JPH08229383A - Extra-high pressure generator - Google Patents

Extra-high pressure generator

Info

Publication number
JPH08229383A
JPH08229383A JP6678795A JP6678795A JPH08229383A JP H08229383 A JPH08229383 A JP H08229383A JP 6678795 A JP6678795 A JP 6678795A JP 6678795 A JP6678795 A JP 6678795A JP H08229383 A JPH08229383 A JP H08229383A
Authority
JP
Japan
Prior art keywords
anvil
piston
hole
piston body
conical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6678795A
Other languages
Japanese (ja)
Other versions
JP2920084B2 (en
Inventor
Masashi Tawatari
正史 田渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP6678795A priority Critical patent/JP2920084B2/en
Publication of JPH08229383A publication Critical patent/JPH08229383A/en
Application granted granted Critical
Publication of JP2920084B2 publication Critical patent/JP2920084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/004Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses involving the use of very high pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To suppress the breakage of the piston and anvil, to minimize the frictional force between the piston and piston hole acting on the piston and to detect the deformation data under extra-high pressure with high precision. CONSTITUTION: A conical recess 13 is formed at the tip of an anvil 1 into which a piston 8 is inserted. A conical thin soft sheet 20 and a conical anvil tip member 30 with a conical small recess 32 formed on its upper face are inserted in this order into the recess 13, and a soft substance 40 such as lead is interposed in the small recess 32 of the member 30 and between a hole 31 and the piston 8. The pseudo-hydrostatic pressure of condensed water acts on the piston and anvil to prevent them from being broken, the seduction in the diameter of a piston hole 9 is reduced by the wedge effect of the tip member 30, the frictional force is lowered, and the deformation data are precisely detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超高圧発生装置に関す
る。さらに詳しくは、ダイヤモンドや立方晶窒化ほう素
の合成に用いたり、物質の超高圧下における変形特性を
試験するために用いられる超高圧発生装置に関する。
FIELD OF THE INVENTION The present invention relates to an ultrahigh pressure generator. More specifically, the present invention relates to an ultrahigh pressure generator used for synthesizing diamond and cubic boron nitride, and for testing the deformation characteristics of substances under ultrahigh pressure.

【0002】[0002]

【従来の技術】超高圧発生装置において、物質の超高圧
下における変形特性を試験するための装置としては、こ
れまでに開発された例はない。従来よりの超高圧発生装
置はいずれもダイヤモンド等の合成用であるが、本発明
に類似の構造の従来技術を時系列に追ってみるとつぎの
とおりである。
2. Description of the Related Art In an ultrahigh pressure generator, there has been no example ever developed as an apparatus for testing the deformation characteristics of a substance under ultrahigh pressure. All of the conventional ultrahigh pressure generators are for synthesizing diamond and the like, and the following is a time series of conventional techniques having a structure similar to that of the present invention.

【0003】一般に高圧を発生する装置には、ピストン
シリンダ型とか、アンビルシリンダ型の形式があるが、
いずれも中央に超高圧発生室を形成し、その超高圧発生
室内に葉ろう石等の圧力媒体を充填し該圧力媒体を加圧
アンビルで圧縮して超高圧を発生するようにしたもので
ある。すなわち図8に示すように従来のこの種装置は複
数のアンビル101 で圧力媒体102 を包囲して該圧力媒体
102 を内蔵した超高圧発生室を形成し、上記アンビル10
1 を中心に向って加圧押進させ、これによって超高圧を
発生させるものである。しかしアンビル101 を加圧押進
して実線図示の位置から点線図示の位置へ移動させると
圧力媒体102 も実線図示から点線図示のように圧縮され
てアンビル101の間隙部には上記圧力媒体102 のはみ出
し部(イ)が形成され、さらにアンビル101 を加圧押進
すればこれは一点鎖線図のように進み、圧力媒体102 の
はみ出し部(ロ)が形成される。そしてアンビル101 に
よるはみ出し部(イ),(ロ)の圧縮は中央の圧力媒体
102 の圧縮に比べ相当大きく、超高圧を発生させようと
してアンビル101 を押進すればする程この比率は大きく
なる。したがって図8に示す従来装置では、アンビル10
1 の加圧力が上記はみ出し部(イ),(ロ)において消
費する損失が極めて大きく、しかもアンビル101 の間隙
部は相当小さいので上記はみ出し部の形成は急速に拡が
り、上記損失は急激に増大する等の欠点があった。
Generally, there are piston cylinder type and anvil cylinder type devices for generating high pressure.
In each case, an ultrahigh pressure generation chamber is formed in the center, a pressure medium such as pyrophyllite is filled in the ultrahigh pressure generation chamber, and the pressure medium is compressed by a pressure anvil to generate ultrahigh pressure. . That is, as shown in FIG. 8, the conventional device of this type has a plurality of anvils 101 surrounding the pressure medium 102.
An ultra high pressure generating chamber containing 102 is formed and
The pressure is pushed toward the center of 1 to generate ultra high pressure. However, when the anvil 101 is pushed forward and moved from the position shown by the solid line to the position shown by the dotted line, the pressure medium 102 is also compressed from the solid line as shown by the dotted line, and the pressure medium 102 in the gap portion of the anvil 101. If a protruding portion (a) is formed and the anvil 101 is further pushed under pressure, this advances as shown by the one-dot chain line, and the protruding portion (b) of the pressure medium 102 is formed. The compression of the protruding parts (a) and (b) by the anvil 101 is the pressure medium in the center.
It is considerably larger than the compression of 102, and the more the anvil 101 is pushed in order to generate an ultrahigh pressure, the larger this ratio becomes. Therefore, in the conventional device shown in FIG.
The pressure of 1 consumes a large amount of loss in the protruding portions (a) and (b), and the gap of the anvil 101 is considerably small, so the formation of the protruding portion spreads rapidly, and the loss increases rapidly. There were drawbacks such as.

【0004】特公昭47−50258 号の超高圧発生装置(従
来例I)は、上記の欠点を解消しようとするもので、図
9に示すように構成されている。201 は加圧アンビル、
202 は固定アンビル、203 はシリンダー(アンビル)
で、該シリンダー203 の上下に加圧アンビル201 と固定
アンビル202 を対向させて配置し、これらで包囲して中
央に葉ろう石等の加圧媒体204 を充填した超高圧発生室
を形成している。205 はピストン体で、上記加圧アンビ
ル201 の加圧面201'内にその加圧面205'を有し該加圧ア
ンビル201 内にほぼ同心に位置して設けられている。20
6 はピストン体205 の圧力シリンダー形成用のプラグで
上記加圧アンビル201 に螺着されている。207 は加圧ア
ンビル201 の圧力シリンダーである。このように従来例
Iでは加圧アンビル201 とピストン体205 とを有し、ま
ず加圧アンビル201 で所定位置まで加圧し、ついでピス
トン体205 で加圧を行うので、加圧アンビル201 による
初期加圧ではみ出した圧力媒体204 は該加圧アンビル20
1 が押進を停止した位置においてガスケットの機能をも
つこととなり、ピストン体205 による次回の加圧時には
前記はみだし部(イ)が拡大されることなく中央の圧力
媒体204 のみが加圧を続けられ、所望の超高圧を発生す
るになる。したがって圧力媒体4のはみ出し部が少くな
り、はみ出し部を圧縮することによる圧力損失を増大さ
せることなく所望の超高圧を得ることができることとな
った。ところで、図8〜9に示す超高圧発生装置のアン
ビルには図10に示すように、アンビル201,202 の頂面や
外錐面の壁面に垂直な力P1,P2 が作用する。このような
外力場にあるアンビル201 ,202にピストン体205 を挿入
するピストン孔206 をピストン体205 の外径よりも大き
く加工した場合、ピストン孔への応力集中によりアンビ
ル201 ,202が破壊してしまうという欠陥がある。
The ultra-high pressure generator (Japanese Patent Publication No. 47-50258) (conventional example I) is intended to solve the above-mentioned drawbacks and is constructed as shown in FIG. 201 is a pressure anvil,
202 is a fixed anvil, 203 is a cylinder (anvil)
Then, the pressure anvil 201 and the fixed anvil 202 are arranged facing each other above and below the cylinder 203, and surrounded by these, an ultrahigh pressure generating chamber filled with a pressure medium 204 such as pyrophyllite is formed. There is. Reference numeral 205 denotes a piston body, which has a pressure surface 205 ′ in a pressure surface 201 ′ of the pressure anvil 201, and is disposed substantially concentrically in the pressure anvil 201. 20
Reference numeral 6 denotes a plug for forming a pressure cylinder of the piston body 205, which is screwed to the pressure anvil 201. 207 is a pressure cylinder of the pressure anvil 201. As described above, in Conventional Example I, the pressurizing anvil 201 and the piston body 205 are provided. First, the pressurizing anvil 201 pressurizes to a predetermined position, and then the piston body 205 pressurizes. The pressure medium 204 protruding by the pressure is the pressure anvil 20.
1 has the function of a gasket at the position where pushing is stopped, and the next time the piston body 205 pressurizes, only the central pressure medium 204 can continue to be pressurized without expanding the protruding part (a). , Will generate the desired ultra high pressure. Therefore, the protruding portion of the pressure medium 4 is reduced, and the desired ultrahigh pressure can be obtained without increasing the pressure loss due to the compression of the protruding portion. By the way, as shown in FIG. 10, forces P1 and P2 perpendicular to the top surfaces of the anvils 201 and 202 and the outer conical wall surfaces act on the anvil of the ultrahigh pressure generator shown in FIGS. When the piston hole 206 for inserting the piston body 205 into the anvils 201 and 202 in such an external force field is machined larger than the outer diameter of the piston body 205, stress concentration on the piston holes causes the anvils 201 and 202 to break. There is a defect that it ends up.

【0005】そこで、特開昭54−21967 号公報記載の従
来例IIでは、ピストン孔径をピストン体の外径よりも若
干小さいか、もしくは等しく設定し、この孔にピストン
体を圧入するようにしている。しかしながら上記従来例
IIのようにした場合、圧縮時に作用する圧力P1,P2の大
きさが異なるときは、図11に示すように、アンビル201
,202が実線の状態から想像線で示すように変形してし
まい、X部のようにピストン孔206 が内側に縮径してし
まい、この結果、ピストン体がアンビルに拘束されるこ
とになる。このことは超高圧発生装置が、ダイヤモンド
等合成用である場合には、駆動力の損失が大きくなり、
ピストン体やアンビルが破壊しやすくなり、さらに、発
生させる超高圧力が不足するという不利益につながる。
また、超高圧発生装置が超高圧下変形特性のテスト装置
であるなら、上記不利益に加えて、ピストン体とピスト
ン孔間の摩擦あるいは拘束力によって、超高圧下にある
試料体の変形に要する力を正確に測定できないという致
命的な欠点となってあらわれる。
Therefore, in the conventional example II described in JP-A-54-21967, the piston hole diameter is set to be slightly smaller than or equal to the outer diameter of the piston body, and the piston body is press-fitted into this hole. There is. However, the above conventional example
In the case of II, when the pressures P1 and P2 that act at the time of compression are different, as shown in FIG.
, 202 is deformed from the solid line state as shown by the imaginary line, and the piston hole 206 is reduced in diameter like the X portion, and as a result, the piston body is restrained by the anvil. This means that if the ultra-high pressure generator is for synthesizing diamond, etc., the loss of driving force will increase,
The piston body and the anvil are easily broken, and the disadvantage is that the ultra-high pressure generated is insufficient.
If the ultra-high pressure generator is a test device for deformation characteristics under ultra-high pressure, in addition to the above disadvantages, it is necessary to deform the sample body under ultra-high pressure due to friction or binding force between the piston body and piston hole. It appears as a fatal defect that the force cannot be measured accurately.

【0006】[0006]

【発明が解決しようとする課題】本発明はかかる事情に
鑑み、ピストン駆動力の損失が少なく、ピストン体やア
ンビル自体の破壊が生じにくく安全であり、高い圧縮圧
力が得られ、さらにピストン体に作用するピストン孔と
の摩擦力や拘束力を極力低減させ、超高圧下における変
形データを精度よく検出できる超高圧発生装置を提供す
ることを目的とする。
In view of such circumstances, the present invention has a small loss of piston driving force, is less likely to cause damage to the piston body or the anvil itself, is safe, and has a high compression pressure. It is an object of the present invention to provide an ultra-high pressure generator capable of accurately detecting deformation data under ultra-high pressure by reducing frictional force and restraining force with an acting piston hole as much as possible.

【0007】[0007]

【課題を解決するための手段】本発明の超高圧発生装置
は、複数個のアンビルで包囲して物質を収納する超高圧
発生室を形成し、前記アンビルの一つに前記超高圧発生
室に向ってピストン孔を形成し、該ピストン孔に外力に
よって超高圧発生室側に移動されるピストン体を挿入し
た超高圧発生装置であって、前記ピストン体が挿入され
たアンビルの先端に、前記ピストン孔と同心の円錐状凹
部を形成すると共に、薄肉かつ軟質材料製であり、その
中心に前記ピストン体を貫通させる孔が形成された円錐
板状の薄肉軟板と、厚肉であり、その中心に前記ピスト
ン体を貫通させる孔が形成され、前記超高圧発生室側面
に円錐状の小凹部が形成された擂鉢体状のアンビル先端
部材とを設け、前記薄肉軟板と前記アンビル先端部材と
を、その順で前記円錐状凹部に嵌挿し、前記アンビル先
端部材の小凹部および孔と前記ピストン体との間に軟質
物質を介在させていることを特徴とする。上記発明にお
いては、アンビル先端部材の孔が、ピストン体の外径よ
り大きい内径であることが好ましい。
The ultrahigh pressure generator of the present invention forms an ultrahigh pressure generating chamber which is surrounded by a plurality of anvils and stores a substance, and one of the anvils is provided with the ultrahigh pressure generating chamber. An ultra-high pressure generator having a piston hole formed in the opposite direction, the piston body being moved to the ultra-high pressure generating chamber side by an external force is inserted into the piston hole, wherein the piston body is inserted at the tip of the anvil. A conical plate-shaped thin soft plate that has a conical recess that is concentric with the hole and that is thin and made of a soft material and that has a hole for penetrating the piston body in its center, and a thick center A hole for penetrating the piston body is formed, and a mortar-shaped anvil tip member having a conical small concave portion formed on the side surface of the ultrahigh pressure generating chamber is provided, and the thin soft plate and the anvil tip member are provided. , In that order Fitted into the conical recess, characterized in that it is interposed soft material between the small recesses and holes of the anvil tip member and the piston member. In the above invention, it is preferable that the hole of the anvil tip member has an inner diameter larger than the outer diameter of the piston body.

【0008】[0008]

