

【図9】本発明に係る空気調和装置の制御系の構成を示
すブロック図である。
FIG. 9 is a block diagram showing a configuration of a control system of the air conditioning apparatus according to the present invention.

【図10】四方弁に代わる構成例を示す部分回路図であ
る。
FIG. 10 is a partial circuit diagram showing a configuration example that replaces a four-way valve.

【符号の説明】[Explanation of symbols]

1 エンジン(駆動源) 2 圧縮機 3 冷媒回路 3A 圧縮機側冷媒回路 3B 室内機側冷媒回路 3C 室外機側冷媒回路 3a 吐出ライン 3b 吸込ライン 5 四方弁(切換部) 7 室内機 8 膨張弁 9 室外機 10 二重管熱交換器(室内機側熱供給部) 11 二重管熱交換器(室外機側熱供給部) 20 タンク(室内機側熱供給部) 21 タンク(室外機側熱供給部) 1 Engine (driving source) 2 Compressor 3 Refrigerant circuit 3A Compressor side refrigerant circuit 3B Indoor unit side refrigerant circuit 3C Outdoor unit side refrigerant circuit 3a Discharge line 3b Suction line 5 Four-way valve (switching part) 7 Indoor unit 8 Expansion valve 9 Outdoor unit 10 Double tube heat exchanger (indoor unit side heat supply section) 11 Double tube heat exchanger (outdoor unit side heat supply section) 20 Tank (indoor unit side heat supply section) 21 Tank (outdoor unit side heat supply) Part)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 吸込ラインから圧縮機を経て吐出ライン
に至る圧縮機側冷媒回路と、吸込ライン端部と吐出ライ
ン端部に連結された切換部と、切換部から室内機を経て
膨張弁に至る室内機側冷媒回路と、切換部から室外機を
経て膨張弁に至る室外機側冷媒回路を含んで構成され、
前記切換部によって暖房状態においては吐出ラインと室
内機側冷媒回路とを連結するとともに吸込ラインと室外
機側冷媒回路とを連結し、冷房状態においては吐出ライ
ンと室外機側冷媒回路とを連結するとともに吸込ライン
と室内機側冷媒回路とを連結する空気調和装置におい
て、外部から冷媒に熱を供給可能な室内機側熱供給部、
室外機側熱供給部を前記室内機側冷媒回路、室外機側冷
媒回路にそれぞれ設け、暖房状態において室外機側熱供
給部から冷媒に熱を供給可能とし又は/及び冷房状態に
おいて室内機側熱供給部から冷媒に熱を供給可能とした
ことを特徴とする空気調和装置。
1. A compressor-side refrigerant circuit from a suction line to a discharge line via a compressor, a switching unit connected to the suction line end and the discharge line end, and an expansion valve from the switching unit to an indoor unit. The indoor unit side refrigerant circuit to reach, and the outdoor unit side refrigerant circuit from the switching unit to the expansion valve via the outdoor unit
In the heating state, the switching line connects the discharge line to the indoor unit side refrigerant circuit, and also connects the suction line to the outdoor unit side refrigerant circuit, and connects the discharge line and the outdoor unit side refrigerant circuit in the cooling state. With the air conditioner connecting the suction line and the indoor unit side refrigerant circuit, an indoor unit side heat supply unit capable of supplying heat to the refrigerant from the outside,
The outdoor unit side heat supply unit is provided in each of the indoor unit side refrigerant circuit and the outdoor unit side refrigerant circuit, and heat can be supplied to the refrigerant from the outdoor unit side heat supply unit in the heating state and / or the indoor unit side heat in the cooling state. An air conditioner characterized in that heat can be supplied to a refrigerant from a supply unit.
【請求項2】 前記室内機側熱供給部と室外機側熱供給
部から冷媒に熱を供給可能とするとともに、暖房状態に
おいて室外機側熱供給部から冷媒への熱供給量を室内機
側熱供給部から冷媒への熱供給量よりも大きくしたこと
を特徴とする請求項1記載の空気調和装置。
2. Heat can be supplied to the refrigerant from the indoor unit side heat supply section and the outdoor unit side heat supply section, and the heat supply amount from the outdoor unit side heat supply section to the refrigerant in the heating state is set to the indoor unit side. The air conditioner according to claim 1, wherein the amount of heat supplied from the heat supply unit to the refrigerant is made larger.
【請求項3】 前記室内機側熱供給部と室外機側熱供給
部から冷媒に熱を供給可能とするとともに、冷房状態に
おいて室内機側熱供給部から冷媒への熱供給量を室外機
側熱供給部から冷媒への熱供給量よりも大きくしたこと
を特徴とする請求項1又は2記載の空気調和装置。
3. Heat can be supplied to the refrigerant from the indoor unit side heat supply section and the outdoor unit side heat supply section, and the amount of heat supplied from the indoor unit side heat supply section to the refrigerant in the cooling state is set to the outdoor unit side. The air conditioner according to claim 1 or 2, wherein the amount of heat supplied from the heat supply unit to the refrigerant is larger than that of the refrigerant.
【請求項4】 前記室内機側熱供給部を室内機内又は室
内機と切換部との間に配置したことを特徴とする請求項
1,2又は3記載の空気調和装置。
4. The air conditioner according to claim 1, wherein the indoor unit side heat supply unit is arranged inside the indoor unit or between the indoor unit and the switching unit.
【請求項5】 前記室外機側熱供給部を室外機内又は室
外機と切換部との間に配置したことを特徴とする請求項
1〜3又は4記載の空気調和装置。
5. The air conditioner according to claim 1, wherein the outdoor unit side heat supply unit is arranged in the outdoor unit or between the outdoor unit and the switching unit.
JP7040899A 1995-02-28 1995-02-28 Air-conditioning device Pending JPH08233397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7040899A JPH08233397A (en) 1995-02-28 1995-02-28 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7040899A JPH08233397A (en) 1995-02-28 1995-02-28 Air-conditioning device

Publications (1)

Publication Number Publication Date
JPH08233397A true JPH08233397A (en) 1996-09-13

Family

ID=12593367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7040899A Pending JPH08233397A (en) 1995-02-28 1995-02-28 Air-conditioning device

Country Status (1)

Country Link
JP (1) JPH08233397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179727A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd High sensible heat type gas heat pump air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179727A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd High sensible heat type gas heat pump air conditioner

Similar Documents

Publication Publication Date Title
JP5030344B2 (en) Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
KR0153546B1 (en) Heat storage type airconditioner and defrosting method
US8245948B2 (en) Co-generation and control method of the same
JP3662557B2 (en) Heat pump system
EP1628099B1 (en) Cogeneration system and method for controlling the same
US5729985A (en) Air conditioning apparatus and method for air conditioning
US20080022708A1 (en) Co-generation
US20080022707A1 (en) Co-generation
JP2001221531A (en) Air conditioner
JPS6155018B2 (en)
JPH116665A (en) Heat-storing-type air-conditioner
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP2007255862A (en) Air conditioning system
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JPH074777A (en) Engine waste heat recovery device
JPH08233397A (en) Air-conditioning device
JPH08233404A (en) Air conditioner
JPH10185349A (en) Air conditioner
JP3710093B2 (en) Defrost method and system
JPH08271086A (en) Heat pump apparatus
JP2000121108A (en) Air-conditioner
JP3216560B2 (en) Heat source device
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
KR20240006104A (en) Automotive air conditioning system
JP3213992B2 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees