JPH0823050B2 - Method for manufacturing copper material for bonding wire - Google Patents

Method for manufacturing copper material for bonding wire

Info

Publication number
JPH0823050B2
JPH0823050B2 JP59098753A JP9875384A JPH0823050B2 JP H0823050 B2 JPH0823050 B2 JP H0823050B2 JP 59098753 A JP59098753 A JP 59098753A JP 9875384 A JP9875384 A JP 9875384A JP H0823050 B2 JPH0823050 B2 JP H0823050B2
Authority
JP
Japan
Prior art keywords
copper
purity
electrolytic
wire
bonding wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59098753A
Other languages
Japanese (ja)
Other versions
JPS60244054A (en
Inventor
克男 関田
武司 瀬谷
貞彦 参木
進 沖川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP59098753A priority Critical patent/JPH0823050B2/en
Publication of JPS60244054A publication Critical patent/JPS60244054A/en
Publication of JPH0823050B2 publication Critical patent/JPH0823050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はIC、トランジスタ等半導体装置のパッケージ
内の結線に使用されるボンディングワイヤ用銅素材の製
造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a copper material for a bonding wire used for connection in a package of a semiconductor device such as an IC and a transistor.

[従来の技術] 一般に半導体装置のパッケージ内の結線に使用される
ボンディングワイヤとしては金線やアルミニウム線が使
用されているが、最近はこの金線やアルミニウム線に替
わる安価なボンディングワイヤとして銅線の適用が検討
されている。この銅線はワイヤボンディングを行う上で
十分軟質である必要があることから、これまでは従来高
純度銅として存在する99.99〜99.999%程度の高純度の
銅素材から製造した銅線を使用してボンディングワイヤ
としての使用の検討を行なってきた。しかしながらこの
ようにして製造された銅線でも、金線やアルミニウム線
と比較すると硬いために、熱圧着等による結線の際に半
導体素子に割れなどのボンディングダメージを生じさせ
ることがある。
[Prior Art] Generally, a gold wire or an aluminum wire is used as a bonding wire used for connection in a package of a semiconductor device, but recently, a copper wire is used as an inexpensive bonding wire replacing the gold wire or the aluminum wire. Is being considered. Since this copper wire needs to be sufficiently soft to perform wire bonding, we have used a copper wire manufactured from a high-purity copper material of about 99.99 to 99.999%, which has hitherto been used as high-purity copper. The use as a bonding wire has been studied. However, even a copper wire manufactured in this manner is harder than a gold wire or an aluminum wire, and therefore, a bonding damage such as a crack may occur in a semiconductor element at the time of connection by thermocompression bonding or the like.

一方、従来、かかる高純度の銅素材の製造方法として
は、電解精練により得られた高純度の電気銅を帯域融解
法(ゾーンメルト法)により精製する方法が一般にとら
れている。
On the other hand, conventionally, as a method for producing such a high-purity copper material, a method of purifying high-purity electrolytic copper obtained by electrolytic refining by a zone melting method (zone melting method) is generally used.

帯域融解法は金属の純化法として知られている方法で
あり、この方法によれば電気銅中に微量残存するAg、F
e、Ni、Pb、Si、Sn、Bi、Sb、As、O、S、P等の不純
物を除去し、より高純度の銅素材を得ることができる。
The zone melting method is known as a metal purification method.According to this method, trace amounts of Ag and F remaining in electrolytic copper can be obtained.
Impurities such as e, Ni, Pb, Si, Sn, Bi, Sb, As, O, S and P can be removed to obtain a higher purity copper material.

しかしながら、溶湯の凝固過程で形成される固体層の
溶質濃度CSと、残液の平均濃度CLの比によって表わされ
る分配係数K(=CS/CL)によると、下表の通りFe、Ni
等の銅中の不純物は帯域融解法を数回繰返すことによっ
ても除去することができず、このため上記した従来の高
純度銅素材の製造方法によれば、Fe、Ni等の不純物の存
在によりボンディングワイヤとして望まれるビッカース
硬さ60以下の軟質の銅素材を得ることは著しく困難なこ
とであった。
However, according to the distribution coefficient K (= C S / C L ) represented by the ratio of the solute concentration C S of the solid layer formed in the solidification process of the melt and the average concentration C L of the residual liquid, , Ni
Impurities in copper such as can not be removed by repeating the zone melting method several times, and therefore, according to the conventional method for producing a high-purity copper material described above, due to the presence of impurities such as Fe and Ni, It has been extremely difficult to obtain a soft copper material having a Vickers hardness of 60 or less, which is desired as a bonding wire.

[発明が解決しようとする問題点] 本発明の目的は、上記に鑑み、Fe、Ni等の不純物を容
易に除去し、高純度で軟質の銅素材を確実に得ることが
できるボンディングワイヤ用銅素材の製造方法を提供す
ることにある。
[Problems to be Solved by the Invention] In view of the above, an object of the present invention is to easily remove impurities such as Fe and Ni, and reliably obtain a high purity and soft copper material for bonding wire copper. It is to provide a manufacturing method of a material.

[問題点を解決するための手段] 本発明の要点は、上記問題を解決するために、電解精
練により得られた電気銅を陽極とする電解精練を数回以
上繰返すことによってより高純度の電気銅を得た後、該
高純度の電気銅を真空溶解によりインゴットにし、該イ
ンゴットを帯域融解法により精製することにある。
[Means for Solving Problems] The point of the present invention is to solve the above problems by repeating electrolytic refining using electrolytic copper obtained by electrolytic refining as an anode several times or more to obtain a higher-purity electrolysis. After obtaining copper, the high-purity electrolytic copper is vacuum-melted into an ingot, and the ingot is purified by a zone melting method.

[作用] 本発明によれば、帯域融解法では容易に除去できない
Fe、Ni等の銅中の不純物元素を、電解精練により得られ
た電気銅を陽極とする電解精練を数回以上繰返すことに
よって除去し、その後帯域融解法による精製を行うこと
により、純度99.99%以上の高純度の銅素材を容易に得
ることができる。
[Operation] According to the present invention, it cannot be easily removed by the zone melting method.
Impurity elements in copper such as Fe and Ni are removed by repeating electrolytic refining with electrolytic copper obtained by electrolytic refining as an anode several times or more, and then purified by a zone melting method to obtain a purity of 99.99%. The above high-purity copper material can be easily obtained.

なお、帯域融解法によらず、電解精練だけでは、これ
を何回繰返しても純度99.999%以上の高純度銅を得るの
が工業的限界であり、電解精練によれば、通常電解液と
して使用される硫酸中に含まれるS(イオウ)、Pb
(鉛)とともにO2(酸素)などのガス成分がどうしても
残留してしまうために、前記純度を越える例えば純度9
9.9999%以上の高純度銅を得ることは到底できない。
It should be noted that it is an industrial limit to obtain high-purity copper with a purity of 99.999% or more no matter how many times it is repeated by electrolytic refining, regardless of the zone melting method. S (sulfur) and Pb contained in the generated sulfuric acid
Owing to the fact that gas components such as O 2 (oxygen) remain together with (lead), it exceeds the above-mentioned purity, for example, a purity of 9
It is impossible to obtain high-purity copper of 9.9999% or more.

帯域融解法により精製を行なう場合、素材としてはイ
ンゴットを用いるのが好適である。このようなインゴッ
トは電解精練を数回以上繰返すことによって得た高純度
の電気銅を、その純度を維持するために、通常10-5以上
の真空度をもつ真空溶解により製造することができる。
When purifying by the zone melting method, it is preferable to use an ingot as a raw material. Such an ingot can be produced by high-purity electrolytic copper obtained by repeating electrolytic refining several times or more by vacuum melting with a vacuum degree of usually 10 −5 or more in order to maintain the purity.

[実施例] 次に添付図面により本発明ボンディングワイヤ用銅素
材の製造方法の一実施例を説明する。
[Embodiment] An embodiment of the method for producing a copper material for a bonding wire of the present invention will be described with reference to the accompanying drawings.

第1図はボンディングワイヤ用銅線の製造工程を示
し、素材としては電気銅粗銅板と第1種OFC銅箔板が用
いられる。電気銅粗銅板を陽極とし、第1種OFC銅箔板
を種板として再電解精練(一次精製)を行ない、再電解
銅つまり高純度電気銅を得る。このような再電解精練は
1回だけでなく、必要に応じて数回行なうことができ、
これにより特にFe、Ni等の不純物を除去する。
FIG. 1 shows a manufacturing process of a copper wire for a bonding wire, and a raw copper copper plate and a first type OFC copper foil plate are used as materials. Re-electrolytic refining (primary refining) is performed using the electrolytic copper crude copper plate as an anode and the first-type OFC copper foil plate as a seed plate to obtain re-electrolyzed copper, that is, high-purity electrolytic copper. Such re-electrorefining can be performed not only once but also several times as needed,
This removes impurities such as Fe and Ni.

つぎに再電解精練された高純度電気銅を10-6〜10-7
高真空中で真空溶解し、その高純度を保持したままイン
ゴットを製造する。このインゴットを施削加工してルツ
ボによる影響を除去したのち、このインゴットを用いて
帯域融解法による精製(二次精製)を3回繰返し行い、
高純度のゾーンメルト銅を得る。
Next, the reelectrolytically refined high-purity electrolytic copper is vacuum-melted in a high vacuum of 10 −6 to 10 −7 , and an ingot is manufactured while maintaining the high purity. After this ingot is machined to remove the influence of the crucible, purification by the zone melting method (secondary purification) is repeated 3 times using this ingot.
High-purity zone melt copper is obtained.

このゾーンメルト銅を施削加工して線引用銅棒とな
し、洗浄等の処理後線引加工を行ない、所定の線径(18
〜50μ)のボンディングワイヤ用銅線を得る。
This zone-melt copper is processed into a wire-quoted copper rod, and after drawing and other processing, wire-drawing is performed to obtain a predetermined wire diameter (18
~ 50μ) copper wire for bonding wire is obtained.

第2図は再電解精練装置の概要を示し、1は電解槽、
2は電解液、3は陰極に取付けられた第1種OFC銅箔板
からなる種板、4は陽極に取付けられた電気銅粗銅板、
5は電解液2の撹拌装置である。Aは精密定電位制御装
置、Bは電解液精製装置、Cは液温制御装置である。
Fig. 2 shows the outline of the re-electrolytic refining device, 1 is an electrolytic cell,
2 is an electrolytic solution, 3 is a seed plate made of a first type OFC copper foil plate attached to the cathode, 4 is a copper electrolytic copper plate attached to the anode,
Reference numeral 5 is a stirring device for the electrolytic solution 2. A is a precise potentiostatic control device, B is an electrolytic solution refining device, and C is a liquid temperature control device.

この再電解精練装置においては、再電解精練を行なう
ためには、精密定電位制御装置Aにより銅の折出電位を
精密にコントロールすること、及び電解液を常に洗浄に
保つために常時循環すると共に電解液精製装置Bにより
濾過すること、さらに液温を±1℃以内にコントロール
することが非常に重要である。
In this re-electrolytic refining device, in order to perform the re-electrolytic refining, the precise constant-potential control device A precisely controls the protrusion potential of copper, and the electrolytic solution is constantly circulated in order to keep it clean. It is very important to filter by the electrolytic solution purifier B and to control the liquid temperature within ± 1 ° C.

本実施例により得られた銅線は、純度99.999%以上で
あり、銅中にFe、Ni等の不純物元素が少なく、非常に軟
質である。この銅線を用いて半導体装置のパッケージ内
の結線を行なったところ、銅線が非常に軟かいために結
線時に半導体素子が損傷されず、ボンディング作業性も
極めて良好であった。
The copper wire obtained in this example has a purity of 99.999% or more, contains few impurity elements such as Fe and Ni in copper, and is very soft. When the copper wire was used for connection in the package of the semiconductor device, the semiconductor element was not damaged at the time of connection because the copper wire was very soft, and the bonding workability was also very good.