【作用】本発明において加圧時には、アンビル先端部材
は軟質物質により外面をほぼ包囲され、また薄肉軟板を
介してアンビルの円錐状凹部と接しているため、均一な
力をアンビルから受ける。したがって、アンビル先端部
材は、いずれの面においても圧縮力を受けるため凝静水
圧的な応力場となり破損が生じにくくなる。また、アン
ビルもアンビル先端部材から受ける力と先端部外錐面に
作用する圧力とが互いに対向して圧縮し合うので擬静水
圧的な応力場となり、破損が生じにくくなる。さらに、
本発明においてはピストン体に作用する摩擦力ないし拘
束力を大きく低減できる。すなわち、アンビル先端部材
は加圧時の圧力によってアンビルの円錐状凹部内に押し
込まれクサビとして作用する。このときアンビル先端部
材の底錐面とアンビルの円錐状凹部の内錐面とは傾斜面
であるので、押込み力は前記内錐面に垂直、すなわちピ
ストン孔を広げる方向に働く。このクサビ作用による力
が、アンビルの先端部外錐面に働く力に対向するので、
アンビル中心に形成されたピストン孔の縮径を低減する
ことができる。このためピストン体に作用する摩擦力も
大きくならない。よって、ピストン駆動力の摩擦等によ
る損失が少なく、超高圧下における試料体の変形に関す
るデータを正確に検出することができる。そして、アン
ビル先端部材の孔をピストン体の外径より大きくしたと
きは、その孔とピストン体との間にも軟質物質が存する
ことになり、ピストン体は軟質物質に対して摺動するた
め摩擦力がさらに低減し安定した動作が可能となる。し
たがって、さらに正確な変形データを検出することがで
きる。
In the present invention, when the anvil tip member is pressurized, the outer surface of the anvil member is substantially surrounded by the soft material and is in contact with the conical concave portion of the anvil through the thin soft plate, so that a uniform force is received from the anvil. Therefore, since the anvil tip member receives a compressive force on any surface, it becomes a hydrostatic stress field and is less likely to be damaged. Further, in the anvil as well, the force received from the tip member of the anvil and the pressure acting on the outer conical surface of the tip portion oppose and compress each other, so that a pseudo-hydrostatic stress field is generated, and breakage hardly occurs. further,
In the present invention, the frictional force or restraint force acting on the piston body can be greatly reduced. That is, the anvil tip member is pushed into the conical concave portion of the anvil by the pressure applied and acts as a wedge. At this time, since the bottom conical surface of the anvil tip member and the inner conical surface of the conical concave portion of the anvil are inclined surfaces, the pushing force acts in a direction perpendicular to the inner conical surface, that is, in the direction of expanding the piston hole. Since the force of this wedge action opposes the force acting on the outer conical surface of the tip of the anvil,
It is possible to reduce the diameter reduction of the piston hole formed in the center of the anvil. Therefore, the frictional force acting on the piston body does not increase. Therefore, there is little loss of the piston driving force due to friction and the like, and it is possible to accurately detect the data regarding the deformation of the sample body under an ultrahigh pressure. When the hole of the anvil tip member is made larger than the outer diameter of the piston body, soft material also exists between the hole and the piston body, and the piston body slides against the soft material, causing friction. The force is further reduced and stable operation is possible. Therefore, more accurate deformation data can be detected.

【0009】[0009]

【実施例】つぎに本発明の実施例を図面に基づき説明す
る。図1は本発明の一実施例に係わる超高圧発生装置の
アンビル構造を示す断面図、図2は図1の上部アンビル
構造の分解斜視図、図3は本発明に係わるアンビル構造
の利点の説明図、図4は超高圧発生装置の全体図、図5
は上下アンビル,サイドアンビルの部分斜視図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a sectional view showing an anvil structure of an ultrahigh pressure generator according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of an upper anvil structure of FIG. 1, and FIG. 3 is an explanation of advantages of the anvil structure of the present invention. Fig. 4, Fig. 4 is an overall view of the ultrahigh pressure generator, Fig. 5
FIG. 3 is a partial perspective view of the upper and lower anvils and the side anvil.

【0010】まず、超高圧発生装置の全体構成を図4〜
5に基づき説明しておくと、1は上部アンビル、2は下
部アンビルで、これら上下一対のアンビル1、2はいず
れも先細の四角錐台状の先端部を有し、その先端部の端
面が対向するように配置されている。3は前記アンビル
1,2の中間位置に配設されたサイドアンビルで、上記
アンビル1、2と同様に、先細の四角錐台状の先端部を
有している。そして、アンビル3は前後左右に配設され
(図5において前方のサイドアンビルは図示省略)、そ
れらの先端部の端面と前記上下一対のアンビル1,2の
先端部の端面とで被圧縮物を入れる空間である超高圧発
生室4が形成される。5は後述するピストン体8を駆動
する上部ラム、6は前記下部アンビル2を駆動する下部
ラムである。そして前記一対のアンビル1,2、上下一
対のラム5、6はそれぞれ軸線yに中心を合わせ共軸的
にプレスフレーム7に取付けられている。また、前記一
対のアンビル1,2のいずれか一方、図示の例では上部
アンビル1に前記軸線yと同心にピストン孔を形成し、
ピストン体8を挿入している。前記サイドアンビル3は
図示しないラム等の加圧装置により、超高圧発生室4に
入れられた被圧縮物45を加圧することができると共に、
下部アンビル2がラム6によって移動する量の半分だけ
上昇および中心方向に移動する構成となっている。
First, FIG. 4 to FIG.
5, the upper anvil 2 and the lower anvil 1 have a pair of upper and lower anvils 1 and 2 each having a tapered truncated pyramid-shaped tip, and the end face of the tip is It is arranged to face each other. Reference numeral 3 denotes a side anvil disposed at an intermediate position between the anvils 1 and 2 and, like the anvils 1 and 2, has a tapered quadrangular truncated pyramid-shaped tip portion. The anvils 3 are arranged in front, back, left and right (the front side anvils are not shown in FIG. 5), and the end faces of the tip portions thereof and the end faces of the tip portions of the pair of upper and lower anvils 1 and 2 serve to compress the object to be compressed. An ultrahigh pressure generation chamber 4 which is a space for entering is formed. Reference numeral 5 is an upper ram for driving a piston body 8 described later, and 6 is a lower ram for driving the lower anvil 2. The pair of anvils 1, 2 and the pair of upper and lower rams 5, 6 are coaxially attached to the press frame 7 with their centers aligned with the axis y. Further, one of the pair of anvils 1 and 2, in the illustrated example, a piston hole is formed in the upper anvil 1 concentrically with the axis y,
The piston body 8 is inserted. The side anvil 3 can pressurize the object to be compressed 45 placed in the ultrahigh pressure generating chamber 4 by a pressurizing device such as a ram (not shown).
The lower anvil 2 is configured to move up and move toward the center by half the amount moved by the ram 6.

【0011】上記のピストン体8を有する上部アンビル
1のアンビル構造を、図1〜2に基づき詳述する。アン
ビル1の先端部は先端が平面状になった四角錐台形で、
外錐面の斜面部11と頭部12を有している。また、軸線y
と同心に前記ピストン孔9が穿孔されており、そのピス
トン孔9と同心に円錐状凹部13が前記頭部12から掘り下
げるように形成されている。そして、円錐状凹部13の底
部にはピストン孔9と同心の縮径孔部14が形成されてい
る。
The anvil structure of the upper anvil 1 having the piston body 8 will be described in detail with reference to FIGS. The tip of the anvil 1 is a truncated pyramid with a flat tip,
It has an outer conical slope 11 and a head 12. Also, the axis y
The piston hole 9 is bored concentrically with, and a conical recess 13 is formed concentrically with the piston hole 9 so as to be dug down from the head 12. Further, a reduced diameter hole portion 14 concentric with the piston hole 9 is formed in the bottom portion of the conical concave portion 13.

【0012】20は薄肉軟板で、鉛などの軟質材料からな
る薄肉の円錐板である。この薄肉軟板20は前記円錐状凹
部13の内錐面に沿う大きさの形状を有し、その底部中心
には前記ピストン体8を通す孔21が形成されている。30
はアンビル先端部材で、アンビル1,2と同様の超硬合
金や焼結ダイヤモンド等で作製された、厚肉の擂鉢体で
ある。このアンビル先端部材30は、前記薄肉軟板20の内
側に嵌る大きさの形状を有し、その底部中心には前記ピ
ストン体8の外径より大きい内径の孔31が形成されてい
る。また、その上面には、孔31と同心の円錐状の小凹部
32が形成されている。そして、このアンビル先端部材30
の外錐面33と内錐面34は平行である。
Reference numeral 20 is a thin soft plate, which is a thin conical plate made of a soft material such as lead. The thin soft plate 20 has a size along the inner conical surface of the conical concave portion 13, and a hole 21 through which the piston body 8 is inserted is formed at the center of the bottom portion thereof. 30
Is an anvil tip member, which is a thick-walled mortar body made of cemented carbide, sintered diamond, or the like similar to the anvils 1 and 2. The anvil tip member 30 has a size that fits inside the thin soft plate 20, and a hole 31 having an inner diameter larger than the outer diameter of the piston body 8 is formed at the center of the bottom portion thereof. In addition, on its upper surface, a small conical recess concentric with the hole 31.
32 are formed. And this anvil tip member 30
The outer conical surface 33 and the inner conical surface 34 of are parallel to each other.

【0013】前記薄肉軟板20とアンビル先端部材30は、
その順でアンビル1の円錐状凹部13に嵌められる。そし
て、アンビル先端部材30と薄肉軟板20の孔31,21 にピス
トン体8を貫通させた状態で、アンビル先端部材30の小
凹部32とピストン体8との間および孔31とピストン体8
との間に鉛などの軟質物質40が詰め込まれる。
The thin soft plate 20 and the anvil tip member 30 are
The cone-shaped recess 13 of the anvil 1 is fitted in that order. Then, with the piston body 8 penetrated through the anvil tip member 30 and the holes 31, 21 of the thin soft plate 20, between the small recess 32 of the anvil tip member 30 and the piston body 8 and between the hole 31 and the piston body 8.
A soft substance 40 such as lead is packed between and.

【0014】上記に説明した本発明の超高圧発生装置
は、超高圧発生室4の物質を上下一対のアンビル1,2
で加圧し、さらにピストン体8を突入させて超高圧状態
に加圧して、ダイヤモンドや立方晶窒化ほう素等を合成
したり、あるいはピストン体8突入時の物質の変形特性
をテストするのに用いられる。そして上記のごとき物質
合成あるいは変形特性テストにおいて、超高圧発生室4
に被加圧物質45(試料)を入れアンビル1,2,3とで
加圧したとき、本装置のアンビル構造には図1に示すよ
うな力が作用する。すなわち、アンビル1の頭部12とア
ンビル先端部材30の頂面と小凹部32内の軟質物質40に垂
直に力P1が作用し、アンビル1とアンビル3の斜面部11
に圧力媒体がはみ出すことになり、アンビル1の斜面部
11に垂直に力P2が作用する。
In the ultrahigh pressure generator of the present invention described above, the substance in the ultrahigh pressure generating chamber 4 is placed in a pair of upper and lower anvils 1, 2.
It is used to synthesize diamond, cubic boron nitride, etc., or to test the deformation characteristics of the substance when the piston body 8 is rushed, To be In the material synthesis or deformation characteristic test as described above, the ultra high pressure generation chamber 4
When the substance 45 (sample) to be pressurized is put into the and is pressurized with the anvils 1, 2 and 3, a force as shown in FIG. 1 acts on the anvil structure of this device. That is, the force P1 acts vertically on the head 12 of the anvil 1, the top surface of the anvil tip member 30, and the soft material 40 in the small recess 32, and the slope portion 11 of the anvil 1 and the anvil 3
The pressure medium will squeeze out into the slope of the anvil 1.
Force P2 acts on 11 perpendicularly.

