JPH09248443A - Ultrahigh pressure generation apparatus - Google Patents

Ultrahigh pressure generation apparatus

Info

Publication number
JPH09248443A
JPH09248443A JP8744796A JP8744796A JPH09248443A JP H09248443 A JPH09248443 A JP H09248443A JP 8744796 A JP8744796 A JP 8744796A JP 8744796 A JP8744796 A JP 8744796A JP H09248443 A JPH09248443 A JP H09248443A
Authority
JP
Japan
Prior art keywords
ultrahigh pressure
anvil
piston
spheres
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8744796A
Other languages
Japanese (ja)
Other versions
JP2920107B2 (en
Inventor
Masashi Tawatari
正史 田渡
Toru Tanaka
徹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP8744796A priority Critical patent/JP2920107B2/en
Publication of JPH09248443A publication Critical patent/JPH09248443A/en
Application granted granted Critical
Publication of JP2920107B2 publication Critical patent/JP2920107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/004Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses involving the use of very high pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the friction force with the piston hole acting on a piston element to the utmost and to accurately detect deformation data under ultrahigh pressure. SOLUTION: A conical recessed part 13 is formed to the leading end of an anvil 1 into which a piston element 8 is inserted and filled with a large number of spheres 20 so as to surround a piston element 8 and a soft substance 30 is placed on a sphere group. The soft substance 30 enters the gaps between the spheres at a time of pressurization but is prescribed by the gaps between the spheres to lower in pressure and does not reach the bottom part of the recessed part and, therefore, the leak of a pressure medium is sealed by the soft substance 30 and, since the piston element and the spheres 20 are in a spherical surface contact state, friction is reduced. As a result, the deformation data of a sample X can be accurately detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超高圧発生装置に関
する。さらに詳しくは、ダイヤモンドや立方晶窒化ほう
素の合成に用いたり、物質の超高圧下における変形特性
を試験するために用いられる超高圧発生装置に関する。
TECHNICAL FIELD The present invention relates to an ultrahigh pressure generator. More specifically, the present invention relates to an ultra-high pressure generator used for synthesizing diamond and cubic boron nitride and for testing the deformation characteristics of a substance under ultra-high pressure.

【0002】[0002]

【従来の技術】超高圧発生装置において、物質の超高圧
下における変形特性を試験するための装置としては、こ
れまでに開発された例はない。従来よりの超高圧発生装
置はいずれもダイヤモンド等の合成用であるが、本発明
に類似の構造の従来技術はつぎのとおりである。
2. Description of the Related Art In an ultrahigh pressure generator, there has been no example developed so far for testing the deformation characteristics of a substance under ultrahigh pressure. All of the conventional ultrahigh pressure generators are for synthesizing diamond and the like, and the prior art having a structure similar to the present invention is as follows.

【0003】一般に超高圧を発生する装置には、ピスト
ンシリンダ型とか、アンビルシリンダ型等の形式がある
が、いずれも中央に超高圧発生室を形成し、その超高圧
発生室内に葉ろう石等の加圧媒体を充填し、その加圧媒
体を加圧アンビルで圧縮して超高圧を発生するようにし
たものである。すなわち図8に示すように従来のこの種
装置は、複数のアンビル101 で加圧媒体102 を包囲し
て、加圧媒体102 を内蔵した超高圧発生室を形成し、上
記アンビル101 を中心に向って加圧押進させ、これによ
って超高圧を発生させるものである。
In general, there are types such as a piston cylinder type and an anvil cylinder type as a device for generating an ultrahigh pressure. In each of these, an ultrahigh pressure generating chamber is formed in the center, and a pyrophyllite, etc. is formed in the ultrahigh pressure generating chamber. Is filled with a pressurized medium, and the pressurized medium is compressed with a pressurized anvil to generate an ultrahigh pressure. That is, as shown in FIG. 8, the conventional apparatus of this type surrounds the pressurizing medium 102 with a plurality of anvils 101 to form an ultra-high pressure generating chamber containing the pressurizing medium 102, and the anvil 101 is directed toward the center. Then, it is pushed forward by pressure, and thereby an ultrahigh pressure is generated.

【0004】しかるにアンビル101 を加圧押進して実線
図示の位置から点線図示の位置へ移動させると、加圧媒
体102 も実線図示から点線図示のように圧縮されてアン
ビル101 の間隙部に上記加圧媒体102 のはみ出し部
(イ)が形成され、さらにアンビル101 を加圧押進すれ
ば一点鎖線図のように進み、加圧媒体102 のはみ出し部
(ロ)が形成される。そしてアンビル101 によるはみ出
し部(イ),(ロ)の圧縮は中央の加圧媒体102 の圧縮
に比べ相当大きく、超高圧を発生させようとしてアンビ
ル101 を押進すればする程この比率は大きくなる。した
がって図8に示す従来装置では、アンビル101 の加圧力
が上記はみ出し部(イ),(ロ)において消費する損失
が極めて大きく、しかもアンビル101 の間隙部は相当小
さいので上記はみ出し部の形成は急速に拡がり、上記損
失は急激に増大する等の欠点があった。
However, when the anvil 101 is pushed forward and moved from the position shown by the solid line to the position shown by the dotted line, the pressurizing medium 102 is also compressed as shown by the dotted line from the position shown by the solid line to the above-mentioned space in the gap of the anvil 101. A protruding portion (a) of the pressurizing medium 102 is formed, and when the anvil 101 is further pushed by pressure, the protruding portion (b) of the pressurizing medium 102 is formed as shown by a one-dot chain line diagram. The compression of the protruding portions (a) and (b) by the anvil 101 is considerably larger than the compression of the central pressurizing medium 102, and the more the anvil 101 is pushed in order to generate the super high pressure, the larger this ratio becomes. . Therefore, in the conventional apparatus shown in FIG. 8, the pressure applied to the anvil 101 consumes a large amount of loss in the protruding portions (a) and (b), and the gap between the anvils 101 is considerably small. However, there is a drawback that the above loss rapidly increases.

【0005】特公昭47−50258 号の超高圧発生装置は、
上記の欠点を解消しようとするもので、図9に示すよう
に構成されている。201 は加圧アンビル、202 は固定ア
ンビル、203 はシリンダー(アンビル)で、該シリンダ
ー203 の上下に加圧アンビル201 と固定アンビル202 を
対向させて配置し、これらで包囲して中央に葉ろう石等
の加圧媒体204 を充填した超高圧発生室を形成してい
る。205 はピストン体で、上記加圧アンビル201 のピス
トン孔208 内に挿入されている。206 はピストン体205
の圧力シリンダー形成用のプラグで上記加圧アンビル20
1 に螺着されている。207 は加圧アンビル201 の圧力シ
リンダーである。この従来例では上記のように加圧アン
ビル201 とピストン体205 の二つの加圧手段を有し、ま
ず加圧アンビル201 で所定位置まで加圧し、ついでピス
トン体205 で加圧を行う。そして、加圧アンビル201 に
よる初期加圧ではみ出した加圧媒体204 は該加圧アンビ
ル201 が押進を停止した位置においてガスケットの機能
をもつこととなり、ピストン体205 による次回の加圧時
には前記はみだし部(イ)が拡大されることなく中央の
加圧媒体204 のみが加圧を続けられ、所望の超高圧を発
生することになる。したがって加圧媒体204 のはみ出し
部が少くなり、はみ出し部を圧縮することによる圧力損
失を増大させることはなくなった。
The ultra-high pressure generator of Japanese Patent Publication No. 47-50258 is
It is intended to eliminate the above-mentioned drawbacks, and is configured as shown in FIG. Reference numeral 201 is a pressure anvil, 202 is a fixed anvil, and 203 is a cylinder (anvil). The pressure anvil 201 and the fixed anvil 202 are arranged above and below the cylinder 203 so as to be opposed to each other, and surrounded by these to provide a calculus in the center. Form a super high pressure generating chamber filled with a pressurizing medium 204 such as. 205 is a piston body, which is inserted into the piston hole 208 of the pressure anvil 201. 206 is a piston body 205
The pressure anvil 20 with the plug for forming the pressure cylinder of
It is screwed to 1. 207 is a pressure cylinder of the pressure anvil 201. In this conventional example, the pressurizing anvil 201 and the piston body 205 have two pressurizing means as described above. First, the pressurizing anvil 201 pressurizes to a predetermined position and then the piston body 205 pressurizes. Then, the pressurizing medium 204 that has protruded by the initial pressurization by the pressurizing anvil 201 has a function of a gasket at the position where the pressurizing anvil 201 stops pushing, and the extruding member is extruded at the next pressurization by the piston body 205. Only the central pressurizing medium 204 continues to be pressurized without expanding the part (a), and a desired ultrahigh pressure is generated. Therefore, the protruding portion of the pressurizing medium 204 is reduced, and the pressure loss due to the compression of the protruding portion is not increased.

【0006】しかしながら、この従来例のピストン孔20
8 にピストン体205 を挿入した装置では、つぎの問題が
ある。すなわち、ピストン孔208 とピストン体205 のク
リアランスが少しでも小さいと、ピストン孔208 とピス
トン体205 の摩擦あるいは拘束力により超高圧下にある
試料体の変形に要する力を正確に測定できず、反対に少
しでも大きすぎると、超高圧を発生させる際に試料体が
上記クリアランスに入り込み、超高圧空間が形成されに
くくなり、またクリアランスに入り込んだ試料体がピス
トン体205 に摩擦力を作用させ、やはり得られた測定デ
ータの精度を損うことになる。
However, the piston hole 20 of this conventional example
The device in which the piston body 205 is inserted in 8 has the following problems. That is, if the clearance between the piston hole 208 and the piston body 205 is as small as possible, the force required for the deformation of the sample body under ultrahigh pressure cannot be accurately measured due to the friction or the binding force between the piston hole 208 and the piston body 205. If it is too large, the sample body enters the above clearance when the ultra high pressure is generated, and it becomes difficult to form the ultra high pressure space.The sample body that enters the clearance causes the piston body 205 to exert a frictional force. The accuracy of the obtained measurement data will be impaired.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる事情に
鑑み、ピストン体に作用するピストン孔との摩擦力や拘
束力を極力低減させて超高圧を発生しやすくし、かつ超
高圧下における変形データを精度よく検出できる超高圧
発生装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above situation, the present invention reduces the frictional force and the restraining force acting on the piston body with the piston hole as much as possible to easily generate the super high pressure, and the deformation under the super high pressure. It is an object of the present invention to provide an ultrahigh pressure generator capable of detecting data with high accuracy.

【0008】[0008]

【課題を解決するための手段】請求項1の超高圧発生装
置は、複数個のアンビルで包囲して超高圧発生室を形成
し、前記アンビルの一つに前記超高圧発生室に向ってピ
ストン孔を形成し、該ピストン孔に外力によって超高圧
発生室側に移動されるピストン体を挿入した超高圧発生
装置であって、前記ピストン体が挿入されたアンビルの
先端に、前記ピストン孔と同心の円錐状凹部を形成する
と共に、前記円錐状凹部において、前記ピストン体を囲
むように多数の球体を充填し、かつ該球体群と前記超高
圧発生室との間に軟質物質を置いたことを特徴とする。
請求項2の超高圧発生装置は、前記円錐状凹部に充填さ
れた球体同士の間の隙間に、さらに小球体を挿入したこ
とを特徴とする。請求項3の超高圧発生装置は、前記円
錐状凹部に充填された球体同士の間の隙間に、粉体を充
填したことを特徴とする。請求項4の超高圧発生装置
は、前記円錐状凹部に充填された球体同士の間の隙間
に、軟質物質を充填したことを特徴とする。
An ultrahigh pressure generator according to claim 1 is surrounded by a plurality of anvils to form an ultrahigh pressure generation chamber, and a piston is provided in one of the anvils toward the ultrahigh pressure generation chamber. An ultrahigh pressure generator in which a hole is formed, and a piston body that is moved to the side of the ultrahigh pressure generation chamber by an external force is inserted into the piston hole, wherein the piston body is concentric with the piston hole at the tip of the anvil. While forming a conical concave part of the conical concave part, a large number of spheres are filled in the conical concave part so as to surround the piston body, and a soft substance is placed between the sphere group and the ultrahigh pressure generating chamber. Characterize.
The ultrahigh pressure generator of claim 2 is characterized in that a small sphere is further inserted into a gap between the spheres filled in the conical recess. According to a third aspect of the present invention, the ultrahigh pressure generating device is characterized in that a powder is filled in a gap between the spherical bodies filled in the conical recess. The ultrahigh pressure generator according to claim 4 is characterized in that a gap between the spherical bodies filled in the conical recess is filled with a soft substance.

【0009】[0009]

【発明の実施の形態】つぎに本発明の実施形態を図面に
基づき説明する。図1は本発明の一実施形態に係わる超
高圧発生装置のアンビル構造を示す断面図、図2は図1
のアンビル構造におけるシール作用の説明図、図3は他
のアンビル構造におけるシール作用の説明図、図4は超
高圧発生装置の全体図、図5は上下アンビルとサイドア
ンビルの要部斜視図である。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing an anvil structure of an ultrahigh pressure generator according to an embodiment of the present invention, and FIG.
FIG. 3 is an explanatory view of the sealing action in the anvil structure of FIG. 3, FIG. 3 is an explanatory diagram of the sealing action in another anvil structure, FIG. 4 is an overall view of the ultra-high pressure generating device, and FIG. 5 is a perspective view of main parts of the upper and lower anvils and side anvils. .

【0010】まず、超高圧発生装置の全体構成を図4〜
5に基づき説明しておくと、1は上部アンビル、2は下
部アンビルで、これら上下一対のアンビル1、2はいず
れも先細の四角錐台状の先端部を有し、その先端部の端
面が対向するように配置されている。3は前記アンビル
1,2の中間位置に配設されたサイドアンビルで、上記
アンビル1、2と同様に、先細の四角錐台状の先端部を
有している。そして、アンビル3は前後左右に配設され
(図5において前方のサイドアンビルは図示省略)、そ
れらの先端部の端面と前記上下一対のアンビル1,2の
先端部の端面とで被圧縮物を入れる空間である超高圧発
生室4が形成される。5は後述するピストン体8を駆動
する上部ラム、6は前記下部アンビル2を駆動する下部
ラムである。そして前記上下一対のアンビル1,2、お
よび上下一対のラム5、6はそれぞれ軸線yに中心を合
わせ共軸的にプレスフレーム7に取付けられている。ま
た、前記上下一対のアンビル1,2のいずれか一方、図
示の例では上部アンビル1に前記軸線yと同心にピスト
ン孔を形成し、ピストン体8を挿入している。前記サイ
ドアンビル3は図示しないラム等の加圧装置により、超
高圧発生室4に入れられた加圧媒体45を加圧し、かつ下
部アンビル2がラム6によって移動する量の半分だけ上
昇および中心方向に移動する構成となっている。
First, FIG. 4 to FIG.
5, the upper anvil 2 and the lower anvil 1 have a pair of upper and lower anvils 1 and 2 each having a tapered truncated pyramid-shaped tip, and the end face of the tip is It is arranged to face each other. Reference numeral 3 denotes a side anvil disposed at an intermediate position between the anvils 1 and 2 and, like the anvils 1 and 2, has a tapered quadrangular truncated pyramid-shaped tip portion. The anvils 3 are arranged in front, back, left and right (the front side anvils are not shown in FIG. 5), and the end faces of the tip portions thereof and the end faces of the tip portions of the pair of upper and lower anvils 1 and 2 serve to compress the object to be compressed. An ultrahigh pressure generation chamber 4 which is a space for entering is formed. Reference numeral 5 is an upper ram for driving a piston body 8 described later, and 6 is a lower ram for driving the lower anvil 2. The pair of upper and lower anvils 1 and the pair of upper and lower rams 5 and 6 are coaxially attached to the press frame 7 with their centers aligned with the axis y. Further, one of the pair of upper and lower anvils 1, in the illustrated example, a piston hole is formed in the upper anvil 1 concentrically with the axis y, and the piston body 8 is inserted. The side anvil 3 pressurizes the pressurizing medium 45 contained in the ultra-high pressure generating chamber 4 by a pressurizing device such as a ram (not shown), and ascends by half the amount of movement of the lower anvil 2 by the ram 6 and the center direction. It is configured to move to.

【0011】上記のピストン体8を有する上部アンビル
1のアンビル構造を、図1に基づき詳述する。アンビル
1の先端部は既述のごとく先端が截頭された四角錐台形
で、外錐面の斜面部11と頭部12を有している。また、軸
線yと同心にピストン孔9が穿孔されており、そのピス
トン孔9と同心に前記頭部12からピストン孔9に向けて
ざぐり加工することにより円錐状凹部13が形成されてい
る。
The anvil structure of the upper anvil 1 having the piston body 8 will be described in detail with reference to FIG. As described above, the tip of the anvil 1 is a truncated pyramid having a truncated pyramid shape, and has an outer conical surface slope 11 and a head 12. Further, a piston hole 9 is bored concentrically with the axis y, and a conical recess 13 is formed concentrically with the piston hole 9 by performing a counterbore processing from the head 12 toward the piston hole 9.

【0012】20は球体で、前記円錐状凹部13の底部にピ
ストン体8を取り囲むように充填されている。この球体
20は高圧が作用するので、セラミックまたは超硬合金な
どの材質が好ましく、また後述する軟質物質の圧力を低
下させるためには、球体間の隙間が小さい程良いので、
直径が0.2 〜0.5mm 位が好適である。充填した球体20の
上面(球体20と超高圧発生室4との間)には軟質物質30
が載せられ、球体群の上面を覆っている。この軟質物質
30は高温、高圧状態で液状になるような物質、例えば、
鉛などが好適である。
A spherical body 20 is filled in the bottom portion of the conical recess 13 so as to surround the piston body 8. This sphere
Since 20 acts on high pressure, a material such as ceramic or cemented carbide is preferable, and in order to reduce the pressure of the soft substance described later, the smaller the gap between the spheres, the better.
A diameter of 0.2 to 0.5 mm is suitable. A soft substance 30 is placed on the upper surface of the filled sphere 20 (between the sphere 20 and the ultrahigh pressure generating chamber 4).
Is placed and covers the upper surface of the sphere group. This soft material
30 is a substance that becomes liquid at high temperature and high pressure, for example,
Lead or the like is preferable.

【0013】前記超高圧発生室4には、葉ろう石や塩化
ナトリウム(Nacl)、安定化ジルコニア(ZrO2)などで
作製した加圧媒体45が挿入され、この加圧媒体45にはピ
ストン体8の軸方向に試料挿入孔46が形成され、該試料
挿入孔46の中央部に試料Xが入れられ、その上下に丸棒
状の副ピストン10が挿入されている。この副ピストン10
は耐熱、耐圧力性があればよく、例えば、アルミナ、セ
ラミックス、超硬合金等が好適である。
A pressure medium 45 made of pyrophyllite, sodium chloride (Nacl), stabilized zirconia (ZrO2) or the like is inserted into the ultrahigh pressure generation chamber 4, and the piston body 8 is inserted into the pressure medium 45. A sample insertion hole 46 is formed in the axial direction, the sample X is placed in the center of the sample insertion hole 46, and the round rod-shaped sub-piston 10 is inserted above and below the sample X. This sub piston 10
Is required to have heat resistance and pressure resistance, and for example, alumina, ceramics, cemented carbide and the like are suitable.

【0014】上記に説明した超高圧発生装置は、超高圧
発生室4内の加圧媒体45をアンビル1,2,3で加圧
し、さらにピストン体8を加圧媒体45の試科挿入孔46に
突入させると(想像線図示)、副ピストン10を介して物
質(または試料X)を超高圧状態に加圧することがで
き、ダイヤモンドや立方晶窒化ほう素等を合成したり、
あるいはピストン体8突入時の試料Xの変形特性をテス
トすることができる。
In the ultra-high pressure generator described above, the pressurizing medium 45 in the ultra-high pressure producing chamber 4 is pressurized by the anvils 1, 2 and 3, and the piston body 8 is inserted into the trial insertion hole 46 of the pressurizing medium 45. (Or the phantom line), the substance (or sample X) can be pressurized to an ultra-high pressure state via the sub piston 10, and diamond, cubic boron nitride, etc. can be synthesized,
Alternatively, it is possible to test the deformation characteristics of the sample X when the piston body 8 enters.

【0015】そして上記のごとき物質合成あるいは変形
特性テストにおいて、超高圧発生室4内の加圧媒体45に
挿入した試料Xをアンビル1,2,3で加圧したとき、
本装置のアンビル構造には図2に示すようなシール作用
が発揮される。すなわち、加圧媒体45に加えられた超高
圧力Pが、反作用によって軟質物質30に作用すると、軟
質物質30が各球体20間の隙間に入り込もうとする(矢印
参照)。その入り込む方向は各球体20によって縦横に変
えられるので、隙間を通過する度に軟質物質30の圧力は
低下する。こうした現象が、積み重ねられた球体20間を
通過する度に発生し、さらに軟質物質30の粘性の影響も
受けて、軟質物質30はつぎの球体20間へ入り難くなる。
したがって、軟質物質30は充填され積み重ねられた球体
20の最下段へは到達せず、加圧媒体45がピストン孔9へ
侵入しないようにシールすることができる。
In the material synthesis or deformation characteristic test as described above, when the sample X inserted in the pressurizing medium 45 in the ultrahigh pressure generating chamber 4 is pressurized by the anvils 1, 2, and 3,
The anvil structure of this device exhibits a sealing action as shown in FIG. That is, when the ultrahigh pressure P applied to the pressurizing medium 45 acts on the soft substance 30 by a reaction, the soft substance 30 tries to enter the gap between the spheres 20 (see the arrow). Since the entering direction can be changed vertically and horizontally by each sphere 20, the pressure of the soft substance 30 decreases each time it passes through the gap. Such a phenomenon occurs each time when passing between the stacked spheres 20, and is also affected by the viscosity of the soft substance 30, so that the soft substance 30 hardly enters the space between the next spheres 20.
Therefore, the soft material 30 is filled and stacked in spheres.
It can be sealed so that the pressurizing medium 45 does not enter the piston hole 9 without reaching the bottom of 20.

【0016】一方、図1に示すように、ピストン体8と
各球体20とは球面接触であるため作用する摩擦力は小さ
く、ピストン体8の前進をほとんど拘束しない。そのた
め、実験によって得られる試料Xの変形データの検出精
度も良くなり、実際のものに近いデータが得られる。ま
た、ピストン体8とピストン孔9とのクリアランスを大
きくとることができ、ピストン体8とピストン孔9間の
摩擦が少なくなるので、ピストン体8を安定して動かす
ことができる。よって、ピストン駆動力の摩擦等による
損失が少なくなり、かかる理由によっても超高圧下にお
ける試料Xの変形に要するデータを正確に検出すること
ができる。
On the other hand, as shown in FIG. 1, since the piston body 8 and each spherical body 20 are in spherical contact, the frictional force acting is small, and the forward movement of the piston body 8 is hardly restrained. Therefore, the detection accuracy of the deformation data of the sample X obtained by the experiment is also improved, and the data close to the actual one can be obtained. Further, the clearance between the piston body 8 and the piston hole 9 can be increased, and the friction between the piston body 8 and the piston hole 9 is reduced, so that the piston body 8 can be stably moved. Therefore, the loss of the piston driving force due to friction or the like is reduced, and for this reason, the data required for the deformation of the sample X under ultrahigh pressure can be accurately detected.

【0017】つぎに、本装置による超高圧下変形特性の
試験要領を図6に基づき説明する。まず、超高圧発生室
4内に入れた加圧媒体45に試料Xを挿入し、下部ラム6
を作動させて下部アンビル2を駆動して目的の超高圧を
加圧媒体45に発生させる(符号a参照)。つぎに上部ラ
ム5の圧力をピストン体8が作動開始するまで昇圧する
(符号b参照)。そして、上部ラム5の圧力をピストン
体8が作動開始した時点の状態で保持しつつピストン体
8の動作が停止した時点(符号c参照)で逆に減圧開始
する。再びピストン体8が動き始めた時点(符号d参
照)で上部ラム5の減圧を停止し圧力保持する。さらに
ピストン体8の動作が停止した時点(符号e参照)で、
下部ラム6と上部ラム5の圧力を減圧するとテストを完
了する。
Next, the test procedure of the deformation characteristics under ultrahigh pressure by this apparatus will be described with reference to FIG. First, the sample X is inserted into the pressurizing medium 45 placed in the ultrahigh pressure generating chamber 4, and the lower ram 6
Is operated to drive the lower anvil 2 to generate the desired ultrahigh pressure in the pressurizing medium 45 (see symbol a). Next, the pressure of the upper ram 5 is increased until the piston body 8 starts to operate (see symbol b). Then, while the pressure of the upper ram 5 is maintained in the state at the time when the piston body 8 starts to operate, when the operation of the piston body 8 stops (see the reference sign c), decompression starts conversely. When the piston body 8 starts to move again (see reference numeral d), the pressure reduction of the upper ram 5 is stopped and the pressure is maintained. Further, at the time when the operation of the piston body 8 is stopped (see reference numeral e),
The test is completed by reducing the pressure of the lower ram 6 and the upper ram 5.

【0018】このテスト中にピストン体8の動作に必要
な圧力Pi,Pfを測定すると試料Xの超高圧下における変
形抵抗を求めることができる。そして上記の圧力Pi,Pf
を測定するに際し、本装置では既述のごとくピストン体
8の駆動時に発生する摩擦や拘束力がほぼゼロに等しい
ので、誤差が少なく正確な変形データの測定が可能とな
る。
By measuring the pressures Pi and Pf required for the operation of the piston body 8 during this test, the deformation resistance of the sample X under ultrahigh pressure can be obtained. And the above pressures Pi, Pf
In this device, since the frictional force and the restraining force generated when the piston body 8 is driven are almost equal to zero as described above in this device, it is possible to accurately measure the deformation data with less error.

【0019】つぎに、本発明の他の実施形態を説明す
る。前記実施形態では、上下アンビル1,2および4つ
のサイドアンビル3で構成された超高圧発生装置につい
て説明したが、図7に示すように、先細りの円錐台状の
先端部を有する上下一対のアンビル51,52間に、中央部
に孔54を有する中空アンビル(中空シリンダー)53が配
設された超高圧発生装置にも適用できる。中空アンビル
(中空シリンダー)53には、アンビル51,52に形成され
た円錐台状の先端部に対応する円錐状の凹溝を上下に設
けておけばよい。
Next, another embodiment of the present invention will be described. In the above-described embodiment, the ultrahigh pressure generating device including the upper and lower anvils 1 and 4 and the four side anvils 3 has been described, but as shown in FIG. 7, a pair of upper and lower anvils having a tapered truncated cone-shaped tip portion. It can also be applied to an ultra-high pressure generator in which a hollow anvil (hollow cylinder) 53 having a hole 54 in the center is arranged between 51 and 52. The hollow anvil (hollow cylinder) 53 may be provided with conical recessed grooves corresponding to the truncated cone-shaped tips formed on the anvils 51 and 52, respectively.

【0020】図1実施形態では、球体20は全て同じ大き
さのものを用いたが、図3に示すように各球体20の間に
直径の小さい小球体20b を挿入してもよい。この場合、
小球体20b により各球体20の間の隙間が小さくなるの
で、よりシール効果が高くなるという利点がある。
In the embodiment shown in FIG. 1, the spheres 20 are all of the same size, but small spheres 20b having a small diameter may be inserted between the spheres 20 as shown in FIG. in this case,
Since the gaps between the spheres 20 are reduced by the small spheres 20b, there is an advantage that the sealing effect is further enhanced.

【0021】また、図3の実施形態における小球体20b
の代りに粉体または軟質物質を挿入してもよい。粉体と
しては、圧力、温度に対して化学・物理的に物質が変化
しない安定した材料、例えば酸化マグネシウム(MgO )
が好適であり、軟質物質としては、粒状に形成した鉛な
どが好適である。この粉体または軟質物質を挿入した実
施形態でも、球体20間の隙間が小さくなるので、やはり
シール効果が高くなるという利点がある。
The small sphere 20b in the embodiment of FIG.
Alternatively, a powder or soft material may be inserted. As a powder, a stable material that does not physically or chemically change with pressure or temperature, such as magnesium oxide (MgO 2).
Is preferable, and as the soft substance, granular lead or the like is preferable. Even in the embodiment in which the powder or the soft material is inserted, the gap between the spheres 20 is small, so that there is an advantage that the sealing effect is also enhanced.

【0022】[0022]

【発明の効果】請求項1〜4の発明によれば、ピストン
駆動力の損失が少なく、ピストンに作用するアンビルと
の摩擦力や拘束力を極力低減させうるので、より超高圧
下での物質合成が可能となり、また、超高圧下における
変形データを高い精度で検出することができる。
According to the first to fourth aspects of the present invention, the loss of the piston driving force is small, and the frictional force with the anvil acting on the piston and the restraining force can be reduced as much as possible. It becomes possible to synthesize, and the deformation data under ultrahigh pressure can be detected with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係わる超高圧発生装置の
アンビル構造を示す断面図である。
FIG. 1 is a cross-sectional view showing an anvil structure of an ultrahigh pressure generator according to an embodiment of the present invention.

【図2】図1のアンビル構造におけるシール作用の説明
図である。
FIG. 2 is an explanatory view of a sealing action in the anvil structure of FIG.

【図3】本発明の他の実施形態におけるシール作用の説
明図である。
FIG. 3 is an explanatory diagram of a sealing action according to another embodiment of the present invention.

【図4】超高圧発生装置の全体図である。FIG. 4 is an overall view of an ultrahigh pressure generator.

【図5】図4のアンビル構造の分解斜視図である。5 is an exploded perspective view of the anvil structure of FIG. 4. FIG.

【図6】超高圧下変形特性試験の要領説明図である。FIG. 6 is an explanatory diagram of the procedure of a deformation characteristic test under ultrahigh pressure.

【図7】本発明の他の実施形態に係わる超高圧発生装置
のアンビル構造の斜視図である。
FIG. 7 is a perspective view of an anvil structure of an ultrahigh pressure generator according to another embodiment of the present invention.

【図8】ピストンを有しないアンビルを用いた従来技術
の問題点の説明図である。
FIG. 8 is an explanatory diagram of a problem of the conventional technique using an anvil having no piston.

【図9】ピストンを有するアンビルを用いた従来技術の
構造説明図である。
FIG. 9 is a structural explanatory view of a prior art using an anvil having a piston.

【符号の説明】[Explanation of symbols]

1 上部アンビル 2 下部アンビ
ル 3 サイドアンビル 4 超高圧発生
室 5 上部ラム 6 下部ラム 8 ピストン体 9 ピストン孔 10 副ピストン 20 球体 30 軟質物質 45 加圧媒体
1 Upper anvil 2 Lower anvil 3 Side anvil 4 Ultra high pressure generating chamber 5 Upper ram 6 Lower ram 8 Piston body 9 Piston hole 10 Secondary piston 20 Sphere 30 Soft material 45 Pressurized medium