[発明の効果] 本発明ボンディングワイヤ用銅素材の製造方法によれ
ば、電解精練により得られた電気銅を陽極とする電解精
練を数回以上繰返すことによってより高純度の銅を得た
後、該高純度の電気銅を帯域融解法により精製すること
から、帯域融解法では容易に除去できない銅中のFe、Ni
等の不純物元素を上記電解精練によって確実に除去し、
その後帯域融解法により精製することにより、純度99.9
99%以上の軟質の高純度銅を確実かつ容易に得ることが
できる。このとき、精練後の高純度銅に対し、真空溶解
法によるインゴットを用いた帯域融解法を適用すること
により、精練後の高純度銅の純度を維持しながら帯域融
解法による精製を容易に行うことができる。そして、こ
のようにして得られた高純度度素材を用いたボンディン
グワイヤによれば、結線時に半導体素子にダメージを与
えることがなく、ボンディング作業も良効に行うことが
できる。また、本発明は従来の金線やアルミニウム線に
替る安価なボンディングワイヤとしての銅線を提供可能
とするものであり、半導体装置のコスト低減に貢献する
などその工業的価値は極めて大きいものがある。
[Effect of the Invention] According to the method for producing a copper material for a bonding wire of the present invention, after electrolytic refining using electrolytic copper obtained by electrolytic refining as an anode is repeated several times or more to obtain copper of higher purity, Since the high-purity electrolytic copper is purified by the zone melting method, Fe and Ni in copper that cannot be easily removed by the zone melting method.
Reliably remove impurity elements such as the above by electrolytic refining,
After that, the product was purified by the zone melting method to obtain a purity of 99.9.
It is possible to reliably and easily obtain 99% or more soft high-purity copper. At this time, by applying the zone melting method using the ingot by the vacuum melting method to the high-purity copper after scouring, the purification by the zone melting method is easily performed while maintaining the purity of the high-purity copper after scouring. be able to. Then, according to the bonding wire using the high purity material obtained in this manner, the semiconductor device is not damaged at the time of connection, and the bonding work can be effectively performed. Further, the present invention can provide a copper wire as an inexpensive bonding wire which replaces the conventional gold wire or aluminum wire, and has an extremely great industrial value such as contributing to cost reduction of a semiconductor device. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明ボンディングワイヤ用銅素材の製造方法
の一実施例説明図、第2図は再電解精練装置の概要説明
図である。 1:電解槽、2:電解液、3:種板、4:電気銅粗銅板、5:撹拌
装置。
FIG. 1 is an explanatory view of an embodiment of a method for producing a copper material for a bonding wire of the present invention, and FIG. 2 is an outline explanatory view of a reelectrolytic refining device. 1: Electrolyzer, 2: Electrolyte, 3: Seed plate, 4: Copper electrolytic copper plate, 5: Stirrer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬谷 武司 茨城県日立市川尻町1500番地 日立電線株 式会社豊浦工場内 (72)発明者 参木 貞彦 茨城県土浦市木田余町3550番地 日立電線 株式会社金属研究所内 (72)発明者 沖川 進 東京都小平市上水本町1450番地 株式会社 日立製作所武蔵野工場内 (56)参考文献 特開 昭60−124959(JP,A) 特公 昭51−23451(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Seya 1500 Kawajiri-cho, Hitachi City, Ibaraki Prefecture Toraura Plant, Hitachi Cable Co., Ltd. (72) Inventor Sadahiko Sanki 3550 Kidayo-cho, Tsuchiura, Ibaraki Hitachi Cable Stock (72) Inventor Susumu Okikawa 1450, Kamimizuhonmachi, Kodaira-shi, Tokyo Inside the Musashino Factory, Hitachi, Ltd. (56) Reference JP-A-60-124959 (JP, A) JP-B-51-23451 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解精練により得られた電気銅を陽極とす
る電解精練を数回以上繰返すことによってより高純度の
電気銅を得た後、該高純度の電気銅を真空溶解によりイ
ンゴットにし、該インゴットを帯域融解法により精製す
ることを特徴とするボンディングワイヤ用銅素材の製造
方法。
1. After obtaining electrolytic copper of higher purity by repeating electrolytic refining using electrolytic copper obtained by electrolytic refining as an anode several times or more, the electrolytic copper of high purity is vacuum-melted into an ingot, A method for producing a copper material for a bonding wire, which comprises purifying the ingot by a zone melting method.
JP59098753A 1984-05-18 1984-05-18 Method for manufacturing copper material for bonding wire Expired - Lifetime JPH0823050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098753A JPH0823050B2 (en) 1984-05-18 1984-05-18 Method for manufacturing copper material for bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098753A JPH0823050B2 (en) 1984-05-18 1984-05-18 Method for manufacturing copper material for bonding wire

Publications (2)

Publication Number Publication Date
JPS60244054A JPS60244054A (en) 1985-12-03
JPH0823050B2 true JPH0823050B2 (en) 1996-03-06

Family

ID=14228207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098753A Expired - Lifetime JPH0823050B2 (en) 1984-05-18 1984-05-18 Method for manufacturing copper material for bonding wire

Country Status (1)

Country Link
JP (1) JPH0823050B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258812A (en) * 1988-04-08 1989-10-16 Nippon Mining Co Ltd Manufacture of extrafine wire
JP4672203B2 (en) * 2001-08-02 2011-04-20 株式会社日鉄マイクロメタル Method for producing ingot for gold bonding wire
JP4421335B2 (en) * 2004-03-05 2010-02-24 株式会社東芝 Method for producing sputtering target and method for producing copper wiring film
JP4421586B2 (en) * 2006-09-21 2010-02-24 株式会社東芝 Method for producing sputtering target and method for producing copper wiring film
KR101623629B1 (en) 2011-03-07 2016-05-23 제이엑스 킨조쿠 가부시키가이샤 Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836580C3 (en) * 1978-08-21 1981-11-05 Chemische Werke Hüls AG, 4370 Marl Process for the separation of hydrogen chloride and hydrogen bromide

Also Published As

Publication number Publication date
JPS60244054A (en) 1985-12-03

Similar Documents

Publication Publication Date Title
KR101623629B1 (en) Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire
EP0264045B1 (en) Process for refining silicium and silicium purified in such a way
JP2007231363A (en) Process for electrolytic refining of copper
JPH0823050B2 (en) Method for manufacturing copper material for bonding wire
US11913091B2 (en) Tin production, which includes a composition comprising tin, lead, silver and antimony
JP2561862B2 (en) Purification and electrolysis method for obtaining ultra high purity copper
US5573574A (en) Electrorefined aluminium with a low content of uranium, thorium and rare earths
JPH05301731A (en) Purification of quartz glass
PT79303B (en) IMPROVED PROCESS FOR THE RECOVERY OF METALS OF MATERIALS CONTAINING COPPER
JP4318325B2 (en) Manufacturing method of high purity gold for ultra fine bonding wire
US5573739A (en) Selective bismuth and antimony removal from copper electrolyte
JP2000038692A (en) Production of high purity silver
DE2447296C3 (en) Process for depositing precious metal from an alloy consisting of precious metal, copper and one or more other non-ferrous metals
JP6067855B2 (en) Low α-ray bismuth and method for producing low α-ray bismuth
US2797159A (en) Method of purifying of metallic indium
US1166721A (en) Method of treating impure bismuth metal.
JPH0250926A (en) Refining method of metallic gallium
JP2000239885A (en) Anode for electrolytic refining of copper and its production
JP2000087271A (en) Method for cleaning titanium material
JP5941596B2 (en) Method for producing low α-ray bismuth and low α-ray bismuth
DE3022597C2 (en) Process for the production of pure indium
JPH10306331A (en) Method for selectively recovering antimony and bismus from copper electrolyte
DD224885A1 (en) METHOD FOR ELECTROLYTICALLY REFINING A LEAD TIN ALLOY
JPS61124562A (en) Metal accumulated material
JPH07247108A (en) Purification of silicon