【0015】このとき上記構造に基づき、つぎの作用効
果を奏する。本装置において加圧時には、アンビル先端
部材30は軟質物質40により外面をほぼ包囲され、また薄
肉軟板20を介してアンビル1の円錐状凹部13と接してい
るため、均一な力をアンビル1から受ける。したがっ
て、アンビル先端部材30は、いずれの面においても圧縮
力を受けるため凝静水圧的な応力場となり破損が生じに
くくなる。また、アンビル1の先端部もアンビル先端部
材30から受ける力と斜面部11に作用する圧力P2とが互い
に対向して圧縮し合うので擬静水圧的な応力場となり、
破損が生じにくくなる。
At this time, the following operational effects are obtained based on the above structure. At the time of pressurization in this device, the anvil tip member 30 is substantially surrounded on its outer surface by the soft substance 40, and is in contact with the conical recess 13 of the anvil 1 via the thin soft plate 20, so that a uniform force is applied from the anvil 1 to the anvil 1. receive. Therefore, since the anvil tip member 30 receives a compressive force on any surface, it becomes a hydrostatic stress field and is less likely to be damaged. In addition, since the force received from the anvil tip member 30 and the pressure P2 acting on the slope portion 11 oppose and compress each other at the tip of the anvil 1, a pseudo hydrostatic stress field is obtained.
Less likely to be damaged.

【0016】さらに、本装置においてはピストン体8に
作用する摩擦力ないし拘束力を大きく低減できる。すな
わち、アンビル先端部材30は加圧時の圧力によってアン
ビル1の円錐状凹部13内に押し込まれクサビとして作用
する。このときアンビル先端部材30の底錐面とアンビル
1の円錐状凹部13の内錐面15とは傾斜面であるので、押
込み力P4は図3に示すように前記内錐面15に垂直、すな
わちピストン孔9を広げる方向に働く。このクサビ作用
による力P4が、アンビル1の先端部外錐面である斜面部
11に働く力P2に対向して作用するので、アンビル1中心
に形成されたピストン孔9の縮径を低減することができ
る。このためピストン体8に作用する摩擦力も大きくな
らない。また、ピストン体8は図1に示すように軟質物
質40に接触した状態で摺動するため摩擦力がさらに低減
し安定した動作が可能となる。よって、ピストン駆動力
の摩擦等による損失が少なく、超高圧下における試料体
の変形に要するデータを正確に検出することができる。
Further, in this apparatus, the frictional force or the restraining force acting on the piston body 8 can be greatly reduced. That is, the anvil tip member 30 is pushed into the conical recess 13 of the anvil 1 by the pressure applied and acts as a wedge. At this time, since the bottom conical surface of the anvil tip member 30 and the inner conical surface 15 of the conical recess 13 of the anvil 1 are inclined surfaces, the pushing force P4 is perpendicular to the inner conical surface 15, as shown in FIG. It works to widen the piston hole 9. The force P4 due to this wedge action is the slope portion which is the outer conical surface of the tip of the anvil 1.
Since it acts against the force P2 acting on 11, it is possible to reduce the diameter reduction of the piston hole 9 formed in the center of the anvil 1. Therefore, the frictional force acting on the piston body 8 does not increase. Further, as shown in FIG. 1, the piston body 8 slides in contact with the soft substance 40, so that the frictional force is further reduced and stable operation is possible. Therefore, there is little loss due to friction of the piston driving force, and the data required for the deformation of the sample body under ultrahigh pressure can be accurately detected.

【0017】次に、本装置による超高圧下変形特性の試
験要領を図6に基づき説明する。まず、シリンダ3の超
高圧発生室4に試料体を入れ、下部ラム2を作動させて
目的の超高圧を試料体に発生させる(符号a参照)。つ
ぎに上部ラム5の圧力をピストン体8が作動開始するま
で昇圧する(符号b参照)。そして、上部ラム5の圧力
をピストン体8が作動開始した時点の状態で保持しつつ
ピストン体8の動作が停止した時点(符号c参照)で逆
に減圧開始する。再びピストン体8が動き始めた時点
(符号d参照)で上部ラム5の減圧を停止し圧力保持す
る。さらにピストン体8の動作が停止した時点(符号e
参照)で、下部ラム6と上部ラム5の圧力を減圧すると
テストを完了する。
Next, the test procedure of the deformation characteristics under the super high pressure by this apparatus will be described with reference to FIG. First, the sample body is put in the ultra-high pressure generation chamber 4 of the cylinder 3, and the lower ram 2 is operated to generate the target ultra-high pressure in the sample body (see symbol a). Next, the pressure of the upper ram 5 is increased until the piston body 8 starts to operate (see symbol b). Then, while the pressure of the upper ram 5 is maintained in the state at the time when the piston body 8 starts to operate, when the operation of the piston body 8 stops (see the reference sign c), decompression starts conversely. When the piston body 8 starts to move again (see reference numeral d), the pressure reduction of the upper ram 5 is stopped and the pressure is maintained. Further, when the operation of the piston body 8 is stopped (reference numeral e
Then, the pressure of the lower ram 6 and the upper ram 5 is reduced, and the test is completed.

【0018】このテスト中にピストン体8の動作に必要
な圧力Pi,Pfを測定すると試料体の超高圧下における変
形抵抗を求めることができる。そして上記の圧力Pi,Pf
を測定するに際し、本装置では既述のごとくピストン体
8の駆動時に発生する摩擦や拘束力がほぼゼロに等しい
ので、誤差が少なく正確な変形特性の測定が可能とな
る。また、上記の実験を行う場合にはピストン体8の駆
動時に上部アンビル1が高圧を保持した状態であるが、
前記の理由により、アンビル1もアンビル先端部30もピ
ストン体8も、本装置では破壊しにくいのである。
By measuring the pressures Pi and Pf required for the operation of the piston body 8 during this test, the deformation resistance of the sample body under ultrahigh pressure can be obtained. And the above pressures Pi, Pf
In this measurement, since the frictional force and the restraining force generated when the piston body 8 is driven are substantially equal to zero as described above in this device, it is possible to accurately measure the deformation characteristic with less error. Further, in the case of performing the above experiment, the upper anvil 1 maintains a high pressure when the piston body 8 is driven,
For the above reasons, the anvil 1, the anvil tip portion 30, and the piston body 8 are not easily broken by this device.

【0019】つぎに、本発明の他の実施例を説明する。
なお、前記実施例では、上下アンビル1,2および4つ
のアンビル3で構成された超高圧発生装置について説明
したが、図7に示すように、先細りの円錐台状の先端部
を有する上下一対のアンビル51,52間に、中央部に孔54
を有する中空アンビル(中空シリンダー)53が配設され
た超高圧発生装置にも適用できる。中空アンビル(中空
シリンダー)53には、アンビル51,52に形成された円錐
台状の先端部に対応する円錐状の凹溝が上下に設けられ
ている。要するに、本発明は、複数個のアンビルで包囲
して物質を収納する超高圧発生室を有する超高圧発生装
置において、前記アンビルの一つにピストン孔が形成さ
れ、その孔にピストン体が挿入されており、そのピスト
ン孔の超高圧発生室側端部に円錐状凹部が形成されてお
り、さらにその円錐状凹部に、薄肉軟板20,アンビル先
端部材30,軟質物質40が介装されていればよいのであ
る。
Next, another embodiment of the present invention will be described.
In addition, in the said Example, although the ultrahigh pressure generator comprised with the upper and lower anvils 1 and 4 and four anvils 3 was demonstrated, as shown in FIG. 7, a pair of upper and lower which has a tapered truncated cone-shaped front-end | tip part. A hole 54 in the center between the anvils 51 and 52
It can also be applied to an ultrahigh pressure generator having a hollow anvil (hollow cylinder) 53 having a. The hollow anvil (hollow cylinder) 53 is provided with conical concave grooves corresponding to the truncated cone-shaped tips formed on the anvils 51 and 52, respectively. In short, the present invention is an ultrahigh pressure generating apparatus having an ultrahigh pressure generating chamber which is surrounded by a plurality of anvils and stores a substance, wherein a piston hole is formed in one of the anvils, and a piston body is inserted into the hole. A conical recess is formed at the end of the piston hole on the side of the ultrahigh pressure generating chamber, and a thin soft plate 20, anvil tip member 30, and soft material 40 are interposed in the conical recess. It's good.

【0020】[0020]

【発明の効果】本発明によれば、ピストン駆動力の損失
が少なく、ピストンやアンビルの破壊が生じにくく安全
であり、高い圧縮圧力が得られ、さらにピストンに作用
するアンビルとの摩擦力や拘束力を極力低減させ、超高
圧下における変形データを精度よく検出することができ
る。
According to the present invention, the loss of the piston driving force is small, the piston and the anvil are not easily broken, and the safety is high, a high compression pressure is obtained, and the frictional force and the constraint with the anvil acting on the piston are obtained. The force can be reduced as much as possible, and the deformation data under ultrahigh pressure can be detected accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わる超高圧発生装置のア
ンビル構造を示す断面図である。
FIG. 1 is a cross-sectional view showing an anvil structure of an ultrahigh pressure generator according to an embodiment of the present invention.

【図2】図1のアンビル構造の分解斜視図である。FIG. 2 is an exploded perspective view of the anvil structure of FIG.

【図3】本発明に係わるアンビル構造の利点の説明図で
ある。
FIG. 3 is an illustration of the advantages of the anvil structure according to the present invention.

【図4】超高圧発生装置の全体図である。FIG. 4 is an overall view of an ultrahigh pressure generator.

【図5】図4のアンビル構造の斜視図である。5 is a perspective view of the anvil structure of FIG. 4. FIG.

【図6】超高圧下変形特性試験の要領説明図である。FIG. 6 is an explanatory diagram of the procedure of a deformation characteristic test under ultrahigh pressure.

【図7】本発明の他の実施例に係わる超高圧発生装置の
アンビル構造の斜視図である。
FIG. 7 is a perspective view of an anvil structure of an ultrahigh pressure generator according to another embodiment of the present invention.

【図8】ピストンを有しないアンビルを用いた従来技術
の問題点の説明図である。
FIG. 8 is an explanatory diagram of a problem of the conventional technique using an anvil having no piston.

【図9】ピストンを有するアンビルを用いた従来技術I
の構造説明図である。
9: Prior art I using an anvil with pistons
It is a structure explanatory view.

【図10】図7の従来技術Iのアンビル構造に作用する
力の説明図である。
FIG. 10 is an explanatory view of a force acting on the anvil structure of Prior Art I of FIG. 7.

【図11】図7の従来技術Iの問題点の説明図である。11 is an explanatory diagram of a problem of the prior art I of FIG.

【符号の説明】[Explanation of symbols]

1 上部アンビル 2 下部アンビ
ル 3 サイドアンビル 4 超高圧発生
室 5 上部ラム 6 下部ラム 8 ピストン体 9 ピストン孔 11 斜面部 20 薄肉軟板 30 アンビル先端部材 40 軟質物質
1 Upper anvil 2 Lower anvil 3 Side anvil 4 Ultra high pressure generating chamber 5 Upper ram 6 Lower ram 8 Piston body 9 Piston hole 11 Slope 20 Thin soft plate 30 Anvil tip member 40 Soft material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数個のアンビルで包囲して物質を収納す
る超高圧発生室を形成し、前記アンビルの一つに前記超
高圧発生室に向ってピストン孔を形成し、該ピストン孔
に外力によって超高圧発生室側に移動されるピストン体
を挿入した超高圧発生装置であって、前記ピストン体が
挿入されたアンビルの先端に、前記ピストン孔と同心の
円錐状凹部を形成すると共に、薄肉かつ軟質材料製であ
り、その中心に前記ピストン体を貫通させる孔が形成さ
れた円錐板状の薄肉軟板と、厚肉であり、その中心に前
記ピストン体を貫通させる孔が形成され、前記超高圧発
生室側面に円錐状の小凹部が形成された擂鉢体状のアン
ビル先端部材とを設け、前記薄肉軟板と前記アンビル先
端部材とを、その順で前記円錐状凹部に嵌挿し,前記ア
ンビル先端部材の小凹部および孔と前記ピストン体との
間に軟質物質を介在させていることを特徴とする超高圧
発生装置。
1. An ultra-high pressure generating chamber which is surrounded by a plurality of anvils to contain a substance, and a piston hole is formed in one of the anvils toward the ultra-high pressure generating chamber, and an external force is applied to the piston hole. An ultra-high pressure generator in which a piston body is inserted which is moved to the ultra-high pressure generation chamber side by means of which a conical recess concentric with the piston hole is formed at the tip of the anvil into which the piston body is inserted, And made of a soft material, a thin conical plate-shaped soft plate in which a hole for penetrating the piston body is formed in the center, and a thick wall, a hole for penetrating the piston body is formed in the center, A mortar-shaped anvil tip member in which a conical small recess is formed on the side surface of the ultrahigh pressure generating chamber is provided, and the thin soft plate and the anvil tip member are fitted into the conical recess in that order, and Anvil tip member Ultra high pressure generating apparatus, characterized in that it is interposed soft material between the recesses and holes with the piston body.
【請求項2】前記アンビル先端部材の孔が、ピストン体
の外径より大きい内径である請求項1記載の超高圧発生
装置。
2. The ultrahigh pressure generator according to claim 1, wherein the hole of the anvil tip member has an inner diameter larger than the outer diameter of the piston body.
JP6678795A 1995-03-01 1995-03-01 Ultra high pressure generator Expired - Lifetime JP2920084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6678795A JP2920084B2 (en) 1995-03-01 1995-03-01 Ultra high pressure generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6678795A JP2920084B2 (en) 1995-03-01 1995-03-01 Ultra high pressure generator

Publications (2)

Publication Number Publication Date
JPH08229383A true JPH08229383A (en) 1996-09-10
JP2920084B2 JP2920084B2 (en) 1999-07-19

Family

ID=13325930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6678795A Expired - Lifetime JP2920084B2 (en) 1995-03-01 1995-03-01 Ultra high pressure generator

Country Status (1)

Country Link
JP (1) JP2920084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068620A (en) * 2004-09-01 2006-03-16 National Institute Of Advanced Industrial & Technology High-pressure generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068620A (en) * 2004-09-01 2006-03-16 National Institute Of Advanced Industrial & Technology High-pressure generator

Also Published As

Publication number Publication date
JP2920084B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
Dunstan et al. Miniature cryogenic diamond‐anvil high‐pressure cell
US7650795B2 (en) Test cell for applying a shear stress to a test specimen
Ulusay et al. Draft ISRM suggested method for determining block punch strength index (BPI)
CN105158087B (en) A kind of improved method that rock shearing experiment is carried out using rock triaxial apparatus
US4192194A (en) Method and means for biaxially testing material
US5025669A (en) Device for carrying out stress tests on rock sample and other materials
WO1996025653A1 (en) Methods and apparatus for measuring double-interface shear in geosynthetics and geomaterials
CN110553932A (en) Tensile experimental apparatus of low strain rate in combined material board
CN110441172A (en) Osmotic pressure and static pressure couple electromagnetic load three axis SHPB devices and test method
Lindholm et al. A dynamic biaxial testing machine: Paper describes a biaxial, tension-torsion testing machine, designed to have the capability of varying the rate of load application over a relatively wide dynamic range
Smart A true triaxial cell for testing cylindrical rock specimens
Lewis et al. A biaxial split Hopkinson bar for simultaneous torsion and compression
JPH08229383A (en) Extra-high pressure generator
US5693345A (en) Diamond anvil cell assembly
CN110926969A (en) CO2Device and method for acquiring expansion parameters of non-through structural plane under phase change pneumatic action
Rome et al. Hopkinson techniques for dynamic triaxial compression tests
JPH09248443A (en) Ultrahigh pressure generation apparatus
Chen et al. A technique for dynamic proportional multiaxial compression on soft materials
US3481190A (en) Pressure vessel for stressing work specimens
JPS6091234A (en) One-surface-shearing testing machine
JP2712073B2 (en) Sleeve type sliding stopper device for reducing frictional error for tensile, torque or compression test of test specimen in high hydraulic pressure vessel
CN111678805A (en) Rock dynamic shear strength device and method based on SHPB (shear stress relaxation testing)
JP2009106877A (en) Ultrahigh pressure generating device
CN211573516U (en) Device for acquiring expansion parameters of non-through structural plane under carbon dioxide phase change pneumatic action
CN209878678U (en) Sound wave testing device of rock rod piece under prestress condition