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】複数個のアンビルで包囲して超高圧発生室
を形成し、前記アンビルの一つに前記超高圧発生室に向
ってピストン孔を形成し、該ピストン孔に外力によって
超高圧発生室側に移動されるピストン体を挿入した超高
圧発生装置であって、前記ピストン体が挿入されたアン
ビルの先端に、前記ピストン孔と同心の円錐状凹部を形
成すると共に、前記円錐状凹部において、前記ピストン
体を囲むように多数の球体を充填し、かつ該球体群と前
記超高圧発生室との間に軟質物質を置いたことを特徴と
する超高圧発生装置。
1. An ultrahigh pressure generating chamber is surrounded by a plurality of anvils, a piston hole is formed in one of the anvils toward the ultrahigh pressure generating chamber, and an ultrahigh pressure is generated in the piston hole by an external force. An ultrahigh pressure generator in which a piston body moved to the chamber side is inserted, wherein a conical recess concentric with the piston hole is formed at the tip of the anvil into which the piston body is inserted, and in the conical recess. An ultrahigh pressure generating device, characterized in that a large number of spheres are filled so as to surround the piston body, and a soft substance is placed between the sphere group and the ultrahigh pressure generating chamber.
【請求項2】前記円錐状凹部に充填された球体同士の間
の隙間に、さらに小球体を挿入したことを特徴とする請
求項1記載の超高圧発生装置。
2. The ultrahigh pressure generator according to claim 1, wherein a small sphere is further inserted into a gap between the spheres filled in the conical recess.
【請求項3】前記円錐状凹部に充填された球体同士の間
の隙間に、粉体を充填したことを特徴とする請求項1記
載の超高圧発生装置。
3. The ultrahigh pressure generator according to claim 1, wherein a powder is filled in a gap between the spherical bodies filled in the conical recess.
【請求項4】前記円錐状凹部に充填された球体同士の間
の隙間に、軟質物質を充填したことを特徴とする請求項
1記載の超高圧発生装置。
4. The ultrahigh pressure generator according to claim 1, wherein a soft substance is filled in a gap between the spheres filled in the conical recess.
JP8744796A 1996-03-16 1996-03-16 Ultra high pressure generator Expired - Fee Related JP2920107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8744796A JP2920107B2 (en) 1996-03-16 1996-03-16 Ultra high pressure generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8744796A JP2920107B2 (en) 1996-03-16 1996-03-16 Ultra high pressure generator

Publications (2)

Publication Number Publication Date
JPH09248443A true JPH09248443A (en) 1997-09-22
JP2920107B2 JP2920107B2 (en) 1999-07-19

Family

ID=13915122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8744796A Expired - Fee Related JP2920107B2 (en) 1996-03-16 1996-03-16 Ultra high pressure generator

Country Status (1)

Country Link
JP (1) JP2920107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8500027B2 (en) 2008-11-17 2013-08-06 Optoelectronics Co., Ltd. High speed optical code reading

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8500027B2 (en) 2008-11-17 2013-08-06 Optoelectronics Co., Ltd. High speed optical code reading

Also Published As

Publication number Publication date
JP2920107B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
Hiestand et al. Physical processes of tableting
Wang et al. The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa
US3975950A (en) Apparatus for testing material strength
Carretero-González et al. Dissipative solitary waves in granular crystals
US5025669A (en) Device for carrying out stress tests on rock sample and other materials
US4747295A (en) Test piece for ultrasonic testing
US6022206A (en) Cubic multi anvil device
GB2286047A (en) Extensometer and support for an extensometer
Smart A true triaxial cell for testing cylindrical rock specimens
CN109142073A (en) Diamond anvil cell device
Lindholm et al. A dynamic biaxial testing machine: Paper describes a biaxial, tension-torsion testing machine, designed to have the capability of varying the rate of load application over a relatively wide dynamic range
JPH09248443A (en) Ultrahigh pressure generation apparatus
CN117227240B (en) Controllable quick pressurizing technology for large-cavity press
US4615221A (en) Triaxial compression test apparatus
US3890830A (en) Grain moisture tester
JPH04270941A (en) High pressure sample holder for recording infrared absorption spectrum
CN115235863A (en) Miniature two-stage propulsion multi-surface anvil pressing cavity, assembling method thereof and anvil pressing equipment
JP2920084B2 (en) Ultra high pressure generator
US5693345A (en) Diamond anvil cell assembly
JPH0216402A (en) Measuring device for testing work-surface state
Es-Saheb Uniaxial strain rate effects in pharmaceutical powders during cold compaction
GB1512614A (en) Apparatus for testing or measuring deformation and fracture of test-pieces under multiaxial tension or compression
JPS6340132B2 (en)
Berg et al. Experimental characterization of CaCO3 powder for use in compressible gaskets up to ultra-high pressure
US3105994A (en) Pressure apparatus

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120423

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees